We consider the undirected connectivity problem. Given an undirected graph G represented by an adjacency matrix and two vertices u and v, the undirected connectivity problem is to decide whether there is a path from u to v. Formally we define the language $USTCON$ as follows.

Definition 9.1. $USTCON$ is defined as a set of triples (G, s, t) where $G = (V, E)$ is an undirected graph, s, t are two vertices in G so that there is a path from t to t in G.

This problem has received a lot of attention in the past few decades and the complexity of $USTCON$ has been well studied. The first randomized log-space algorithm for $USTCON$ was shown in 1979 by Aleliunas, Karp, Lipton, Lovász and Rackoff. In 1970, Savitch demonstrated a simulation of a non-deterministic space S machine by a deterministic space S^2 machine. Thus $USTCON \in \text{SPACE}(\log^2 n)$. Nisan, Szemerdi and Wigderson in 1989 showed that $USTCON \in \text{SPACE}(\log^{3/2} n)$. Armoni, Ta-Shma, Wigderson and Zhou in 2000 proved that $USTCON \in \text{SPACE}(\log^{4/3} n)$. In 2005, Reingold presented a log-space algorithm for solving $USTCON$. Since $USTCON$ is complete for the class SL of problems solvable by symmetric, non-deterministic, log-space computation, this result implies $\text{SL} = \text{L}$.

It is easy to see that $USTCON$ can be solved in linear-time using breadth-first or depth-first search. Moreover, the theorem below shows that we can solve $USTCON$ in $O(\log^2 n)$ space.

Theorem 9.2. There is an algorithm deciding $USTCON$ using $O(\log^2 n)$ space.

Proof. We design the recursive procedure $\text{IsPath}(G, u, v, k)$ which decides if there is a path between u and v of length at most k. The algorithm description is as follows:

- If $k = 0$, accept if $u = v$;
- If $k = 1$, accept if $u = v$ or (u, v) is an edge in G;
- Otherwise, loop through all vertices w of G and accept if both $\text{IsPath}(G, u, w, \lceil k/2 \rceil)$ and $\text{IsPath}(G, v, w, \lfloor k/2 \rfloor)$ accept for some w.

Hence we can solve the $USTCON$ problem by running $\text{IsPath}(G, s, t, n)$. The algorithm uses $\log n$ levels and $O(\log n)$ bits in every level to store the vertex w. Therefore the space complexity is $O(\log^2 n)$.

1 Algorithm

We first give the intuitions behind the algorithms. Two main insights are: (1) $USTCON$ can be solved in log-space on constant-degree graphs in which every connected-component is an expander. Since every expander graph has logarithmic diameter, it is enough to enumerate all logarithmical paths starting from s and to see if one of these paths visits t. (2) Any graph can be reduced to constant-degree expanders in logarithmic space.

More precisely, the algorithm reduces the input G to an expander G_ℓ such that

- The size of G_ℓ does not increase too much, i.e. $|V[G_\ell]| = \text{poly}(|V[G]|)$.
• \(G_\ell \) is regular and the degree of \(G_\ell \) is constant.
• For any two vertices \(u \) and \(v \) in \(G \), \(u \) and \(v \) are connected if and only if the vertices in \(G_\ell \) that correspond to \(u \) and \(v \) are also connected.
• Each connected component of \(G_\ell \) is an expander. (The spectral expansion is at most 1/2.)

Therefore for any two vertices \(u \) and \(v \) in \(G \), \(u \) and \(v \) are connected if and only if there is a path of length \(O(\log |V(G)|) = O(\log |V|) \) to connect the vertices in \(G_\ell \) that correspond to \(u \) and \(v \).

In the preprocessing step, we would like to transform the input graph \(G \) into a \(D^{16} \)-regular graph \(G_1 \) and transform \(s, t \in V[G] \) into vertices \(s_1, t_1 \in V[G_1] \) such that \(s, t \) are connected if and only if \(s_1, t_1 \) are connected in \(G_1 \). Now let \(G_1 \) be a \(D^{16} \)-regular graph on \([n]\) and \(H \) is a \((D^{16}, D, 1/2)\)-graph. The existence of such graphs is proven by probabilistic methods and for a constant \(D \), we can find \(H \) by exhaustive search in constant time (since \(D \) is constant). Moreover, we can express \(H \) by the rotation map in constant time.

Let \(\ell \) be the smallest integer such that \((1 - \frac{1}{D^n})^{2^\ell} \leq 1/2 \). The algorithm is as follows.

