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4.1 Implementation of generic push-relabel

To obtain an efficient implementation of the push-relabel we need two new ingredients.
First, we need to be able to select an active node u in each iteration; that is, a node with
ef (u) > 0. To that end, we keep a list of all the active nodes. In each iteration we look a
the vertex at the front of the list. A push from u to v may make u inactive or v active.
If u becomes inactive, we just remove u from the list. If v becomes active, we add it to
the end of the list. Clearly, this can be done in O(1) per push operation.

Second, once u is chosen we need to find an edge (u, v) ∈ Gf such that h(v) < h(u).
To do this, we start scanning the edges in δin(u) ∪ δout(u) in some fixed but arbitrary
order. If no appropriate edge is found, we relabel u and start over. Otherwise, we do a
push and remember the edge e we pushed along so that if in a later iteration we need to
find another edge out of u, we start scanning from e and not from the beginning of the
list.

Theorem 4.1. The generic push-relabel algorithm can be implemented to run in
O(n2m) time.

Proof: Let T (n,m) be an upperbound on the number of iterations of the generic algo-
rithm. A node can scan the list of adjacent nodes at most as many times as it is relabeled.
Thus, the algorithm runs in O(nm + T (n,m)). Recall that T (n,m) = O(n2m), which
was the number of non-saturating push operations. �

In order to improve the running time we need reduce the number of non-saturating
push operations. We can achieve this by being more careful when choosing the active
node.

4.2 Highest-label rule

In this section we analyze the following refinement of the basic push-relabel algorithm.
In each iteration, instead of choosing an arbitrary node, we select the one having the
highest label.

The implementation details are as before. The only difference is that instead of
keeping a list of active nodes, we keep a list of the currently used label values. For each
value we keep track of the nodes having the given value. Furthermore, we split these into
active and inactive node. The updates to maintain this structure are O(1) per push or
relabel.

Lemma 4.2. The number of non-saturating push operation done by the push-relabel
algorithm using the highest-label rule is O(n2

√
m).
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Proof: Use the potential function Φ =
∑

u active
|{v |h(v)≤h(u)}|√

m
. Initially, Φ ≤ n2

√
m

and
always Φ ≥ 0. Relabel increases Φ at most n√

m
. Saturating push increases Φ at most n√

m
.

A non-saturating push does not increase Φ.
We split the execution time into phases. A phase consists of all pushes between

two consecutive changes of maxu active h(u). A phase is cheap if it does less than
√
m

non-saturating pushes, and expensive otherwise.
The number of phases is at most 4n2—at most twice the number of relabel operations.

Thus, we only need to bound the number of non-saturating pushes in expensive phases.
Each non-saturating push in an expensive phase decreases Φ by at least 1. Thus, the
number of non-saturating push operation in expensive phases is at most O(n2

√
m). �

Theorem 4.3. The push-relabel algorithm with the highest-label rule can be imple-
mented to run in O(n2

√
m) time.

Proof: Let H(n,m) be an upperbound on the number of iterations of the algorithm
when using the highest-label rule. Again, a node can scan the list of adjacent nodes at
most as many times as it is relabeled. Thus, the algorithm runs in O(nm + H(n,m)).
Now a quick calculation shows that the bottleneck is still the number of non-saturating
push operations, so H(n,m) = O(n2

√
m). �

4.3 Excess scaling

We conclude our treatment of the push-relabel method with a variant of the basic al-
gorithm whose aim is to minimize the maximum excess. The idea is to work in iter-
ations; halving the excess in each iteration. Initially, maxu∈V e

f (u) may be as high as
U = maxe∈G c(e), so we may end up having logU iterations.

Algorithm 1 excess-scaling(V,E, c, s, t)

1. initialize h and f
2. ∆ = 2dlog Ue.
3. while ∆ ≥ 1 do
4. while ∃u with ef (u) > ∆/2 do
5. let u be such node with smallest label
6. do push/relabel out of u making sure maxv∈V e

f (v) ≤ ∆
7. ∆← ∆/2.

In each iteration we will maintain the invariant that ∆/2 < maxu∈V e
f (u) ≤ ∆. To

that end we make sure that when pushing flow from u to v we never make the excess of
v larger than ∆. In other words, if the residual capacity of the edge (u, v) ∈ Gf is r(u, v)
then we push at most min

{
ef (u), r(u, v),∆− ef (v)

}
units of flow along (u, v).

Lemma 4.4. Each non-saturating push transfers at least ∆/2 units of flow. Also, no
vertex excess ever exceeds ∆.

Lemma 4.5. The excess-scaling algorithm performs O(n2) non-saturating push op-
erations per scaling phase.
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Proof: Use the potential function Φ =
∑

u∈V
ef (u)h(u)

∆
. Each relabel increases Φ by at

most 1. Thus, the total increase due to relabeling of nodes is no more than 2n2. Push
operations decrease Φ and non-saturating pushes decrease Φ by at least 1/2 �

Theorem 4.6. The excess-scaling algorithm can be implemented to run in O(nm+
n2 logU) time.
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