
Available online at www.sciencedirect.com

r

retical
AM J.
Besides
lookup
riant of
inspired

tive
ntee on

used

f a

ST-
cript
R

Journal of Algorithms 51 (2004) 122–144

www.elsevier.com/locate/jalgo

Cuckoo hashing

Rasmus Pagha,∗,1 and Flemming Friche Rodlerb,2

a IT University of Copenhagen, Rued Langgaardsvej 7, 2300 København S, Denmark
b ON-AIR A/S, Digtervejen 9, 9200 Aalborg SV, Denmark

Received 23 January 2002

Abstract

We present a simple dictionary with worst case constant lookup time, equaling the theo
performance of the classic dynamic perfect hashing scheme of Dietzfelbinger et al. [SI
Comput. 23 (4) (1994) 738–761]. The space usage is similar to that of binary search trees.
being conceptually much simpler than previous dynamic dictionaries with worst case constant
time, our data structure is interesting in that it does not use perfect hashing, but rather a va
open addressing where keys can be moved back in their probe sequences. An implementation
by our algorithm, but using weakerhash functions, is found to be quite practical. It is competi
with the best known dictionaries having an average case (but no nontrivial worst case) guara
lookup time.
 2003 Elsevier Inc. All rights reserved.

Keywords:Data structures; Dictionaries; Information retrieval; Searching; Hashing; Experiments

1. Introduction

The dictionary data structure is ubiquitous in computer science. A dictionary is
for maintaining a setS under insertion and deletion of elements (referred to askeys) from
a universeU . Membership queries (“x ∈ S?”) provide access to the data. In case o

* Corresponding author.
E-mail addresses:pagh@itu.dk (R. Pagh), ffr@onair-dk.com (F.F. Rodler).

1 Partially supported by the Future and Emerging Technologies program of the EU under contract number I
1999-14186 (ALCOM-FT). This work was initiated while visiting Stanford University, and the draft manus
completed at Aarhus University.

2 This work was done while staying at Aarhus University.
0196-6774/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2003.12.002

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 123

d

shing
e time,
r,
hash
made

e is
chemes

lbinger
d
roughly
s
ur

ction
e

on
having
riment,
cribed
,
to be
ntrast,
rary

ion of

are bit
ses

contain

ed for

once
ssed in
positive answer the dictionary also provides a piece ofsatellite datathat was associate
with x when it was inserted. In the following we letn denote|S|.

The most efficient dictionaries, in theory and in practice, are based on ha
techniques. The main performance parameters are of course lookup time, updat
and space. The constant factors involved are crucial for many applications. In particula
lookup time is a critical parameter. It is well known that, by using a simple universal
function, the expected number of memory probes for all dictionary operations can be
arbitrarily close to 1 if a sufficiently sparse hash table is used. Therefore the challeng
to combine speed with a reasonable space usage. In particular, we only consider s
usingO(n) words of space. Section 3 surveys the literature on such dictionaries.

The contribution of this paper isa new hashing scheme called CUCKOO HASHING,
which possesses the same theoretical properties as the classic dictionary of Dietzfe
et al. [10], but is much simpler. The scheme hasworst caseconstant lookup time an
amortized expected constant time for updates. Furthermore, the space usage is
2n words, which should be compared with the 35n words used in [10]. This mean
that the space usage is similar to that of binary search trees. A special feature of o
lookup procedure is that (disregarding accesses to an asymptotically small hash fun
description) there are just two memory accesses, which areindependentand can be don
in parallel if this is supported by the hardware.

Using weaker hash functions than those required for our analysis, CUCKOO HASHING

is very simple to implement. Section 4 describes such an implementation, and reports
experiments and comparisons with the most commonly used hashing methods,
no nontrivial worst case guarantee on lookup time. It seems that such an expe
performed on a modern multi-level memory architecture, has not previously been des
in the literature. Our experiments show CUCKOO HASHING to be quite competitive
especially when the dictionary is small enough to fit in cache. We thus believe it
attractive in practice, when a worst case guarantee on lookups is desired. In co
the hashing scheme of [10] is known to exhibit high constant factors. The LEDA lib
of efficient data structures and algorithms [25] now incorporates an implementat
CUCKOO HASHING based on ours.

1.1. Preliminaries

As in most other theoretical works on hashing we consider the case where keys
strings inU = {0,1}w andw is the word length of the computer (for theoretical purpo
modeled as a RAM). If keys are longer, two things should be changed.

(1) The keys should be stored outside the hash table, and hash table cells should
pointers to keys.

(2) Hashing of long keys should be handled using a standard technique, describ
completeness in Appendix A.

It is usually, though not always, clear how to return associated information
membership has been determined. E.g., in the hash table based methods discu
this paper, the associated information ofx ∈ S can be stored together withx in a hash

124 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

tion

he
h

pace,

it

be

ting
tion, it
n

e
th

ber of
mber
ns, and
les
usual

te
g a
table. Therefore we disregard the time andspace used to handle associated informa
and concentrate on the problem of maintainingS. We will reserve a special value⊥ ∈ U

to signal an empty cell in hash tables.
Our algorithm uses hash functions from auniversalfamily. We use the following well-

known generalization of the original notion of Carter and Wegman [7].

Definition 1. A family {hi}i∈I , hi :U → R, is (c, k)-universal if, for any k distinct
elementsx1, . . . , xk ∈ U , anyy1, . . . , yk ∈ R, and uniformly randomi ∈ I , Pr[hi(x1) = y1,

. . . , hi(xk) = yk] � c/|R|k.

2. Cuckoo hashing

CUCKOO HASHING is a dynamization of a static dictionary described in [26]. T
dictionary uses two hash tables,T1 and T2, each consisting ofr words, and two has
functionsh1, h2 :U → {0, . . . , r − 1}. Every keyx ∈ S is stored either in cellh1(x) of T1
or in cellh2(x) of T2, but never in both. Our lookup function is

functionlookup(x)

returnT1[h1(x)] = x ∨ T2[h2(x)] = x

end

Two table accesses for lookup is in fact optimal among all dictionaries using linear s
except for special cases, see [26].

It is shown in [26] that ifr � (1+ ε)n for some constantε > 0 (i.e., the tables are a b
less than half full), andh1, h2 are picked uniformly at random from an(O(1),O(logn))-
universal family, the probability that there is no way of arranging the keys ofS according
to h1 and h2 is O(1/n). A suitable arrangement of the keys was shown in [26] to
computable in expected linear time, by a reduction to 2-SAT.

We now consider a simple dynamization of the above, still assumingr � (1 + ε)n for
some constantε > 0. Deletion is of course simple to perform in constant time, not coun
the possible cost of shrinking the tables if they are becoming too sparse. As for inser
turns out that the “cuckoo approach”, kicking other keys away until every key has its ow
“nest”, works very well. Specifically, ifx is to be inserted we first see if cellh1(x) of T1 is
occupied. If not, we are done. Otherwise we setT1[h1(x)] ← x anyway, thus making th
previous occupant “nestless.” This key is then inserted inT2 in the same way, and so for
iteratively, see Fig. 1(a).

