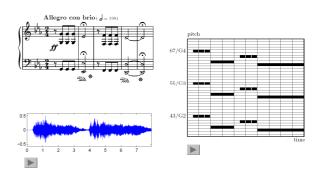
Lecture

Information Retrieval for Music and Motion

Meinard Müller

Summer Term 2008


Music Synchronization

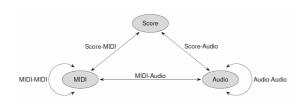
Music Data

2

Music Data

Various interpretations - Beethoven's Fifth

Bernstein	
Karajan	
Scherbakov (piano)	
MIDI (piano)	>


General Goals

- Automated organization of complex and inhomogeneous music collections
- · Generation of annotations and cross-links
- Tools and methods for multimodal search, navigation and interaction

Music Information Retrieval (MIR)

4

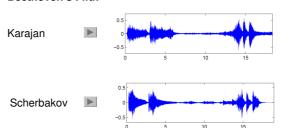
Music Synchronization

Schematic view of various synchronization tasks

Music Synchronization

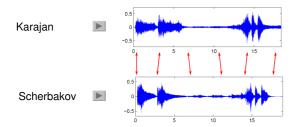
- Turetsky/Ellis (ISMIR 2003)
- Soulez/Rodet/Schwarz (ISMIR 2003)
- Arifi/Clausen/Kurth/Müller (ISMIR 2003)
- Hu/Dannenberg/Tzanetakis (WASPAA 2003)
- Müller/Kurth/Röder (ISMIR 2004)
- Raphael (ISMIR 2004)
- Dixon/Widmer (ISMIR 2005)
- Müller/Mattes/Kurth (ISMIR 2006)
- Dannenberg /Raphael (Special Issue ACM 2006)Kurth/Müller/Fremerey/Chang/Clausen (ISMIR 2007)
- Fujihara/Goto (ICASSP 2008)
- Wang/Iskandar/New/Shenoy (IEEE T-ASLP 2008)

Music Synchronization: Audio-Audio


Given: Two different audio recordings of the same underlying piece of music.

Find for each position in one audio recording Goal:

the musically corresponding position in the other audio recording.


Music Synchronization: Audio-Audio

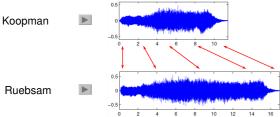
Beethoven's Fifth

Music Synchronization: Audio-Audio

Beethoven's Fifth

Synchronization: Karajan → Scherbakov ▶

11


Music Synchronization: Audio-Audio

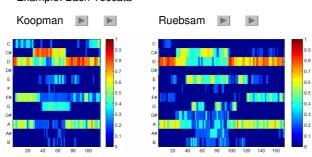
Bach Toccata

Music Synchronization: Audio-Audio

Bach Toccata

Synchronization: Koopman → Ruebsam

Music Synchronization: Audio-Audio

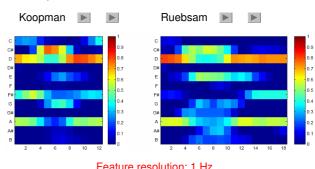

Transformation of audio recordings into sequences of feature vectors

$$\begin{array}{ll} \leadsto & V := (v^1, v^2, \dots, v^N) \\ \leadsto & W := (w^1, w^2, \dots, w^M) \end{array}$$

- Fix cost measure c on the feature space
- Compute $N \times M$ cost matrix $C(n,m) := c(v^n,w^m)$
- $\ \ \,$ Compute cost-minimizing warping path from C

