

Michael Sagraloff

Winter term 2014/15

Computer Algebra

https://resources.mpi-inf.mpg.de/departments/d1/teaching/ws14/ComputerAlgebra

Assignment sheet 11

due: Wednesday, January 28

Exercise 1: Descartes' Rule of Signs (4 points)

- (a) Finalize the proof of Theorem IV.1.2., that is, show that if all roots of a polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{R}[x]$ are real, then $\operatorname{var}(a_0, \ldots, a_n)$ equals the number of positive real roots of f.
- (b) Prove the one-circle theorem, that is, show that var(f, I) = 0 if the one-circle region $A_0 \subset I$ of I (as defined in Theorem IV.1.4) contains no root of f.

Hint: You should first prove that $\operatorname{var}(a_0, \ldots, a_n) = 0$ if each root of f has a real part that is smaller than or equal to 0. Then, consider the image of the half plane $H := \{x + i \cdot y \in \mathbb{C} : x \leq 0\}$ under the Möbius transformation Φ_I .

Exercise 2: Implementation of the Descartes method (4 points)

Implement the Descartes method and run your implementation on

- dense polynomials (i.e. most of the coefficients are non-zero) with randomly generated integer coefficients
- sparse polynomials (i.e. most of the coefficients are zero) with randomly generated integer coefficients
- polynomials of the form $x^n (a \cdot x 1)^2$, with varying degree n and a positive integer a of varying bit size.

What do you observe?

Exercise 3: Analysis of the Descartes method (4 points + 4 bonus points for (c))

- (a) Derive a bound (of polynomial size in n and τ) on the number of iterations that is needed by the Descartes method to isolate the real roots of a polynomial $f \in \mathbb{Z}[x]$ of degree nwith coefficients of bit size τ .
- (b) Derive a bound on the number of bit operations that is needed in each iteration and provide a bit complexity bound for the overall algorithm that is polynomial in n and τ .
- (c) Can you even give a bound of size $\tilde{O}(n\tau)$ in (a)? How does this affect the bit complexity of the Descartes method.

• Hint: Consider the subdivision tree \mathcal{T} induced by the Descartes method, where the nodes of \mathcal{T} are the intervals produced by the algorithm. Notice that, for each non-terminal node I (i.e. $var(f, I) \neq 0$), the one-circle region A_0 of I contains at least one root. Now, consider a mapping φ from the set of non-terminal nodes to the roots of f such that each root z of f has at most $O(\tau + \log sep(z, f))$ pre-images. Finally, use Theorem II.3.7.

Exercise 4: Newton-Rhapson Iteration (4 points)

Let α be a root of a polynomial $f \in \mathbb{R}[x]$. Provide a bound $\epsilon_0 > 0$ in terms of the degree n of f and the separation $\operatorname{sep}(\alpha, f)$ of α such that, for an arbitrary x_0 with $|x_0 - \alpha| < \epsilon_0$, the sequence

$$x_k := x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})} \text{ for } k \in \mathbb{N}_{>0}$$

converges against α under guarantee.

Hint: Use that $\frac{f'(x)}{f(x)} = \sum_{i=1}^{n} \frac{1}{x-z_i}$ for all x with $f(x) \neq 0$, where z_1 to z_n denote the roots of f.