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1.1 Arithmetic with Floating Point Numbers

a) Finish the proof of Theorem I.3., that is, show that the rule with respect to multiplication
applies.

b) Give a proof for Theorem I.4.1.

1.2 Interesting Properties

a) Show that, for two floating point numbers a, b ∈ F with 1
2 ≤

a
b ≤ 2, it holds that a	 b = a− b.

b)* Show that, for any two floating point numbers a, b ∈ F with |a| ≥ |b|, it holds that

a+ b = (a⊕ b) + ((a	 (a⊕ b))⊕ b).

Hence, notice that errors with respect to addition of two floating point numbers can be exactly
computed with floating point arithmetic.

1.3 Interval Arithmetic with Fixed Point Precision

For a given non-negative integer L, let FL be the set of all rational values x ∈ Q of the form
x =

∑i0
i=−L si ·2i, with si ∈ {0, 1} and an arbitrary but finite i0. We define fl+ : R 7→ F (fl− : R 7→ F)

as the rounding mode to the nearest value in F that is larger (smaller) than or equal to the input.
For a polynomial expression E(x) in x, we aim to compute an interval B(E,L) = [down(E),up(E)]
which contains the value E(x). We achieve this by iteratively using the following definitions:

B(c, L) := [fl−(c), fl+(c)] if c is a constant

B(x, L) := [fl−(x), fl+(x)]

down(E1 + E2) := down(E1) + down(E2)

up(E1 + E2) := up(E1) + up(E2)

down(E1 · E2) := fl−(min{down(E1)down(E2), up(E1)up(E2),up(E1)down(E2),down(E1)up(E2)})
up(E1 · E2) := fl+(max{down(E1)down(E2),down(E1)up(E2), up(E1)down(E2),up(E1)up(E2)})
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Prove the following Lemma:

Suppose that, according to the above rules, we evaluate f(x) =
∑d

i=0 aix
i ∈ R[x] at some c ∈ R

using Horner’s evaluation scheme (i.e. f(x) = a0 + x · (a1 + x · (a2 + · · ·x · (ad−1 + x · ad) · · · ))).
Then, it holds that

|f(c)− down(f(c), L)| ≤ 2−L+1(d+ 1)22τ+dΓ (1)

|f(c)− up(f(c), L)| ≤ 2−L+1(d+ 1)22τ+dΓ, (2)

where τ and Γ are arbitrary non-negative integers with maxi |ai| ≤ 2τ and |c| ≤ 2Γ. In particular,
B(f(c), L) has a width of at most 2−L+2(d+ 1)22τ+dΓ.
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