

Numerical Algebraic Computation Michael Sagraloff

Winter 2013/2014 To be handed in on October, 30th.

Exercise 1

1.1 Arithmetic with Floating Point Numbers

- a) Finish the proof of Theorem I.3., that is, show that the rule with respect to multiplication applies.
- b) Give a proof for Theorem I.4.1.

1.2 Interesting Properties

- a) Show that, for two floating point numbers $a, b \in \mathbb{F}$ with $\frac{1}{2} \leq \frac{a}{b} \leq 2$, it holds that $a \ominus b = a b$.
- b)* Show that, for any two floating point numbers $a, b \in \mathbb{F}$ with $|a| \ge |b|$, it holds that

$$a + b = (a \oplus b) + ((a \ominus (a \oplus b)) \oplus b).$$

Hence, notice that errors with respect to addition of two floating point numbers can be exactly computed with floating point arithmetic.

1.3 Interval Arithmetic with Fixed Point Precision

For a given non-negative integer L, let \mathbb{F}_L be the set of all rational values $x \in \mathbb{Q}$ of the form $x = \sum_{i=-L}^{i_0} s_i \cdot 2^i$, with $s_i \in \{0, 1\}$ and an arbitrary but finite i_0 . We define $\mathrm{fl}^+ : \mathbb{R} \to \mathbb{F}$ ($\mathrm{fl}^- : \mathbb{R} \to \mathbb{F}$) as the rounding mode to the nearest value in \mathbb{F} that is larger (smaller) than or equal to the input. For a polynomial expression E(x) in x, we aim to compute an interval $\mathfrak{B}(E, L) = [\mathrm{down}(E), \mathrm{up}(E)]$ which contains the value E(x). We achieve this by iteratively using the following definitions:

$\mathfrak{B}(c,L)$:=	$[\mathrm{fl}^-(c),\mathrm{fl}^+(c)]$ if c is a constant
$\mathfrak{B}(x,L)$:=	$[\mathrm{fl}^-(x),\mathrm{fl}^+(x)]$
$\operatorname{down}(E_1 + E_2)$:=	$\operatorname{down}(E_1) + \operatorname{down}(E_2)$
$\operatorname{up}(E_1 + E_2)$:=	$up(E_1) + up(E_2)$
$\operatorname{down}(E_1 \cdot E_2)$:=	$\mathrm{fl}^{-}(\min\{\mathrm{down}(E_1)\mathrm{down}(E_2),\mathrm{up}(E_1)\mathrm{up}(E_2),\mathrm{up}(E_1)\mathrm{down}(E_2),\mathrm{down}(E_1)\mathrm{up}(E_2)\})$
$up(E_1 \cdot E_2)$:=	$\mathrm{fl}^+(\max\{\mathrm{down}(E_1)\mathrm{down}(E_2),\mathrm{down}(E_1)\mathrm{up}(E_2),\mathrm{up}(E_1)\mathrm{down}(E_2),\mathrm{up}(E_1)\mathrm{up}(E_2)\})$

Prove the following Lemma:

Suppose that, according to the above rules, we evaluate $f(x) = \sum_{i=0}^{d} a_i x^i \in \mathbb{R}[x]$ at some $c \in \mathbb{R}$ using Horner's evaluation scheme (i.e. $f(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \cdots x \cdot (a_{d-1} + x \cdot a_d) \cdots)))$. Then, it holds that

$$|f(c) - \operatorname{down}(f(c), L)| \le 2^{-L+1} (d+1)^2 2^{\tau+d\Gamma}$$
(1)

$$|f(c) - up(f(c), L)| \le 2^{-L+1} (d+1)^2 2^{\tau+d\Gamma},$$
(2)

where τ and Γ are arbitrary non-negative integers with $\max_i |a_i| \leq 2^{\tau}$ and $|c| \leq 2^{\Gamma}$. In particular, $\mathfrak{B}(f(c), L)$ has a width of at most $2^{-L+2}(d+1)^2 2^{\tau+d\Gamma}$.