It may happen that this process loops, as shown in Fig. 1(b). Therefore the num
iterations is bounded by a value “MaxLoop” to be specified in Section 2.3. If this nu
of iterations is reached, we rehash the keys in the tables using new hash functio
try once again to accommodate the nestless key. There is no need to allocate new tab
for the rehashing: We may simply run through the tables to delete and perform the
insertion procedure on all keys found not to be attheir intended position in the table. (No
that kicking away a key that is not in its intended position simply corresponds to startin
new insertion of this key.)

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 125

nd

,

eeded.
e usual

ction
nt
ns
e

Fig. 1. Examples of CUCKOO HASHING insertion. Arrows show possibilities for moving keys. (a) Keyx is
successfully inserted by moving keysy andz from one table to the other. (b) Keyx cannot be accommodated a
a rehash is necessary.

Using the notationx ↔ y to express that the values of variablesx andy are swapped
the following code summarizes the insertion procedure.

procedureinsert(x)

if lookup(x) then return
loopMaxLooptimes

x ↔ T1[h1(x)]
if x = ⊥ then return
x ↔ T2[h2(x)]
if x = ⊥ then return

end loop
rehash(); insert(x)

end

The procedure assumes that each table remains larger than(1 + ε)n cells. When no such
bound is known, a test must be done to find out when a rehash to larger tables is n
Resizing of tables can be done in amortized expected constant time per update by th
doubling/halving technique (see, e.g., [10]).

If the hash tables have sizer, we enforce that no more thanr2 insertions are
performed without changing the hash functions. More specifically, ifr2 insertions have
been performed since the beginning of the last rehash, we force a new rehash.

2.1. Hash functions

By a result of Siegel [35] (detailed in Appendix A) we can construct a hash fun
family that, when restricted to any set ofr2 keys, is(1, nδ)-universal, for some consta
δ > 0, with probability 1− O(1/n2). Also, we can pick from the family random functio
h1 andh2 having constant evaluation time and a description ofo(n) words. Since there ar
at mostr2 keys inserted using a particular pair of hash functions this means that:

126 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

., we

serted
is is

in

etely

lts
e. The

of the
ns

made

dure.
t

y hash
ss keys
e

• With probabilityO(1/n2) the hash functions have some unspecified behavior (i.e
should expect the worst possible).

• Otherwise, the hash functions behave exactly as if they had been picked from a(1, nδ)-
universal family.

For n larger than some constant we will have MaxLoop< nδ , i.e., with high probability
the family will be (1,MaxLoop)-universal. This means thath1 andh2 will act like truly
random functions on any set of keys processed during the insertion loop.

2.2. Variants

The lookup call preceding the insertion loop ensures robustness if the key to be in
is already in the dictionary. A slightly faster implementation can be obtained if th
known not to occur.

Note that the insertion procedure is biased towards inserting keys inT1. As will be seen
in Section 4 this leads to faster successful lookups, due to more keys being foundT1.
This effect is even more pronounced if one uses anasymmetricscheme whereT1 is larger
thanT2. In both cases, the insertion time is only slightly worse than that of a compl
symmetric implementation.

Another variant is to use a single tableT of size 2r for both hash functions. The resu
and analysis for this case are similar to what is described here for the two table schem
following trick due to John Tromp [38] can be used in this case to avoid keeping track
hash function according to which each key is placed: If we change the possible locatio
for keyx to beh1(x) and(h2(x) − h1(x)) mod 2r, we can jump from one location ofx to
the other using the mapi �→ (h2(x) − i) mod 2r.

In the following we will consider just the symmetric two table scheme.

2.3. Analysis

As in all other analyses of randomized hashing schemes, we assume theoblivious
adversary model, i.e., that the keys inserted are independent of the random choices
by the algorithm.

Our analysis of the insertion procedure has three main parts:

(1) We first exhibit some useful characteristics of the behavior of the insertion proce
(2) We then derive a bound on the probability that the insertion procedure uses at least

iterations.
(3) Finally we argue that the procedure uses expected amortized constant time.

Behavior of the insertion procedure

The simplest behavior of the insertion procedure occurs when it does not visit an
table cell more than once. In this case it simply runs through a sequence of nestle
x1, x2, . . . with no repetitions, insertingx1 in T1 and moving the remaining keys in th
sequence from one table to the other.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 127

havior
l
)

ber of
ure

stless
g
ure
loop” of
m

or any
e of at

d cell,

ration

e

bility
e

ber
If, at some point, the insertion procedure returns to a previously visited cell, the be
is more complicated, as shown in Fig. 2. The keyxi in the first previously visited cell wil
become nestless for the second time (occurring at positionsi andj > i in the sequence
and be put back in its original cell. Subsequently all keysxi−1, . . . , x2 will be moved
back where they were at the start of the insertion (assuming that the maximum num
iterations is not reached). This means thatx1 ends up nestless again, and the proced
will try placing it in the second table. At some point after this there appears a ne
key xl that is either moved to a vacant cell or a previously visited cell (again assumin
that the maximum number of iterations is not reached). In the former case the proced
terminates. In the latter case a rehash must be performed, since we have a “closed
l − i+1 keys hashing to onlyl − i cells. This means that the loop will run for the maximu
number of iterations, followed by a rehash.

Lemma 1. Suppose that the insertion procedure does not enter a closed loop. Then f
prefix x1, x2, . . . , xp of the sequence of nestless keys, there must be a subsequenc
leastp/3 consecutive keys without repetitions, starting with an occurrence of the keyx1,
i.e., the key being inserted.

Proof. In the case where the insertion procedure never returns to a previously visite
the prefix itself is a sequence ofp distinct nestless keys starting withx1. Otherwise,
the sequence of nestless keys is as shown in Fig. 2. Ifp < i + j , the first j − 1 �
(i + j − 1)/2 � p/2 nestless keys form the desired sequence. Forp � i + j , one of the
sequencesx1, . . . , xj−1 andxi+j−1, . . . , xp must have length at leastp/3. �

Probability bounds

We now consider the probability that the insertion loop runs for at leastt iterations. For
t > MaxLoop the probability is of course 0. Otherwise, using the above analysis, ite
numbert may be performed in three (not mutually exclusive) situations:

(1) The hash function family used is not(1,MaxLoop)-universal when restricted to th
set of keys in the dictionary (including the key being inserted).

(2) The insertion procedure has entered a “closed loop,” i.e.,xl in Fig. 2 was moved to a
previously visited cell, forl � 2t .

(3) The insertion procedure has processed a sequence of at least(2t − 1)/3 consecutive
nestless keys starting with the newly inserted key.

We chose the hash function family such that the first situation occurs with proba
O(1/n2). Under the condition that the first situation doesnot occur, we now bound th
probability of the two last situations.

