Lecture

Information Retrieval for Music and Motion

Meinard Müller

Summer Term 2008

Audio Matching

Audio Matching

Given: Large music database containing several

- recordings of the same piece of music
- interpretations by various musicians
- arrangements in different instrumentations

Goal: Given a short query audio clip, identify all

corresponding audio clips of similar musical content

- irrespective of the specific interpretation and instrumentation
- automatically and efficiently

Query-by-Example paradigm

Audio Matching

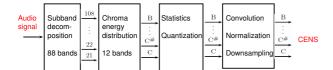
- Müller/Kurth/Clausen (ISMIR 2005) Kurth/Müller (IEEE T-ASLP 2008)

Related problems

Audio identification

- Allamanche et al. (AES 2001) Cano et al. (*IEEE MMSP* 2002) Kurth/Clausen/Ribbrock (AES 2002)
- Wang (ISMIR 2003)
- Shrestha/Kalker (ISMIR 2004)

Audio synchronization

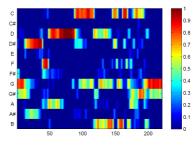

Audio structure analysis

Audio Matching

General strategy

- Normalized and smoothed chroma features
 - correlates to harmonic progression
 - robust to variations in dynamics, timbre, articulation, local tempo
- Robust matching procedure
 - efficient
 - robust to global tempo variations
 - scalable using index structure

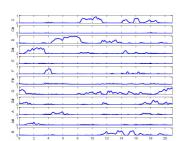
Feature Design


Two stages:

Stage 1: Local chroma energy distribution features

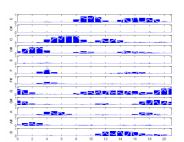
Stage 2: Normalized short-time statistics

Feature Design


Beethoven's Fifth: Bernstein

Resolution: 10 features/second Feature window size: 200 milliseconds

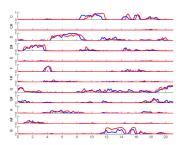
Feature Design


Beethoven's Fifth: Bernstein

Resolution: 10 features/second Feature window size: 200 milliseconds

Feature Design

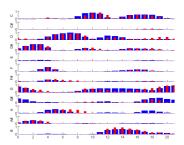
Beethoven's Fifth: Bernstein



Resolution: 1 features/second

Feature window size: 4000 milliseconds

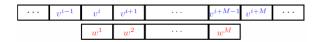
Feature Design


Beethoven's Fifth: Bernstein vs. Sawallisch

Resolution: 10 features/second Feature window size: 200 milliseconds

Feature Design

Beethoven's Fifth: Bernstein vs. Sawallisch

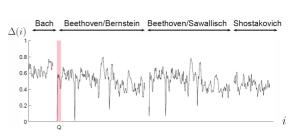

Resolution: 1 features/second

Feature window size: 4000 milliseconds

Matching Procedure

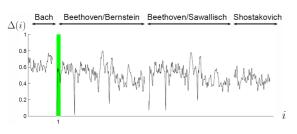
Compute CENS feature sequences

- Database $D \leadsto F[D] = (v^1, v^2, \dots, v^N)$
- Query $Q \leadsto F[Q] = (w^1, w^2, \dots, w^M)$
- $N \approx 500000$, $M \approx 20$



 $\Delta(i) := \mathsf{local} \; \mathsf{distance}((v^i, v^{i+1} \ldots, v^{i+M-1}), (\textcolor{red}{w^1}, \textcolor{red}{w^2}, \ldots, \textcolor{red}{w^M}))$

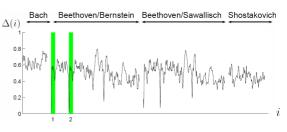
 \leadsto Global distance function $\, \Delta : [1:N] \to [0,1] \,$


Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

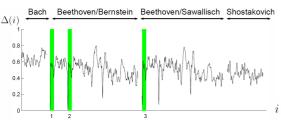


Best audio matches: 1

13

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

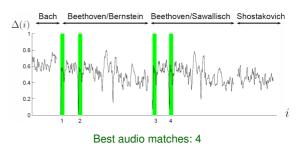


Best audio matches: 2

14

Matching Procedure

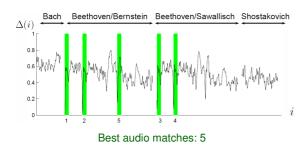
Query: Beethoven's Fifth / Bernstein, first 20 seconds



