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The Traveling Salesman Problem

The Traveling Salesman Problem (TSP)
Input: edge-weighted graph G
Output: Hamilton cycle in G with minimum edge-weight

Motivation:
Traveling salesman ;-)

Complexity:
NP-hard
Admits no constant factor approximation (unless P=NP) 
[Sahni and Gonzalez 76]



Metric TSP

Metric TSP
Input: edge-weighted graph G satisfying triangle inequality
Output: Hamilton cycle in G with minimum edge-weight

Motivation:
real-world problems usually satisfy triangle inequality

Complexity:
still NP-hard
admits 3/2-approximation [Christofides 76]
admits no PTAS (unless P=NP) [Arora et al. 98]



Euclidean TSP

Euclidean TSP
Input: points P ⊂ R2

Output: tour π through P with minimal length
Complexity:

still NP-hard [Papadimitriou 77]
admits PTAS [Arora 96; Mitchell 96]



Euclidean TSP

Euclidean TSP
Input: points P ⊂ R2

Output: tour π through P with minimal length
Complexity:

still NP-hard [Papadimitriou 77]
admits PTAS [Arora 96; Mitchell 96]

…even one with complexity O(n log n).

Rao, Smith (STOC ’98)
There is a randomized PTAS for Euclidean TSP with complexity
O(n log n).

Arora (FOCS ’97)
There is a randomized PTAS for Euclidean TSP with complexity
n logO(1/²) n.



VRAP

(Euclidean) Vehicle Routing with Allocation (VRAP)
Input: points P ⊂ R2 , constant β ≥ 1
Output: tour π through subset T ⊆ P minimizing

Motivation:
salesman does not visit all customers
customers not visited go to next tourpoint, which is 
more expensive by a factor of β.



VRAP

(Euclidean) Vehicle Routing with Allocation (VRAP)
Input: points P ⊂ R2 , constant β ≥ 1
Output: tour π through subset T ⊆ P minimizing

Complexity:
NP-hard, since setting β ≥ 2 yields Euclidean TSP
as for Euclidean TSP, there exists a quasilinear PTAS

Remy, S., Weißl (WADS ’07)
There is a randomized PTAS for VRAP with complexity
O(n log4 n).



Steiner VRAP

Steiner VRAP
Input: points P ⊂ R2 , constant β ≥ 1
Output: subset T ⊆ P, set of points S ⊂ R2 (Steiner 
Points), tour π through T ∪ S minimizing

Motivation: 
salesman may also stop en route to serve customers



Steiner VRAP

Steiner VRAP
Input: points P ⊂ R2 , constant β ≥ 1
Output: subset T ⊆ P, set of points S ⊂ R2 (Steiner 
Points), tour π through T ∪ S minimizing …

Complexity:
NP-hard
admits PTAS

…even a quasilinear one
Remy, S., Weißl (WADS ’07)
There is a randomized PTAS for Steiner VRAP with complexity 
n logO(1/²) n.

Armon, Avidor, Schwartz (ESA ’06)
There is a randomized PTAS for Steiner VRAP with complexity 
nO(1/²).



Techniques

Finding a good solution for VRAP means
a) finding a good set of tour points T ⊆ P
b) finding a good tour on this set T

simultaneously.

a) is essentially a facility location problem.
We use the adaptive dissection technique, due to 
[Kolliopoulos and Rao, ESA ’99]

b) is Euclidean TSP.
We use dynamic programming on ‘patched short 
spanners’, due to [Rao and Smith, STOC ’98]

To put both ideas into perspective, we start by explaining the 
basics of dynamic programming in quadtrees, as introduced 
in [Arora, FOCS ’96] for Euclidean TSP



Preliminaries

We assume that the input points P
have odd integer coordinates
lie inside a square whose sidelength is

a power of 2
of order O(n/²)

This is ok, since every (1+²/2)-approximation for the 
rescaled and shifted input P’ corresponds to a (1+²)-
approximation for the original input P.

P
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Quadtrees

Choose origin of coordinate system (= center of large 
square) randomly.

this is the only source of randomness in all algorithms



Quadtrees

Split large square recursively into 4 smaller squares until 
squares have sidelength 2

Since bounding square has sidelength O(n), resulting 
tree has O(n2) nodes (squares) and depth O(log n)



Quadtrees

Truncated quadtree:  stop subdivision at empty squares
remaining tree has O(n log n) nodes



Place O(log n/²) many equidistant points (‘portals’) on the 
boundary of each square.

Impose restriction: Salesman may enter/leave a 
square only via its portals.

Portal-respecting solutions

In expectation, detouring all edges of the optimal salesman
tour via the nearest portal increases its length only by a factor 
of 1+².

Lemma (Arora)
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good
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Place O(log n/²) many equidistant points (‘portals’) on the 
boundary of each square.

Impose restriction: Salesman may enter/leave a 
square only via its portals.

Intuition: for two fixed points:
bad
but unlikely!

In expectation, detouring all edges of the optimal salesman
tour via the nearest portal increases its length only by a factor 
of 1+².

Lemma (Arora)

Portal-respecting solutions



Place O(log n/²) many equidistant points (‘portals’) on the 
boundary of each square.

