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Today...

Topics:
0 Formalities & Organization

______________________________________________________

= Motivation
= Overview: Topics
= Basic modeling techniques

e Mathematical Tools (1)
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Motivation



Motivation

This lecture covers two related areas:
e Classic geometric modeling
e Geometry processing

Common techniques (math, models, terminology),
but different goals
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Geometric Modeling

Geometric Modeling:

e You start with a blank screen, design a geometric model

e Typical techniques:
= Triangle meshes
= Constructive Solid Geometry (CSG)
= Spline curves & surfaces
= Subdivision surfaces

e Goal is interactive modeling

e Mathematical tools are designed with the user in mind
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Geometry Processing

Geometry Processing

e You already have a geometric model
= Typically from a 3D range scanner (read: not nice)
= You need to process & edit the geometry

= The original model has not been build with the user in mind
(stupid range scanner)

e Typical techniques:

= Noise removal, filtering

Surface reconstruction

Registration

Freeform deformation modeling

Statistical analysis (features, symmetry, hole-filling etc...)
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Our Perspective

The perspective of this lecture:

e The basic mathematical tools for handling geometry
are the same

e Different usage, adaptation, specific algorithms
e We will discuss

= The basic concepts and tools
(mathematical foundation, representations, basic algorithms)

= ...and applications in both areas.
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Examples:
Geometric Modeling



The Modern World...

designed on a computer
(the building)

de5|gned on a computer as weII [ 1T
(the cars) 4 | ‘ ]

11]'::

e fortunately, not (yet) desngned
i g v on a computer

(the trees)

-

p o ; b,

(c.f. Danny Hillis, Siggraph 2001 keynote)
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Impact of Geometric Modeling

We live in a world designed using CAD

e Almost any man-made structure is nowadays planed and
designed using computers
= Architecture
= Commodities: Chairs, furniture, your microwave & toaster

= Your car (in case you have one, but probably the bike as well)
— spline curves have actually been invented in the automotive
industry

= Typesetting
e <advertising> Our abilities in geometric modeling shapes
the world we live in each day. </advertising>
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Different Modeling Tasks

CAD / CAM

e Precision Guarantees

e Handle geometric constraints
exactly (e.g. exact circles)

e Modeling guided by rules
and constraints

Geometric Modeling Summer Semester 2010 — Introduction 12 /93



Different Modeling Tasks

Photorealistic Rendering
e Has to “look” good
e Ad-hoc techniques are ok

e Using textures & shaders
to “fake” details

e More complexity, but
less rigorous

Just two examples, lots of
stuff in between...
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Examples:
Geometry Processing



Geometry Processing

A rather new area

e Motivation: 3D scanning

= You (your company) can buy devices that scan
real world 3D objects

= You get (typically) clouds of measurement points

e Many other sources of geometry as well:
= Science (CT, [F]MRI, ET, Cryo-EM, ...)
= 3D movie making

= The design department of your company has dozens of
TByte of “polygon soup”...

= Crawl the internet

e Need to process the geometry further
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Photoshopping Geometry

Geometry Processing:

e Cleanup:
= Remove inconsistencies
= Make watertight (well defined inside/outside, for 3D printers)
= Simplify — keep only the main “structure”
= Remove noise, small holes, etc...

e Touch-up /Edit:
= Texturing, painting, carving
= Deformation
= Stitch together pieces

e Lots of other stuff — similar to image processing
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Example

Example: The Stanford “Digital Michelangelo Project”

[Levoy et al.: The Digital Michelangelo Project, Siggraph 2000]
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Scan Registration

[data set: Stanford 3D Scanning Repository]
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Feature Tracking

Fully Automatic:

[Implementation: Martin Bokeloh (Diploma thesis)]
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Scanning the World....

Laser scanners
(2D sheets of distance
measurments)

Example: The “Wagele”

[Biber et al. 2005]

A pull-through measurement
device — can acquire complete
buildings in a few hours
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This is what you get...