Chroma Features

Example: Bach Toccata

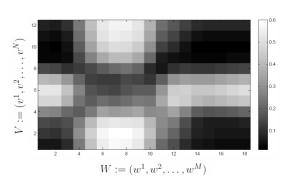


Feature resolution: 10 Hz

13

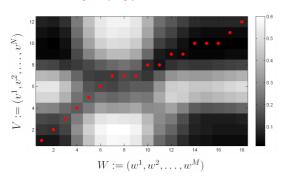
Chroma Features

Example: Bach Toccata



Feature resolution: 1 Hz

Music Synchronization: Audio-Audio


- Koopman \leadsto $V := (v^1, v^2, \dots, v^N)$ N = 12Ruebsam $\rightsquigarrow W := (w^1, w^2, \dots, w^M)$ M = 18
- v^n, w^m = 12-dimensional normalized chroma vectors
- Local cost measure $c: \mathbb{R}^{12} \times \mathbb{R}^{12} \to \mathbb{R}$ $c(v^n, w^m) := 1 - \langle v^n, w^m \rangle$
- $\bullet \quad N \times M \text{ cost matrix } \ C(n,m) := c(v^n,w^m)$

Music Synchronization: Audio-Audio

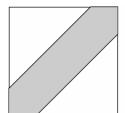
Music Synchronization: Audio-Audio

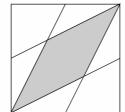
Cost-minimizing warping path

17

Cost-Minimizing Warping Path

- Computation via dynamic programming
 - → Dynamic Time Warping (DTW)
- Memory requirements and running time: O(NM)
- Problem: Infeasible for large N and M
- Example: Feature resolution 10 Hz, pieces 15 min

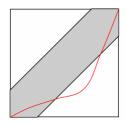

 \Rightarrow N, M ~ 10,000

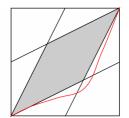

 \Rightarrow N·M ~ 100,000,000

Strategy: Global Constraints

Sakoe-Chiba band

Itakura parallelogram

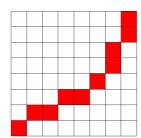



19

Strategy: Global Constraints

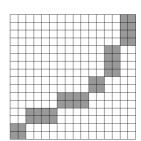
Sakoe-Chiba band

Itakura parallelogram



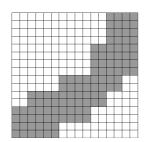
Problem: Optimal warping path not in constraint region

20

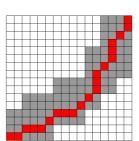

Strategy: Multiscale Approach

Compute optimal warping path on coarse level

21


Strategy: Multiscale Approach

Project on fine level


22

Strategy: Multiscale Approach

Specify constraint region

Strategy: Multiscale Approach

Compute constrained optimal warping path

24

Strategy: Multiscale Approach

- Suitable features?
- Suitable resolution levels?
- Size of constraint regions?

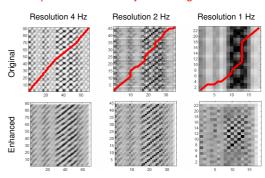
Good trade-off between efficiency and robustness?

25

Strategy: Multiscale Approach

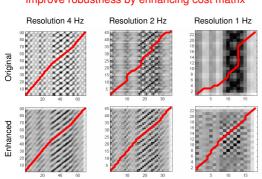
26

Strategy: Multiscale Approach



27

Strategy: Multiscale Approach


Improve robustness by enhancing cost matrix

28

Strategy: Multiscale Approach

Improve robustness by enhancing cost matrix

Strategy: Multiscale Approach

Chroma features at three levels: 0.33 Hz / 1 Hz / 10 Hz

Recording 1	length [sec]	Recording 2	length [sec]		$t_{ m MsDTW}$ [sec]	[%]
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Strategy: Multiscale Approach

Chroma features at three levels: 0.33 Hz / 1 Hz / 10 Hz

Recording 1	length [sec]	Recording 2		$t_{ m DTW}$ [sec]		[%]
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Number of matrix entries needed for DTW and MsDTW:

	DTW	MsDTW	%
Level 1	120,808,050	2,117,929	1.75
Level 2	1,209,030	17,657	1.46
Level 3	134,464	134,464	100

3

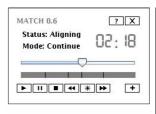
Music Synchronization: Audio-Audio

Conclusions

- Chroma features
- Relatively coarse but good global alignments
- Multiscale approach: simple, robust, fast

