Advanced Course Computer Science

Music Processing

Summer Term 2009

Meinard Müller

Saarland University and MPI Informatik meinard@mpi-inf.mpg.de

Beethoven, Bach, and Billions of Bytes

New Alliances between Music and Computer Science

Bonn University

- Prof. Dr. Michael Clausen
- PD Dr. Frank Kurth
- Dipl.-Inform. Christian Fremerey
- Dipl.-Inform. David Damm
- Dipl.-Inform. Sebastian Ewert

Information Retrieval for Music and Motion

2 Springer

Habilitation

Bonn University

- Prof. Dr. Michael Clausen
- PD Dr. Frank Kurth
- Dipl.-Inform. Christian Fremerey
- Dipl.-Inform. David Damm
- Dipl.-Inform. Sebastian Ewert

Dec. 2007

PhD students

- Dipl.-Inform. Andreas Baak
 - Dipl.-Math. Verena Konz
- Dipl.-Ing. Peter Grosche
- Dipl.-Inform. Thomas Helten

(DFG) (MMCI)

(MMCI)

(DFG)

Habilitation

Music Data

Music Information Retrieval (MIR)

- Detection of semantic relations, e.g., harmonic, rhythmic, or motivic similarity
- Extraction of musical entities such as note events, instrumentation, or musical form
- Tools and methods for multimodal search, navigation, and interaction

Piano Roll Representation

Piano Roll Representation

Player Piano (1900)

Piano Roll Representation (MIDI)

J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846)

Piano Roll Representation (MIDI)

Query:

Goal: Find all occurrences of the query

Piano Roll Representation (MIDI)

Query:

Goal: Find all occurrences of the query

Matches:

Audio Data

Various interpretations - Beethoven's Fifth

Bernstein	
Karajan	>
Scherbakov (piano)	>
MIDI (piano)	>

Memory Requirements

1 Bit = 1: on

0: off

1 Byte = 8 Bits

1 Kilobyte (KB) = 1 Thousand Bytes

1 Megabyte (MB) =

1 Million Bytes

1 Gigabyte (GB) = 1

1 Billion Bytes

1 Terabyte (TB)

1000 Billion Bytes

Memory Requirements

12.000 MIDI files < 350 MB

One audio CD ≃ 650 MB

Two audio CDs > 1 Billion Bytes

1000 audio CDs ≃ Billions of Bytes

Music Synchronization: Audio-Audio

Beethoven's Fifth

Music Synchronization: Audio-Audio

Beethoven's Fifth

Synchronization: Karajan → Scherbakov ▶

Music Synchronization: Audio-Audio

Feature extraction: chroma features

Music Synchronization: Audio-Audio

Cost matrix

Music Synchronization: Audio-Audio

Cost-minimizing warping path

System: SyncPlayer/AudioSwitcher

Music Synchronization: MIDI-Audio

Music Synchronization: MIDI-Audio

MIDI = meta data

Automated annotation

Audio recording

Sonification of annotations

Music Synchronization: Scan-Audio

System: SyncPlayer/SheetMusic

Music Synchronization: Lyrics-Audio

Music Synchronization: Lyrics-Audio

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai

Music Synchronization: Lyrics-Audio

Music Synchronization: Lyrics-Audio

Lyrics-Audio → Lyrics-MIDI + MIDI-Audio

Audio Structure Analysis

Given: CD recording

Goal: Automatic extraction of the repetitive structure

(or of the musical form)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Audio Structure Analysis

Self-similarity matrix

33

Audio Structure Analysis

Self-similarity matrix

34

Audio Structure Analysis

Self-similarity matrix

35

Audio Structure Analysis

Self-similarity matrix

36

Audio Structure Analysis

Self-similarity matrix

Self-similarity matrix

Audio Structure Analysis

38

37

Audio Structure Analysis

Self-similarity matrix

39

Audio Structure Analysis

Self-similarity matrix

40

Audio Structure Analysis

Self-similarity matrix

Similarity cluster

Music Processing

Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?

41

Music Processing

Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?
What makes up a piece of music?	What makes music come alive?

Music Processing

Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?
What makes up a piece of music?	What makes music come alive?
Identify despite of differences	Identify the differences

Music Processing

Coarse Level	Fine Level
What do different versions have in common?	What are the characteristics of a specific version?
What makes up a piece of music?	What makes music come alive?
Identify despite of differences	Identify the differences
Example tasks: Audio Matching Cover Song Identification	Example tasks: Tempo Estimation Performance Analysis

Performance Analysis

- 1. Capture nuances regarding tempo, dynamics, articulation, timbre, ...
- 2. Discover commonalities between different performances and derive general performance rules
- 3. Characterize the style of a specific musician (``Horowitz Factor´)

Performance Analysis

Performance:

Performance Analysis

Performance:

Performance Analysis

Performance:

Strategy: Compute score-audio synchronization and derive tempo curve

Score (reference):

| The state of the stat

Performance Analysis

Tempo curve:

Score (reference):

Performance Analysis

Performance:

Music Processing

Relative	Absolute
Given: Several versions	Given: One version

What can be done if no reference is available?

Music Processing

Relative	Absolute
Given: Several versions	Given: One version
Comparison of extracted parameters	Direct interpretation of extracted parameters

Music Processing

Relative	Absolute
Given: Several versions	Given: One version
Comparison of extracted parameters	Direct interpretation of extracted parameters
Extraction errors have often no consequence on final result	Extraction errors immediately become evident

Music Processing

Relative	Absolute
Given: Several versions	Given: One version
Comparison of extracted parameters	Direct interpretation of extracted parameters
Extraction errors have often no consequence on final result	Extraction errors immediately become evident
Example tasks: Music Synchronization Genre Classification	Example tasks: Music Transcription Tempo Estimation

Tempo Estimation

Measure

Tempo Estimation

Tactus (beat)

Tempo Estimation

Tatum (temporal atom)

Tempo Estimation

- Which temporal level?
- Local tempo deviations
- Sparse information (e.g., only note onsets available)
- Vague information (e.g., extracted note onsets corrupt)

Tempo Estimation

Performance

Tempo Estimation

Performance

Tempo Estimation

Novelty Curve

Tempo Estimation

Novelty Curve

Periodicity Analysis

Tempo Estimation: Tempogram

Tempo Estimation: Tempogram

Motivic Similarity

Motivic Similarity

Beethoven's Fifth (1st Mov.)

Motivic Similarity

Beethoven's Fifth (1st Mov.)

Beethoven's Fifth (3rd Mov.)

Motivic Similarity

Beethoven's Fifth (1st Mov.)

Beethoven's Fifth (3rd Mov.)

Beethoven's Appassionata

Multimodal Computing and Interaction

Music

Multimodal Computing and Interaction

MusicXML (Text)

Music Literature (Text)

Music Film (Video)

Collaborations (Music Processing)

■ RG Michael Clausen (Bonn University) → Music Processing

Hochschule der Musik Saar (HDM) → Music Education

■ RG Björn Schuller (TU München) → Music & Speech

■ RG Gerhard Weikum (MPI Saarbrücken) → Music & Text

 $\qquad \qquad \text{Utrecht University} \qquad \qquad \rightarrow \text{ Folk Songs}$

 ${\color{red}\bullet} \quad \text{Goldsmiths College/ London} \qquad \qquad {\color{red}\to} \quad \text{Beatles Songs}$