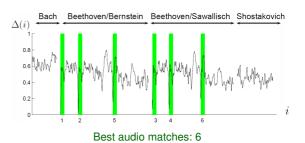
Best audio matches: 3

15

Matching Procedure

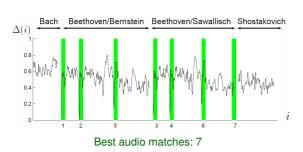

Query: Beethoven's Fifth / Bernstein, first 20 seconds

10


Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

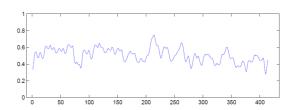
Matching Procedure


Query: Beethoven's Fifth / Bernstein, first 20 seconds

17

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

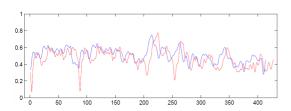

19

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster \leadsto useless Δ

Solution?

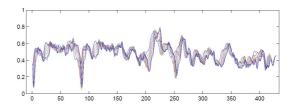

20

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster \leadsto useless Δ

Solution: Make Bernstein query faster and comute $\underline{\mathsf{new}}\ \Delta$

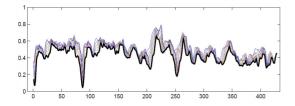

21

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster \leadsto useless Δ

Solution: Compute Δ for various tempi

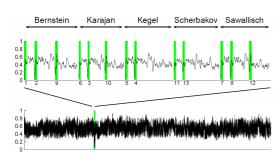

22

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster \leadsto useless Δ

Solution: Minimize over all resulting $\,\Delta\text{'s}\,\leadsto\,\Delta^{\min}$



Experiments

- Audio database > 110 hours, 16.5 GB
- Preprocessing → CENS features, 40.3 MB
- Query clip \approx 20 seconds
- Query response time < 10 seconds

Experiments

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Experiments


Query: Beethoven's Fifth / Bernstein, first 20 seconds

Rank	Δ^{\min}	Piece	Position	
1	0.0114	Beethoven's Fifth/Bernstein	0 - 21	
2	0.0150	Beethoven's Fifth/Bernstein	101 - 122	
3	0.0438	Beethoven's Fifth/Karajan	86 - 103	
:	:	÷	:	
10	0.1796	Beethoven's Fifth/Karajan	252 - 271	
11	0.1827	Beethoven (Liszt) Fifth/Scherbakov	0 - 19	
12	0.1945	Beethoven's Fifth/Sawallisch	275 - 296	
13	0.1970	Beethoven's Fifth (Liszt)/Scherbakov	86 - 103	
14	0.2169	Schumann op 97,1/Levine	28 - 43	
:	:	:	:	

26

Experiments

Query: Shostakovich, Waltz/Chailly, first 27 seconds

27

Experiments

Query: Shostakovich, Waltz/Chailly, first 21 seconds

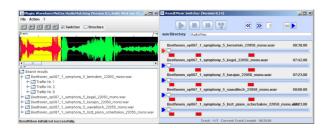
Rank	Δ^{\min}	Piece	Position	
1	0.0172	Shostakovich/Chailly	0 - 21	
2	0.0505	Shostakovich/Chailly	41 - 60	
3	0.0983	Shostakovich/Chailly	180 - 198	
4	0.1044	Shostakovich/Yablonsky	1 - 19	
5	0.1090	Shostakovich/Yablonsky	36 - 52	
6	0.1401	Shostakovich/Yablonsky	156 - 174	
7	0.1476	Shostakovich/Chailly	144 - 162	
8	0.1626	Bach BWV 582/Chorzempa	358 - 373	
9	0.1668	Beethoven op 37,1/Toscanini	12 - 28	
10	0.1729	Beethoven op 37,1/Pollini	202 - 218	
÷	:	:	:	

28

Conclusions

Strategy: Absorb variations at feature level

- Chroma → invariance to timbre
- Normalization → invariance to dynamics
- Smoothing → invariance to local time deviations


Conclusions

Global Matching Procedure

- Strategy: Exact matching and multiple scaled queries
 - simulate tempo variations by feature resampling
 - different queries correspond to different tempi
 - indexing possible
- Strategy: Dynamic Time Warping
 - subsequence variant
 - more flexible (in particular for longer queries)
 - indexing hard

29

System: SyncPlayer/AudioMatching

Multimodal Computing and Interaction

Multimodal Computing and Interaction

31

33

Music Literature (Text)

Multimodal Computing and Interaction

Music Literature (Text)

Music Film (Video