32

Music Synchronization: Audio-Audio

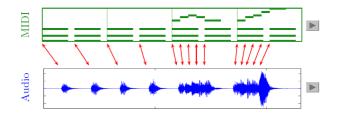

Applications

- Efficient music browsing
- Blending from one interpretation to another one
- Mixing and morphing different interpretations
- Tempo studies

33

35

System: Match (Dixon)


Argerich1965_Chopin_op15_1
Arrau1978_Chopin_op15_1
Ashkenazy1985_Chopin_op15_1
Barenboim1981_Chopin_op15_1
Harasiewicz1961_Chopin_op15_1
Leonskaja1992_Chopin_op15_1
Leonskaja1992_Chopin_op15_1
Perahia1994_Chopin_op15_1
Pires1996_Chopin_op15_1
Richter1968_Chopin_op15_1
Richter1968_Chopin_op15_1
Rubinstein1965_Chopin_op15_1

3

System: SyncPlayer/AudioSwitcher

Music Synchronization: MIDI-Audio

Music Synchronization: MIDI-Audio

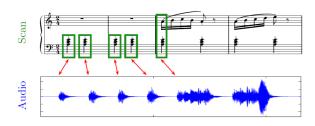
MIDI = metadata

Automated annotation

Audio recording

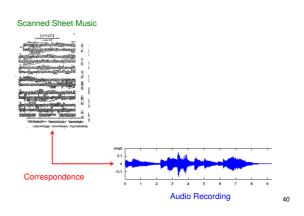
Sonification of annotations

27

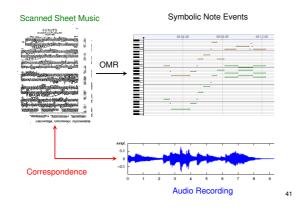

Music Synchronization: MIDI-Audio

Applications

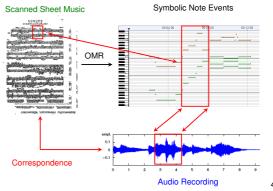
- Automated audio annotation
- Accurate audio access after MIDI-based retrieval
- Automated tracking of MIDI note parameters during audio playback

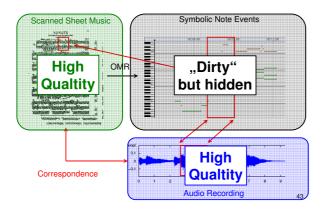

38

Music Synchronization: Scan-Audio



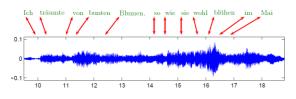
39


Music Synchronization: Scan-Audio


Music Synchronization: Scan-Audio

Music Synchronization: Scan-Audio

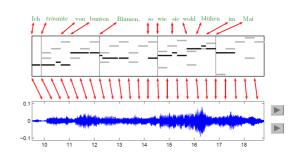
Music Synchronization: Scan-Audio



System: SyncPlayer/SheetMusic

44

Music Synchronization: Lyrics-Audio


Difficult task!

._

47

Music Synchronization: Lyrics-Audio

 $\mathsf{Lyrics}\text{-}\mathsf{Audio} \to \mathsf{Lyrics}\text{-}\mathsf{MIDI} + \mathsf{MIDI}\text{-}\mathsf{Audio}$

46

System: SyncPlayer/LyricsSeeker

Conclusions: Music Synchronization

Various requirements

- Efficiency
- Robustness
- Accuracy
- Variablity of music

Conclusions: Music Synchronization

Combination of various strategies

- Feature level
- Local cost measure level
- Global alignment level
- Evidence pooling using competing strategies

Conclusions: Music Synchronization

Combination of various strategies

- Feature level
- Local cost measure level
- Global alignment level
- Evidence pooling using competing strategies

Example: MIDI-Audio synchronization

Chroma-Chroma + onset-bonus:

50

Conclusions: Music Synchronization

Offline vs. Online

- Online version: Dixon/Widmer (ISMIR 2005)
- Hidden Markov Models: Raphael (ISMIR 2004)
- Score-following
- Automatic accompaniment

Conclusions: Music Synchronization

Presence of variations

- Instrumentation
- Musical structure
- Polyphony
- Musical key
- ..

32