In the second situation letv � l denote the number of distinct nestless keys. The num
of ways in which the closed loop can be formed is less thanv3rv−1nv−1 (v2 possible values
for i andj , v possible positions forxl , rv−1 possible choices of cells, andnv−1 possible
choices of keys other thanx1). Sincev � MaxLoop, the hash functions are(1, v)-universal.

128 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

estless

Fig. 2. Three stages of an insertion of keyx1, involving the movement of keysx1, . . . , xl . Boxes correspond to
cells in either of the two tables, and arcs show possibilities for moving keys. A bold arc shows where the n
key is to be inserted.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 129

l
at

es the

s

h

a
h

the

,

ntering

g

er
This means that each possibility occurs with probability at mostr−2v . Summing over al
possible values ofv, and usingr/n > 1+ ε, we get that the probability of situation 1 is
most:

l∑
v=3

v3rv−1nv−1r−2v � 1

rn

∞∑
v=3

v3(n/r)v = O
(
1/n2).

The above derivation follows a suggestion of Sanders and Vöcking [32], and improv
O(1/n) bound in the conference version of this paper [27].

In the third situation there is a sequence ofv =
(2t − 1)/3� distinct nestless key
b1, . . . , bv , such thatb1 is the key to be inserted, and such that for either(β1, β2) = (1,2)

or (β1, β2) = (2,1):

hβ1(b1) = hβ1(b2), hβ2(b2) = hβ2(b3), hβ1(b3) = hβ1(b4), (1)

Given b1 there are at mostnv−1 possible sequences ofv distinct keys. For any suc
sequence and any of the two choices of(β1, β2), the probability that theb − 1 equations
in (1) hold is bounded byr−(v−1), since the hash functions were chosen from
(1,MaxLoop)-universal family. Hence the probability that there isanysequence of lengt
v satisfying (1), and thus the probability of situation 2, is bounded by

2(n/r)v−1 � 2(1+ ε)−(2t−1)/3+1. (2)

Concluding the analysis

From the previous section it follows that the expected number of iterations in
insertion loop is bounded by

1+
MaxLoop∑

t=2

(
2(1+ ε)−(2t−1)/3+1 + O

(
1/n2))

� 1+ O

(
MaxLoop

n2

)
+ 2

∞∑
t=0

(
(1+ ε)−2/3)t

= O

(
1+ 1

1− (1+ ε)−2/3

)
= O(1+ 1/ε). (3)

Finally, we consider the cost of rehashing. First we consider onlyforced rehashes
caused by failed insertions. These occur if the insertion loop runs fort = MaxLoop
iterations. By the previous section, the probability that this happens because of e
a closed loop, or because the hash function family fails to be(1,MaxLoop)-universal, is
O(1/n2). Setting MaxLoop=
3 log1+ε r�, the probabilityof rehashing without enterin
a closed loop is, by (2), at most

2(1+ ε)−(2 MaxLoop−1)/3+1 = O
(
1/n2).

Altogether, the probability that any given insertion causes a rehash isO(1/n2). In
particular, then insertions performed during a rehashall succeed (i.e., cause no furth

130 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

e,
As the
he
e

ed
er

unded
that

0s as
rveys
inent,

s
e for
ge
cent
fly

at hash
verage
see,

shing
for the

“open
,
es
bes
e key

ion

ith
y has
rehash) with probability 1− O(1/n). The expected time used per insertion isO(1), so
the total expected time for trying to insert all keys isO(n). If an insertion fails during
the rehash, a recursive rehash is started. Since we keep all keys in the tables all the tim
this simply corresponds to starting over with another attempt at rehashing all keys.
probability of having to start over with new hash functions is bounded away from 1, t
total expected time for a rehash sums toO(n). Thus, for any insertion the expected tim
used for forced rehashing isO(1/n).

There will also be a rehash ifr2 insertions have been performed with no fail
insertions. Since the expected cost of the rehash isO(n), the amortized expected cost p
insertion of such rehashes isO(1/n).

Summing up, we have shown that the amortized expected time for insertion is bo
by a constant. The small probability of rehashing, together with (2), in fact implies
also thevarianceof the insertion time is constant.

3. Background and related work on linear space dictionaries

Hashing, first described in public literature by Dumey [13], emerged in the 195
a space efficient heuristic for fast retrieval of information in sparse tables. Knuth su
the most important classical hashing methods in [20, Section 6.4]. The most prom
and the basis for our experiments in Section 4, are CHAINED HASHING (with separate
chaining), LINEAR PROBING and DOUBLE HASHING. Judging from leading textbook
on algorithms, Knuth’s selection of algorithms is in agreement with current practic
implementation of general purpose dictionaries. In particular, the excellent cache usa
of LINEAR PROBING makes it a prime choice on modern architectures. A more re
scheme called TWO-WAY CHAINING [2] will also be investigated. All schemes are brie
described in Section 4.

3.1. Analysis of early hashing schemes

Early theoretical analysis of hashing schemes was done under the assumption th
function values are uniformly random and independent. Precise analyses of the a
and expected worst case behaviors of the above mentioned schemes have been made,
for example, [16,20]. We mention just a few facts, disregarding asymptotically vani
terms. Note that some figures depend on implementation details—the below hold
implementations described in Section 4.

We first consider the expected number of memory probes needed by the two
addressing” schemes to insert a key in a hash table where anα fraction of the table
0 < α < 1, is occupied by keys. For LINEAR PROBING the expected number of prob
during insertion is(1+ 1/(1− α)2)/2. This coincides with the expected number of pro
for unsuccessful lookups, and with the number of probes needed for looking up th
if there are no subsequent deletions. A deletion rearranges keys to the configurat
that would occur if the deleted key had never been inserted. In DOUBLE HASHING the
expected cost of an insertion is 1/(1− α). As keys are never moved, this coincides w
the number of probes needed for looking up the key and for deleting the key. If a ke

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 131

oking it
in
of the

st
of
ed

ion

n

nce
of

mptions
ed

n
d time
table).

re a key
ons
bes

ys

at keys
revious
ot
worst

ant

eady
presents
not been inserted in the hash table since the last rehash, the expected cost of lo
up (unsuccessfully) is 1/(1− β), whereβ is the fraction of keys and “deleted” markers
the hash table. If the key still has a “deleted” marker in the table, the expected cost
unsuccessful lookup is one probe more.

For CHAINED HASHING with hash table sizen/α, the expected length of the li
traversed during an unsuccessful lookup isα. This means that the expected number
probes needed to insert a new key is 1+α, which will also be the number of probes need
to subsequently look up the key (note that probes to pointers are not counted). A delet
results in the data structure that would occur if the key had never been inserted.

In terms of expected number ofprobes, the above implies that, for any givenα,
CHAINED HASHING is better than DOUBLE HASHING, which is again better than LINEAR

PROBING. It should be noted, however, that the space used by CHAINED HASHING is
larger than that in the open addressing schemes for the sameα. The difference depends o
the relative sizes of keys and pointers.