Impose restriction: Salesman may enter/leave a 
square only via its portals.

i.e., there is an expected nearly-optimal portal-
respecting salesman tour.

We try to find the best portal-respecting salesman tour by
dynamic programming in the quadtree.

In expectation, detouring all edges of the optimal salesman
tour via the nearest portal increases its length only by a factor 
of 1+².

Lemma (Arora)

Portal-respecting solutions



Dynamic programming in quadtrees

For a given square Q, guess which portals are used by
salesman tour, and enumerate all possible configurations C.
For each configuration C, calculate estimate for the length of 
a good tour inside Q, subject to the restrictions given by C:

If Q is a leaf of the quadtree, by brute force.
If Q is an inner node of the quadtree, by recursing to its 
four children.

C



Running time

Working in a non-truncated quadtree, we have to consider 
O(n2) squares. For each of these we have to consider
2O(log n/²) = nO(1/²) configurations, and the estimate for each 
configuration can be calculated in time nO(1/²) .

We obtain a PTAS with running time 
O(n2) · nO(1/²) · nO(1/²) = nO(1/²)

This is essentially the technique used in the PTAS for 
Steiner VRAP by Armon et al.

Arora (FOCS ’96)
There is a randomized PTAS for Euclidean TSP with complexity 
nO(1/²).

Armon, Avidor, Schwartz (ESA ’06)
There is a randomized PTAS for Steiner VRAP with complexity 
nO(1/²).



Running time

Working in a non-truncated quadtree, we have to consider 
O(n2) squares. For each of these we have to consider
2O(log n/²) = nO(1/²) configurations, and the estimate for each 
configuration can be calculated in time nO(1/²) .

We obtain a PTAS with running time 
O(n2) · nO(1/²) · nO(1/²) = nO(1/²)

to achieve quasilinear time, we can only use 
polylogarithmic time per square. In particular, we can only 
consider polylogarithmically many configurations per 
square.

Arora (FOCS ’96)
There is a randomized PTAS for Euclidean TSP with complexity 
nO(1/²).



Improving the running time

Idea: proceed bottom-up through quadtree and modify
each square with too many crossings by introducing
line segments parallel to sides.

Patching Lemma (Arora)

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times.
In expectation, this increases the length of the tour only by a 
factor of 1+².

x

The total length of 
the new line 
segments is at most
3x

modification on 
low levels of the
quadtree are cheap.



Improving the running time

i.e., there is an expected nearly-optimal portal-
respecting salesman tour which for every square uses
only O(1/²) many of the O(log n) portals.

Looking for such a ‘patched’ solution, we only have to 
consider O(log n)O(1/²) = logO(1/²) n configurations per 
square!

Patching Lemma (Arora)

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times.
In expectation, this increases the length of the tour only by a 
factor of 1+².



Improving the running time

We only have to consider logO(1/²) n configurations per 
square.

Working in a truncated quadtree, we obtain a PTAS 
with running time 

O(n log n) · logO(1/²) n · logO(1/²) n = n logO(1/²) n 

Patching Lemma (Arora)

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times.
In expectation, this increases the length of the tour only by a 
factor of 1+².

Arora (FOCS ’97)
There is a randomized PTAS for Euclidean TSP with complexity
n logO(1/²) n.



Improving the running time

Combining the extended patching lemma with standard
quadtree techniques for facility location problems [Arora, 
Raghavan, Rao, STOC ’98], we obtain

Remy, S., Weißl (WADS ’07)
There is a randomized PTAS for Steiner VRAP with complexity 
n logO(1/²) n.

Patching Lemma (Arora)

The optimal solution can be modified such that it crosses the 
boundary of every square at most O(1/²) many times.
In expectation, this increases the length of the tour only by a 
factor of 1+².

Lemma
The Patching Lemma extends to Steiner VRAP.



Improving the running time even further

Patching revisited:
In Arora’s technique, the ‘patching’ is not part of the 
algorithm – we simply know a nearly-optimal patched 
solution exists, and try to find it by dynamic 
programming.
Rao and Smith (STOC ’98) improved Arora’s running 
time by making the ‘patching’ part of the algorithm.

Effect: We only have to consider constantly many 
configurations per square!

Yields a PTAS with running time 
O(n log n) · O(1) · O(1) = O(n log n)

Rao, Smith (STOC ’98)
There is a randomized PTAS for Euclidean TSP with complexity
O(n log n).



Improving the running time even further

Combine the O(n log n) technique for Euclidean TSP with a 
clever technique for the facility location part.
[…]

Concluding remarks:

All algorithms can be derandomized trivially at the cost
of an extra factor O(n2).

All algorithms generalize to higher dimensions (with
increased, but still polynomial running times).

Remy, S., Weißl (WADS ’07)
There is a randomized PTAS for (non-Steiner) VRAP with 
complexity O(n log4 n).



Summary

VRAP is a combination of Euclidean TSP and a facility
location problem.

The two state-of-the-art techniques

Dynamic programming on ‘patched short spanners’ 
(Rao and Smith, STOC ’98) for Euclidean TSP

Adaptive dissection (Kolliopoulos and Rao, ESA ’99) for
facility location

can be combined into a O(n log4 n)-PTAS for VRAP.



Thank you!
Questions?
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