Consider an undirected graph G. A random walk of length ℓ starting at vertex u is a sequence of vertices $u = v_0, \ldots, v_\ell$, where each v_i is chosen uniformly from the neighbors of v_{i-1}, for $i > 0$.

Traditionally, random walks were studied in infinite graphs. One of the basic results is as follows:

Theorem 3.1 (Pólya, 1921) Consider a random walk on an infinite D-dimensional grid. If $D = 2$, then with probability 1, the walk returns to the starting point an infinite number of times. If $D > 2$, then with probability 1, the walk returns to the starting point only a finite number of times.

In this lecture, we assume that G is d-regular. Let π_0 be the initial distribution of vertices in G and π_i be the probability distribution of v_i for a random walk beginning at vertex v_0. Then we observe the following facts.

- $\pi_1 = A\pi_0$.
- $\pi_{i+1} = A\pi_i = A(A\pi_{i-1}) = A^{i+1}\pi_0$.

Definition 3.2 A distribution π is called stationary if and only if $\pi = A\pi$.

For considering the convergence of $\{\pi_i\}$, we get the following result:

Lemma 3.3 For every finite connected un-bipartite graph G, the distribution π_i converges to a limit and stationary distribution. Moreover, if G is regular, then this distribution is the uniform distribution \mathbf{u} on V.

This lemma implies that, for any initial distribution π_0, if we take the random walk on an expander G, then after a finite number of steps, the probability that the random walk hits every vertex is uniform. However, for practical interests, we ask how fast π_i converges to \mathbf{u}.

Definition 3.4 For any vector x, define

$$\|x\|_p = \left(\sum_i |x_i|^p\right)^{1/p}.$$

In particular, let $\|x\|_\infty = \max_{1 \leq i \leq n} |x_i|$.

Definition 3.5 (Mixing Time) The mixing time of a graph G with n vertices is the minimum ℓ such that for any staring distribution π,

$$\|A^\ell \pi - \mathbf{u}\|_\infty < \frac{1}{2n}.$$
A key property of random walks on an expander is that it converges rapidly to limit distributions.

Theorem 3.6 If G is a connected, d-regular, non-bipartite graph on n vertices, then $\lambda < 1$ and G has mixing time $O\left(\frac{\log n}{1-\lambda}\right)$.

Proof: Let $u = v_1, \ldots, v_n$ be the orthonormal eigenvalues of A. Then for any distribution π on the vertices of G, we can write $\pi = \sum_{i=1}^{n} \pi_i$, where π_i is a constant multiple of v_i. Therefore

$$
||A\pi - u||^2 = ||A\pi + A\pi_2 + \cdots + A\pi_n - u||^2
= ||\lambda_2\pi_2 + \lambda_3\pi_3 + \cdots + \lambda_n\pi_n||^2
= \lambda_2^2||\pi_2||^2 + \cdots + \lambda_n^2||\pi_n||^2
\leq \lambda^2(||\pi_2||^2 + \cdots + ||\pi_n||^2)
= \lambda^2(||\pi_2 + \cdots + \pi_n||^2)
= \lambda^2||\pi - u||^2
$$

which implies that $||A^\ell\pi - u|| \leq \lambda^\ell||\pi - u||$. Thus

$$
||A^\ell\pi - u|| \leq \lambda^\ell||\pi - u||
\leq \lambda^\ell||\pi||
\leq \lambda^\ell||\pi||_1
= \lambda^\ell
$$

and $||A^\ell\pi - u||_\infty < \frac{1}{2n}$ when $\ell = O\left(\frac{\log n}{\log \lambda}\right) = O\left(\frac{\log n}{1-\lambda}\right)$.

The above theorem also indicates that small λ implies fast convergence of random walks.

Another important property of random walks is offered by the entropy of associated probability distribution. For any distribution π, the Shannon entropy of π is defined by

$$
H(\pi) = -\sum_{i=1}^{n} \pi_i \log \pi_i.
$$

Theorem 3.7 Let A be the normalized adjacency matrix of an expander G. Then for any distribution π on vertices of G, we have $H(A\pi) \geq H(\pi)$.