Supposeα < 1 is a constant. Thelongestprobe sequence in LINEAR PROBING is then of
expected lengthΩ(logn). For DOUBLE HASHING the longest successful probe seque
is expected to be of lengthΩ(logn), and there is a nonzero probability that the length
the longest unsuccessful search is linear. The expected maximum chain length in CHAINED

HASHING is Θ(logn/ log logn).
Though the above results seem to agree with practice, the randomness assu

used for the analyses are questionable in applications. Carter and Wegman [7] succeed
in removing such assumptions from the analysis of CHAINED HASHING, introducing the
concept ofuniversalhash function families. When implemented with a random functio
from Carter and Wegman’s universal family, chained hashing has constant expecte
per dictionary operation (plus an amortized expected constant cost for resizing the
Using the hash function family of Siegel [35], also used in this paper, LINEAR PROBING

and DOUBLE HASHING provably satisfy the above performance bounds [33,34].

3.2. Key rearrangement schemes

A number of (open addressing) hashing schemes have been proposed that sha
feature with CUCKOO HASHING, namely that keys are moved around during inserti
[4,17,21,22,31]. The main focus in these schemes is to reduce the average number of pro
needed for finding a key in a (nearly) full table to a constant, rather than theO(logn)

average exhibited by standard open addressing. This is done by occasionally moving ke
forward in their probe sequences.

Our new algorithm rearranges keys in order to reduce theworst casenumber of probes
to a constant. A necessary condition for this is reuse of hash function values, i.e., th
are moved back in their probe sequence. Backward moves were not used in any p
rearrangement scheme, presumably due to the difficulty that moving keys back does n
give a fresh, “random” placement. We can make lookups use constant time in the
case because we do not deal with full hash tables, but rather hash tables having a const
fraction of unoccupied cells.

Arrangements of keys with optimal worst case retrieval cost were in fact alr
considered by Rivest in [31]. He assumes that the probe sequences are given, and

132 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

f the
xpected
nstant.
ash
nment
’s
nstant
mness

suffice
d

key
ut there

h
n
nts
sh
ize

Luby,

s simi-
-

n,
as
me by
the
nt
.

ical
me
ort
a polynomial time algorithm for finding an arrangement that minimizes the length o
longest successful search. It is also shown that if one updates the key set, the e
number of keys that need to be moved to achieve a new optimal arrangement is co
(The analysis requires that the hash table is sufficiently sparse, and assumes the h
function to be truly random.) This suggests a dictionary that solves a small assig
problem after each insertion and deletion. It follows from [26] and this paper, that Rivest
dictionary achieved worst case constant lookup time and expected amortized co
update time, 8 years before an algorithm with the same performance and rando
assumption was published by Aho and Lee [1]. Furthermore, Siegel’s hash functions
for the analysis. However, the CUCKOO HASHING insertion algorithm is much simpler an
more efficient than that suggested by Rivest.

Another key rearrangement scheme with similarities to CUCKOO HASHING is LAST-
COME-FIRST-SERVED HASHING [29], which has low variance on search time as its
feature. It uses the same greedy strategy for moving keys as is used in this paper, b
is no reuse of hash function values.

3.3. Hashing schemes with worst case lookup guarantee

TWO-WAY CHAINING [2] is an alternative to CHAINED HASHING that offers
O(log logn) maximal lookup time with high probability (assuming truly random has
functions). This scheme shares the feature with CUCKOO HASHING that keys are stored i
one of two places (in this case linked lists). The implementation that we consider represe
the lists by fixed size arrays of sizeO(log logn) (if a longer chain is needed, a reha
is performed). To achieve linear space usage, one must then use a hash table of s
O(n/ log logn), implying that theaveragechain length isΩ(log logn) [3]. (We remark
that the idea of storing keys in one out of two places was used even earlier by Karp,
and Meyer auf der Heide [18] in the context of PRAM simulation.)

Another scheme with this worst case guarantee is MULTILEVEL ADAPTIVE HASH-
ING [5]. However, lookups can be performed inO(1) worst case time ifO(log logn) hash
function evaluations, memory probes and comparisons are possible in parallel. This i
lar to CUCKOO HASHING, though the latter uses onlytwohash function evaluations, mem
ory probes, and comparisons.

A dictionary with worst caseconstantlookup time was first obtained by Fredma
Komlós and Szemerédi [15], though it wasstatic, i.e., did not support updates. It w
later augmented with insertions and deletions in amortized expected constant ti
Dietzfelbinger et al. [10]. Dietzfelbinger and Meyer auf der Heide [11] improved
update performance by exhibiting a dictionary in which operations are done in consta
time with high probability, namely at least 1− n−c , wherec is any constant of our choice
A simpler dictionary with the same properties was later developed [8]. Whenn = |U |1−o(1)

a space usage ofO(n) words is not within a constant factor of the information theoret
minimum of B = log

(|U |
n

)
bits. The dictionary of Raman and Rao [30] offers the sa

performance as [10], usingB + o(B) bits in all cases. However, it does not supp
information associated with keys.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 133

o

r

y
hash

.

ck in
.

nction
special
ells,

of
here
ted
d,

tion 3
and
amic

s
t

bed

ntel
ow a
ng and
Very recently, Fotakis et al. [14]analyzed a generalization of CUCKOO HASHING with d

possible locations for each key, showing that in this case a space utilization of 1− 2−Ω(d)

can be achieved, with constant expected time for insertions.

4. Experiments

To examine the practicality of CUCKOO HASHING we experimentally compare it t
three well-known hashing methods, as described in [20, Section 6.4]: CHAINED HASHING

(with separate chaining), LINEAR PROBING and DOUBLE HASHING. We also conside
TWO-WAY CHAINING [2].

The first three methods all attempt to store a keyx at positionh(x) in a hash table. The
differ in the way collisions are resolved, i.e., in what happens when two or more keys
to the same location.

CHAINED HASHING. A linked list is used to store all keys hashing to a given location
LINEAR PROBING. A key is stored in the next empty table entry. Lookup of keyx is done

by scanning the table beginning ath(x) and ending when eitherx or an empty
table entry is found. When deleting, some keys may have to be moved ba
order to fill the hole in the lookup sequence, see [20, Algorithm R] for details

DOUBLE HASHING. Insertion and lookup are similar to LINEAR PROBING, but instead
of searching for the next position one step at a time, a second hash fu
value is used to determine the step size. Deletions are handled by putting a
“deleted” marker in the cell of the deleted key. Lookups skip over deleted c
while insertions overwrite them.

The fourth method, TWO-WAY CHAINING, can be described as two instances
CHAINED HASHING. A key is inserted in one of the two hash tables, namely the one w
it hashes to the shorter chain. A cache-friendly implementation, as recently sugges
in [6], is to simply make each linked list a short, fixed size array. If a longer list is neede
a rehash must be performed.