• For \(\ell = 1 \) to \(\ell = O(\log |V(G)|) \) do \(G_{i+1} = (G_i \otimes H)^8 \)
• Check if \(s \) and \(t \) are connected in \(G_\ell \) by enumerating over all paths of length \(O(\log n) \) originating at \(s \).

Note that each \(G_i \) is a \(D^{16} \)-regular graph over \([n] \times ([D^{16}])^i \). Since \(D \) is constant and \(\ell = O(\log n) \), \(G_\ell \) has \(\text{poly}(n) \) vertices.

2 Analysis

The working space of the algorithm depends on two things: The space for calculating \(G_i \) iteratively and the space for deciding the connectivity between \(s \) and \(t \) in \(G_\ell \).

Now assume that the input graph \(G \) is connected and we prove that \(G_\ell \) is an expander.

Lemma 9.3. Let \(G \) be a \(d \)-regular, connected, non-bipartite graph with \(n \) vertices. Then \(\lambda(G) \leq 1 - 1/D \cdot n^2 \).

Theorem 9.4. If \(\lambda(H) \leq 1/2 \), then \(1 - \lambda(G \otimes H) \geq 1/3 \cdot (1 - \lambda(G)) \).

Theorem 9.5. For \(i = 2, \ldots, \ell \), we have \(\lambda(G_i) \leq \max \{ \lambda^2(G_{i-1}), 1/2 \} \).

Proof. Since \(G_i = (G_{i-1} \otimes H)^8 \), by Theorem 9.4 we have

\[
\lambda(G_i) = \lambda^8(G_{i-1} \otimes H) \leq \left(1 - \frac{1}{3} \cdot (1 - \lambda(G_{i-1})) \right)^8.
\]

We consider the following two cases.

1. \(\lambda(G_i) \leq 1/2 \). Then
 \[
 \lambda(G_i) = \lambda^8(G_{i-1} \otimes H) \leq \left(1 - \frac{1}{3} \cdot (1 - \frac{1}{2}) \right)^8 \leq \left(\frac{5}{6} \right)^8 \leq \frac{1}{2}.
 \]

2. \(\lambda(G_i) > 1/2 \). Because for any \(x \in [1/2, 1] \) it holds that
 \[
 \left(1 - \frac{1}{3} \cdot (1 - x) \right)^4 \leq x,
 \]
 we have
 \[
 \lambda(G_i) = \lambda^8(G_{i-1} \otimes H) \leq \left(1 - \frac{1}{3} \cdot (1 - \lambda(G_{i-1})) \right)^8 \leq \lambda^2(G_{i-1}).
 \]

Therefore for any \(i \in \{2, \ldots, \ell\} \), \(\lambda(G_i) \leq \max \{ \lambda^2(G_{i-1}), 1/2 \} \). \(\square \)
Corollary 9.6. The spectral expansion of each connected component of G_ℓ is at most $1/2$.

Proof. By Lemma 9.3 and Theorem 9.5. \qed

Lemma 9.7. For every constant D, the transformation of G_i can be computed in space $O(\log n)$ on inputs G and H, where G is a D^{16}-regular graphs on $[n]$ and H is a D-regular graph on $[D^{16}]$.

Note that we cannot generate the whole graph G_ℓ off-line because of the memory restriction. Instead of that, we require the expander graphs constructed by the Zig-Zag product to be very explicit. We will skip this in our course.

Theorem 9.8. $\textsc{USTCON} \in \text{L}$.

Since \textsc{USTCON} is complete of SL, an logarithmic-space algorithm for \textsc{USTCON} implies $\text{SL} = \text{L}$. Given this result, the current view of log-space complexity classes is

$$L = \text{SL} \subseteq \text{RL} \subseteq \text{NL} \subseteq L^2.$$

As mentioned in Reingold’s paper on $\text{SL} = \text{L}$, a very natural question is whether the technique of proving $\text{SL} = \text{L}$ can be used towards a proof of $\text{RL} = \text{L}$. So far, the best deterministic simulation known for RL is $\text{DSPACE}(\log^{3/2} n)$, which is based on the pseudorandom generators for log-space computation.

Appendix

Definition 9.9. The complexity class L consists of the language decidable within deterministic logarithmic space.

Definition 9.10. SL is the class of problems solvable by a nondeterministic Turing machine in logarithmic space, such that:

1. If the answer is ‘yes’, one or more computation paths accept.
2. If the answer is ‘no’, all paths reject.
3. If the machine can make a nondeterministic transition from configuration A to configuration B, then it can also transition from B to A. (This is what ‘symmetric’ means.)