4.1. Previous experimental results

Although the dictionaries with worst case constant lookup time surveyed in Sec
leave little to improve from a theoretical point of view, large constant factors
complicated implementation hinder their direct practical use. For example, in the “dyn
perfect hashing” scheme of [10] the upper bound on space is 35n words. The author
of [10] refer to a more practical variant dueto Wenzel that uses space comparable to tha
of binary search trees.

According to [19] the implementation of this variant in the LEDA library [25], descri
in [39], has average insertion time larger than that of AVL trees forn � 217, and more
than four times slower than insertions in chained hashing. (On a Linux PC with an I�
Pentium� 120 MHz processor.) The experimental results listed in [25, Table 5.2] sh
gap of more than a factor of 6 between the update performance of chained hashi

134 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

SUN

shing
subset
e as

three.
f linear
of the
ic

hly the

ve
shing
mory

re
t, and
cur and

at
d

al load

t, we

he

es the

that
ractical
nction
s.

, this
of two.
dynamic perfect hashing, and a factor of more than 2 for lookups. (On a 300 MHz
ULTRA SPARC.)

Silverstein [36] reports that the space upper bound of the dynamic perfect ha
scheme of [10] is quite pessimistic compared to what can be observed when run on a
of the DIMACS dictionary tests [24]. He goes on to explore ways of improving spac
well as time, improving both the observed time and space by a factor of roughly
Still, the improved scheme needs 2 to 3 times more space than an implementation o
probing to achieve similar time per operation. Silverstein also considers versions
data structures with packed representationsof the hash tables. In this setting the dynam
perfect hashing scheme was more than 50% slower than linear probing, using roug
same amount of space.

Is seems that recent experimental work on “classical” dictionaries (that do not ha
worst case constant lookup time) is quite limited. In [19] it is reported that chained ha
is superior to an implementation of dynamic perfect hashing in terms of both me
usage and speed.

4.2. Data structure design and implementation

We consider positive 32 bit signed integer keys and use 0 as⊥. The data structures a
robust in that they correctly handle attempts to insert an element already in the se
attempts to delete an element not in the set. During rehashes this is known not to oc
slightly faster versions of the insertion procedure are used.

Our focus is on minimizing the time for dictionary operations under the constraint th
space usage should be reasonable. By theload factorof a dictionary we will understan
the size of the set relative to the memory used. (For CHAINED HASHING, the notion of
load factor traditionally disregards the space used for linked lists, but we desire equ
factors to imply equal memory usage.) As seen in [20, Fig. 44] the speed of LINEAR

PROBING and DOUBLE HASHING degrades rapidly for load factors above 1/2. On the
other hand, none of the schemes improve much for load factors below 1/4. As CUCKOO

HASHING only works when the size of each table is larger than the size of the se
can only perform a comparison for load factors less than 1/2. To allow for doubling and
halving of the table size, we allow the load factor to vary between 1/5 and 1/2, focusing
especially on the “typical” load factor of 1/3. For CUCKOO HASHING and TWO-WAY

CHAINING there is a chance that an insertion may fail, causing a “forced rehash”. If t
load factor is larger than a certain threshold, somewhat arbitrarily set to 5/12, we use the
opportunity to double the table size. By our experiments this only slightly decreas
average load factor.

Apart from CHAINED HASHING, the schemes considered have in common the fact
they have only been analyzed under randomness assumptions that are currently imp
to realize. However, experience shows that rather simple and efficient hash fu
families yield performance close to that predicted under stronger randomness assumption
We use a function family from [9] with range{0,1}q for positive integerq . For every odda,
0 < a < 2w, the family contains the functionha(x) = (ax mod 2w)div2w−q . Note that
evaluation can be done very efficiently by a 32 bit multiplication and a shift. However
choice of hash function restricts us to consider hash tables whose sizes are powers

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 135

e

e
en

ation
a

ssible
he

ce
f the
ta
t key
miss.

tion,
nt
a

lting
n 2
2

essful

rk-
lgo-

the
sults
cket,

lize
sh

newly
check

e
ightly
quence
e
r

A random function from the family (chosen using C’srand function) appears to work fin
with all schemes except CUCKOO HASHING. For CUCKOO HASHING we experimented
with various hash functions and found that CUCKOO HASHING was rather sensitive to th
choice of hash function. It turned out that the exclusive or of three independently chos
functions from the family of [9] was fast and worked well. We have no good explan
for this phenomenon. For all schemes, variousalternative hash families were tried, with
decrease in performance.

All methods have been implemented in C. We have striven to obtain the fastest po
implementation of each scheme. Specific choices made and details differing from t
references are:

CHAINED HASHING. C’s malloc andfree functions were found to be a performan
bottleneck, so a simple “freelist” memory allocation scheme is used. Half o
allocated memory is used for the hash table, and half for list elements. If the da
structure runs out of free list elements, its size is doubled. We store the firs
of each linked list directly in the hash table, as this often saves one cache
Having the first key in the hash table also slightly improves memory utiliza
in the expected sense. This is because every non-empty linked list is one eleme
shorter and because we expect more thanhalf of the hash table cells to contain
linked list for the load factors considered here.

DOUBLE HASHING. To prevent the tables from clogging up with deleted cells, resu
in poor performance for unsuccessful lookups, all keys are rehashed whe/3
of the hash table is occupied by keys and “deleted” markers. The fraction/3
was found to give a good tradeoff between the time for insertion and unsucc
lookups.

L INEAR PROBING. Our first implementation, like that in [36], employed deletion ma
ers. However, we found that using the deletion method described in [20, A
rithm R] was considerably faster, as far fewer rehashes were needed.

TWO-WAY CHAINING . We allow four keys in each bucket. This is enough to keep
probability of a forcedrehash low for hundreds of thousands of keys, by the re
in [6]. For larger collections of keys one should allow more keys in each bu
resulting in general performance degradation.

CUCKOO HASHING. The architecture on which we experimented could not paralle
the two memory accesses in lookups. Therefore we only evaluate the second ha
function after the first memory lookup has shown unsuccessful.

For all schemes, rehashing was implemented as repeated insertion of all keys into a
allocated hash table. For efficiency we used special insertion procedures without a
of whether keys were already inserted.

Some experiments were done with variants of CUCKOO HASHING. In particular, we
considered ASYMMETRIC CUCKOO, in which the first table is twice the size of th
second one. This results in more keys residing in the first table, thus giving a sl
better average performance for successful lookups. For example, after a long se
of alternate insertions and deletions at load factor 1/3, we found that about 76% of th
elements resided in the first table of ASYMMETRIC CUCKOO, as opposed to 63% fo

136 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

will
e

th an
he
nsfer”
iss
28] for
ations.

to
used

e
rrupts
roup of
g the

time
nd

esult (it
ycles).
ever,

s should

f the
ated
ty
ion of
ful

med
factor
e ran

n
e for

over the
the

starts to
CUCKOO HASHING. There was no significant slowdown for other operations. We
describe the results for ASYMMETRIC CUCKOO when they differ significantly from thos
of CUCKOO HASHING.

4.3. Setup

Our experiments were performed on a PC running Linux (kernel version 2.2) wi
800 MHz Intel� Pentium� III processor, and 256 MB of memory (PC100 RAM). T
processor has a 16 KB level 1 data cache and a 256 KB level 2 “advanced tra
cache. Our results nicely fit a simple model parameterized by the cost of a cache m
and the expected number of probes to “random” locations (see the technical report [
details). They are thus believed to have significance for other hardware configur
An advantage of using the Pentium� processor for timing experiments is itsrdtsc
instruction which can be used to measuretime in clock cycles. This gives access
very precise data on the behavior of algorithms, and allows us to discard the time
by the program issuing the calls to the CUCKOO HASHING data structure. In our cas
it also supplies a way of discarding measurements significantly disturbed by inte
from hardware devices or the process scheduler, as these show up as a small g
timings significantly separated from all other timings. Programs were compiled usin
gcc compiler version 2.95.2, using optimization flags-O9 -DCPU=586 -march=i586
-fomit-frame-pointer -finline-functions -fforce-mem -funroll-
loops -fno-rtti. As mentioned earlier, we use a global clock cycle counter to
operations. If the number of clock cycles spent on a dictionary operation exceeds 5000, a
there was no rehash, we conclude that the call was interrupted, and disregard the r
was empirically observed that no operation ever took between 2000 and 5000 clock c
If a rehash is made, we have no way of filtering away time spent in interrupts. How
all tests were made on a machine with no irrelevant user processes, so disturbance
be minimal. On our machine it took 32 clock cycles to call therdtsc instruction. These
clock cycles have been subtracted from the results.

4.4. Results

Our main experiment was designed to model the situation in which the size o
dictionary is not changing too much. It considers a sequence of mixed operations gener
at random. We constructed the test operation sequences from a collection of high quali
random bits publicly available on the Internet [23]. The sequences start by insert
n distinct random keys, followed by 3n times four operations: A random unsuccess
lookup, a random successful lookup, a random deletion, and a random insertion. We ti
the operations in the “equilibrium”, where the number of elements is stable. For load
1/3 our results appear in Figs. 3 and 4, which show an average over 10 runs. W
experiments with up to 224/3 keys. As LINEAR PROBING was consistently faster tha
DOUBLE HASHING, we chose it as the sole open addressing scheme in the plots. Tim
forced rehashes was added to the insertion time. The results had a large variance,
10 runs, for sets of size 212 to 216. Outside this range the extreme values deviated from
average by less than about 7%. The large variance sets in when the data structure

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 137

sk

as the
er
1)
for an

s

to
umber
Fig. 3. The average time per lookup operation in equilibrium for load factor 1/3.

fill the level 2 cache. We believe this is caused by our test program reading data from di
and thus sometimes evicting partsof the data structure from cache.

As can be seen, the time for lookups is almost identical for all schemes as long
entire data structure fits in level 2 cache, i.e., forn < 216/3. After this the average numb
of accesses to a random memory cell (with the probability of a cache miss approaching
shows up. The shape of the curves reflect the increasing probability of a cache miss
access to a random memory cell (see Section 5 of thetechnical report [28] for details). Thi
makes linear probing an average case winner, with CUCKOO HASHING and TWO-WAY

CHAINING following about 40 clock cycles behind.For insertion the number of accesses
a random memory cell again dominates the picture for large sets, while the higher n
of in-cache accesses and more computation makes CUCKOO HASHING, and in particular
TWO-WAY chaining, slower for small sets. The cost of forced rehashes sets in for TWO-

138 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

ults

s,
for

for

s
es
not
Fig. 4. The average time per update operation in equilibrium for load factor 1/3.

WAY CHAINING for sets of more than a million elements, at which point better res
may have been obtained by a larger bucket size. For deletion CHAINED HASHING lags
behind for large sets due to accesses to a randommemory cell when freeing list element
while the simplicity of CUCKOO HASHING makes it the fastest scheme. We note that,
dictionaries that fit in cache, the total time foran insertion and a deletion is smallest
CUCKOO HASHING among the four schemes.

At this point we should mention that the good cache utilization of LINEAR PROBING

and TWO-WAY CHAINING depends on the cache lines being considerably larger than key
(and any associated information placed together with keys). If this is not the case, it caus
the number of cache misses to rise significantly. The other schemes discussed here do
deteriorate in this way.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 139

r-
ashes

s of

is
of the

ations
sts
tionary
keys
A. This
ded the
imum
e load

cache
cise
omness
crude,
t give a
Joyce Eddington

L INEAR 42–45 (.35) 26–27 (.40)
DOUBLE 48–53 (.35) 32–35 (.40)
CHAINED 49–52 (.31) 36–38 (.28)

A.CUCKOO 47–50 (.33) 37–39 (.32)
CUCKOO 57–63 (.35) 41–45 (.40)

TWO-WAY 82–84 (.34) 51–53 (.40)

Fig. 5. Average clock cycles per operation and load factors for two DIMACS string tests.

We made additional experiments concerning the cost of insertions in growing dictiona
ies and deletions in shrinking dictionaries, which takes into account the cost of reh
needed to keep space utilization around 1/3. The interested reader can find the result
these tests in the technical report [28].

DIMACS tests

Access to data in a dictionary is rarely random in practice. In particular, the cache
more helpful than in the above random tests, for example due to repeated lookups
same key, and deletion of short-lived keys. As a rule of thumb, the time for such oper
will be similar to the time when all of the data structure is in cache. To perform actual te
of the dictionaries on more realistic data, we chose a representative subset of the dic
tests of the 5th DIMACS implementation challenge [24]. The tests involving string
were preprocessed by hashing strings to 32 bit integers, as described in Appendix
preserves, with high probability, the access pattern to keys. For each test we recor
average time per operation, not including the time used for preprocessing. The min
and maximum of six runs can be found in Figs. 5 and 6, which also lists the averag
factor. Linear probing is again the fastest, but mostly just 20–30% faster than the CUCKOO

schemes.

The number of cache misses during insertion

We have seen that the number of accesses to a random memory cell (i.e.,
misses) is critical to the performance of hashing schemes. Whereas there is a very pre
understanding of the probe behavior of the classic schemes (under suitable rand
assumptions), the analysis of the expected time for insertions in Section 2.3 is rather
establishing just a constant upper bound. One reason that our calculation does no

3.11-Q-1 Smalltalk-2 3.2-Y-1

L INEAR 99–103 (.30) 68–72 (.29) 85–88 (.32)
DOUBLE 116–142 (.30) 77–79 (.29) 98–102 (.32)
CHAINED 113–121 (.30) 78–82 (.29) 90–93 (.31)

A.CUCKOO 166–168 (.29) 87–95 (.29) 95–96 (.32)
CUCKOO 139–143 (.30) 90–96 (.29) 104–108 (.32)

TWO-WAY 159–199 (.30) 111–113 (.29) 133–138 (.32)

Fig. 6. Average clock cycles per operation andload factors for three DIMACS integer tests.

140 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

eded to
it

ssume
pt

robes
s
nts
2
of the
s

the

sis

at
e
so
lement
kup
right

hy
Fig. 7. The average number of accesses to a random memory cell for insertion.

very tight bound is that we use a pessimistic estimate on the number of key moves ne
accommodate a new element in the dictionary. Often a free cell will be found even though
couldhave been occupied by another key in the dictionary. We also pessimistically a
that a large fraction of key moves will be spent backtracking from an unsuccessful attem
to place the new key in the first table.

Figure 7 shows experimentally determined values for the average number of p
during insertion for various schemes and load factors below 1/2. We disregard read
and writes to locations known to be in cache,and the cost of rehashes. Measureme
were made in “equilibrium” after 105 insertions and deletions, using tables of size15

and truly random hash function values. We believe that this curve is independent
table size (up to vanishing terms). The curve for LINEAR PROBING does not appear, a
the number of non-cached memory accesses depends on cache architecture (length of
cache line), but it is typically very close to 1. The curve for CUCKOO HASHING seems to
be 2+ 1/(4 + 8α) ≈ 2 + 1/(4ε). This is in good correspondence with (3) of the analy
in Section 2.3. It should be remarked that the highest possible load factor for TWO-WAY

CHAINING is O(1/ log logn).
As noted in Section 2, the insertion algorithm of CUCKOO HASHING is biased towards

inserting keys inT1. If we instead of starting the insertion inT1 choose the start table
random, the number of cache misses decreases slightly for insertion.This is because th
number of free cells inT1 increases as the load balance becomes even. However, this al
means a slight increase in lookup time. Also note that since insertion checks if the e
is already inserted, CUCKOO HASHING uses at least two cache misses. The initial loo
can be exploited to get a small improvement in insertion performance, by inserting
away wheneither cell T1[h1(x)] or T2[h2(x)] is vacant. For load factor 1/3 this places
about 10% of newly inserted keys inT2. The relatively low percentage is the reason w
we found no advantage in performing the extra check in our implementation.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 141

t
ur
iss.

r

very
s

licated
irst
eme
r and
e.
actors.

ders,
er and

ilies

by the
llapse
Since lookup is very similar to insertion in CHAINED HASHING, one could think tha
the number of cache misses would be equal for the two operations. However, in o
implementation, obtaining a free cell from the freelist may result in an extra cache m
This is the reason why the curve for CHAINED HASHING in the figure differs from a simila
plot in Knuth [20, Fig. 44].

5. Conclusion

We have presented a new dictionary with worst case constant lookup time. It is
simple to implement, and hasaverage case performance comparable to the best previou
dictionaries. Earlier schemes with worst case constant lookup time were more comp
to implement and had worse average case performance. Several challenges remain. F
of all an explicit, truly practical hash function family that is provably good for the sch
has yet to be found. One step in this direction was recently taken by Dietzfelbinge
Woelfel [12], but their hash functions stillrequire a relatively large amount of spac
Secondly, we lack a precise understanding of why the scheme exhibits low constant f
In particular, the curve of Fig. 7 needs to be explained.

Acknowledgments

The authors thank Andrei Broder, Martin Dietzfelbinger, Rolf Fagerberg, Peter San
John Tromp, and Berthold Vöcking for useful comments and discussions on this pap
CUCKOO HASHING in general.

Appendix A. Constructions and properties of universal hash functions

A.1. Universal hash function families

As a simple example of a universal family, the family of all functions fromU to some
codomain is(1, |U |)-universal. However, for implementation purposes one needs fam
with much more succinct memory representations. A standard construction of a(2, k)-
universal family for rangeR = {0, . . . , r − 1} and primep > max(2w, r) is{

x �→
((

k−1∑
l=0

alx
l

)
modp

)
modr

∣∣∣∣ 0 � a0, a1, . . . , ak−1 < p

}
. (A.1)

This paper uses a hash function construction due to Siegel [35] that hasconstant
evaluation time (however, the constant is not small). Its properties are captured
following theorem, which can be derived from Siegel’s paper by using a universe co
function, as described below.

142 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

at,

nd a

can be
s

ear in

f the

t
ry

ure
of
e to

um on

00.
e, in:
ress,

09.
IAM

of
1),

43–

ed
ing

t-
Theorem 1 (Siegel).Let γ andδ > 0 be constants, and take any setX ⊆ U . Using space
and initialization timeO(|X|δ) it is possible to construct a family of functions such th
for some constantδ′ > 0:

• With probability at least1 − |X|−γ the family is(1, |X|δ′
)-universal when restricted

to X.
• Furthermore, functions from the family can be evaluated in constant time, a

random function can be picked using time and spaceO(|X|δ).

A.2. Collapsing the universe

The restriction that keys are single words is not a serious one, as longer keys
handled using the standard technique ofcollapsingthe universe. Specifically, long key
can be mapped to keys ofO(1) words by applying a random functionρ from a(O(1),2)-
universal family. There is such a family whose functions can be evaluated in time lin
the number of words in a key [7]. It works by evaluating a function from a(O(1),2)-
universal family on each word of the key, computing the bitwise exclusive or o
function values. (See [37] for an efficient implementation.) Such a functionρ with range
{0,1}2 log(n)+c will, with probability 1− O(2−c), be injective onS. In fact, with constan
probabilityρ is injective on a givensequenceof Ω(2c/2n) consecutive sets in a dictiona
of initial sizen (see [10]). When a collision forρ between two elements ofS is detected in
the dictionary, everything is rehashed, i.e.,ρ is chosen anew and the whole data struct
is rebuilt. If a rehash can be done in expectedO(n) time, the amortized expected cost
this is O(2−c/2) per insertion. In this way we can effectively reduce the universe siz
O(n2), though the full keys still need to be stored to decide membership.

References

[1] A.V. Aho, D. Lee, Storing a dynamic sparse table, in: Proceedings of the 27th Annual Symposi
Foundations of Computer Science (FOCS’86), IEEE Comput. Soc. Press, 1986, pp. 55–60.

[2] Y. Azar, A.Z. Broder, A.R. Karlin, E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1) (1999) 180–2
[3] P. Berenbrink, A. Czumaj, A. Steger, B. Vöcking, Balanced allocations: the heavily loaded cas

Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC ’00), ACM P
2000, pp. 745–754.

[4] R.P. Brent, Reducing the retrieval time of scatter storage techniques, Commun. ACM 16 (2) (1973) 105–1
[5] A.Z. Broder, A.R. Karlin, Multilevel adaptive hashing, in: Proceedings of the 1st Annual ACM–S

Symposium on Discrete Algorithms (SODA ’90), ACM Press, 1990, pp. 43–53.
[6] A.Z. Broder, M. Mitzenmacher, Using multiple hash functions to improve IP lookups, in: Proceedings

the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 200
vol. 3, IEEE Comput. Soc. Press, 2001, pp. 1454–1463.

[7] J.L. Carter, M.N. Wegman, Universal classes of hash functions, J. Comput. System Sci. 18 (2) (1979) 1
154.

[8] M. Dietzfelbinger, J. Gil, Y.Matias, N. Pippenger, Polynomial hash functions are reliable (extend
abstract), in: Proceedings of the 19th International Colloquium on Automata, Languages and Programm
(ICALP ’92), in: Lecture Notes in Comput. Sci., vol. 623, Springer-Verlag, 1992, pp. 235–246.

[9] M. Dietzfelbinger, T. Hagerup, J.Katajainen, M. Penttonen, A reliable randomized algorithm for the closes
pair problem, J. Algorithms 25 (1) (1997) 19–51.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144 143

ic

in
ing

the

(1956)

nt access
03), in:

c.

e,

ort

ley,

80)

,

,

.
e

e 33rd

orithms

ce,

nal
ci.,

0–209.

bstract),
ress,

, in:
1990,

off, and
nce

nd
e

[10] M. Dietzfelbinger, A.Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, R.E. Tarjan, Dynam
perfect hashing: upper and lowerbounds, SIAM J. Comput. 23 (4) (1994) 738–761.

[11] M. Dietzfelbinger, F.Meyer auf der Heide, A new universal class of hash functions and dynamic hashing
real time, in: Proceedings of the 17th International Colloquium on Automata, Languages and Programm
(ICALP ’90), in: Lecture Notes in Comput. Sci., vol. 443, Springer-Verlag, 1990, pp. 6–19.

[12] M. Dietzfelbinger, P. Woelfel, Almost random graphs with simple hash functions, in: Proceedings of
35th Annual ACM Symposium on Theory of Computing (STOC ’03), 2003, pp. 629–638.

[13] A.I. Dumey, Indexing for rapid random access memory systems, Computers and Automation 5 (12)
6–9.

[14] D. Fotakis, R. Pagh, P. Sanders, P. Spirakis, Space efficient hash tables with worst case consta
time, in: Proceedings of the 20th Symposium on Theoretical Aspects of Computer Science (STACS ’
Lecture Notes in Comput. Sci., vol. 2607, Springer-Verlag, 2003, pp. 271–282.

[15] M.L. Fredman, J. Komlós, E. Szemerédi, Storing a sparse table withO(1) worst case access time, J. Asso
Comput. Mach. 31 (3) (1984) 538–544.

[16] G. Gonnet, Handbook of Algorithms and Data Structures, Addison–Wesley, 1984.
[17] G.H. Gonnet, J.I. Munro, Efficient ordering of hash tables, SIAM J. Comput. 8 (3) (1979) 463–478.
[18] R.M. Karp, M. Luby, F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machin

Algorithmica 16 (4–5) (1996) 517–542.
[19] J. Katajainen, M. Lykke, Experiments with universal hashing, Technical Report DIKU, Technical Rep

96/8, University of Copenhagen, 1996.
[20] D.E. Knuth, Sorting and Searching, in: The Art of Computer Programming, vol. 3, 2nd ed., Addison–Wes

Reading, MA, 1998.
[21] J.A.T. Maddison, Fast lookup in hash tables withdirect rehashing, The Computer Journal 23 (2) (19

188–189.
[22] E.G. Mallach, Scatter storage techniques: a uniform viewpoint and a method for reducing retrieval times

The Computer Journal 20 (2) (1977) 137–140.
[23] G. Marsaglia, The Marsaglia random number CDROM including the diehard battery of tests of randomness

http://stat.fsu.edu/pub/diehard/.
[24] C.C. McGeoch, The fifth DIMACS challenge dictionaries, http://cs.amherst.edu/~ccm/challenge5/dicto/
[25] K. Mehlhorn, S. Näher, LEDA: A Platform for Combinatorial andGeometric Computing, Cambridg

University Press, 1999.
[26] R. Pagh, On the cell probe complexity of membership and perfect hashing, in: Proceedings of th

Annual ACM Symposium on Theory of Computing (STOC ’01), ACM Press, 2001, pp. 425–432.
[27] R. Pagh, F.F. Rodler, Cuckoo hashing, in: Proceedings of the 9th European Symposium on Alg

(ESA ’01), in: Lecture Notes in Comput. Sci., vol. 2161, Springer-Verlag, 2001, pp. 121–133.
[28] R. Pagh, F.F. Rodler, Cuckoo hashing, Research Series RS-01-32, BRICS, Department of Computer Scien

University of Aarhus, August 2001, 21 pp.
[29] P.V. Poblete, J.I. Munro, Last-come-first-served hashing, J. Algorithms 10 (2) (1989) 228–248.
[30] R. Raman, S.S. Rao, Succinct dynamic dictionariesand trees, in: Proceedings of the 30th Internatio

Colloquium on Automata, Languages and Programming (ICALP ’03), in: Lecture Notes in Comput. S
vol. 2719, Springer-Verlag, 2003, pp. 345–356.

[31] R.L. Rivest, Optimal arrangement of keys in a hash table, J. Assoc. Comput. Mach. 25 (2) (1978) 20
[32] P. Sanders, B. Vöcking,personal communication, 2001.
[33] J.P. Schmidt, A. Siegel, On aspects of universality and performance for closed hashing (extended a

in: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC ’89), ACM P
1989, pp. 355–366.

[34] J.P. Schmidt, A. Siegel, The analysis of closed hashing under limited randomness (extended abstract)
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC ’90), ACM Press,
pp. 224–234.

[35] A. Siegel, On universal classes of fast high performance hash functions, their time–space trade
their applications, in: Proceedings of the 30th Annual Symposium on Foundations of Computer Scie
(FOCS ’89), IEEE Comput. Soc. Press, 1989, pp. 20–25.

[36] C. Silverstein, A practical perfect hashing algorithm, in: Data Structures, Near Neighbor Searches, a
Methodology: Fifth andSixth DIMACS Implementation Challenges, in: DIMACS Series in Discret

144 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122–144

3–

SIAM

r-
Mathematics and Theoretical Computer Science,vol. 59, American Mathematical Society, 2002, pp. 2
48.

[37] M. Thorup, Even strongly universal hashing is pretty fast, in: Proceedings of the 11th Annual ACM–
Symposium on Discrete Algorithms (SODA ’00), ACM Press, 2000, pp. 496–497.

[38] J. Tromp, personal communication, 2003.
[39] M. Wenzel, Wörterbücher für ein beschränktes Universum, Diplomarbeit, Fachbereich Informatik, Unive

sität des Saarlandes, 1992.