Corridor — CS Building
University of Tlbingen (6.5 GB)

ding, Outside
nicer colors...)

R
R
Nt

...lots of artifacts s
(the scanner does not really like windows)
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Automatic Processing

Example: Automatic Outlier Removal
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Think Big

More Problems:

e Occluded areas, shiny / transparent objects
= holes (lots of holes, actually)

e Huge amounts of data (really huge)

City Scanning
e There are big companies trying to scan large areas
e Think Google Earth in full resolution

e How about a virtual online walk through
New York, Tokyo, Saarbriicken?

e Lots of open research problems to get there
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[data set: Institute for Cartography, Leibnitz University Hannover]



HUGE Data Sets

The Largest Data Set | have On My Hard-Drive...

A S i ~ -

Data set: Outdoor Scan (structure from video) of a part of the UNC campus
(2.2:10° pts / 63.5 GB), courtesy of J.-M. Frahm, University of North Carolina
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Hole Filling

Wei-Levoy Texture Synthesis Algorithm:

[Implementation: Alexander Berner (Diploma thesis)]
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Filling Holes

[implementation: Alexander Berner (Diploma thesis)]
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Filling Holes

[implementation: Alexander Berner (Diploma thesis)]

Geometric Modeling Summer Semester 2010 — Introduction 28 /93



Symmetry Detection

[data set: M. Wacker, HTW Dresden]



Results
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Results
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Results
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Line Feature Matching

r‘h m 'DF ’{L\:jud

o .

[data sets: Kartographisches Institut, Universitat Hannover / M. Wacker, HTW Dresden]
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Reconstruction by Symmetry
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[data sets: Kartographisches Institut, Universitdt Hannover]
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Inverse Procedural Modeling




Overview

Our approach
e Take existing model
e Analyse shape structure
e Derive shape modification rules

Input
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Technique Overview

Conceptual Steps:
e Symmetry detection
e Finding docking sites and dockers
e Combine into a shape grammar

Symmetry Docking site Result
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Results
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Results

~500.000 triangles
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Results
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Results
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Deformable Shape Matching

[data set: Stanford 3D Scanning Repository]



Problem Statement

Deformable Matching
e Two shapes: original, deformed
e How to establish correspondences?

e Looking for global optimum
= Arbitrary pose

Assumption

e Approximately isometric
deformation

[data set: S. Konig, TU Dresden]
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Results

[data sets: Stanford 3D Scanning Repository / Carsten Stoll]
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Animation Reconstruction
T e P 8 AR e

[data set: P. Phong, Stanford University] |



Scanning Moving Geometry

Real-time 3D scanners:
e Acquire geometry at video rates [Davis et al. 2003]
e Capture 3D movies: “performance capture”

e Technique still immature, but very interesting
applications, in particular special effects for movies
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Real-Time 3D Scanners

; l.xi-? g
space-time color-coded high-speed
stereo structured light structured light
courtesy of James Davis courtesy of Phil Fong courtesy of Stefan Gumhold
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Reconstruction

Dynamic geometry reconstruction
e Hole filling
e Remove noise and outliers
e Establish correspondences

= Need to know where every point
on the object goes to over time

= Simplifies further editing
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Animation Reconstruction

Remove noise, outliers

Fill-in holes
(from all frames)

Dense correspondences
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Factorization

data points d;

; f(x,t) — deformation field
A\

X — point on urshape S

[data set courtesy of P. Phong, Stanford University]
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79 frames, 24M data pts, 21K stirfels, 315 nodes
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Overview: Geometric Modeling 2010

Mathematical Background (Recap)
e Linear algebra: vector spaces, function spaces, quadrics
e Analysis: multi-dim. calculus, differential geometry
e Numerics: quadratic and non-linear optimization

Geometric Modeling

e Smooth curves: polynomial interpolation &
approximation, Bezier curves, B-Splines, NURBS

e Smooth surfaces: spline surfaces, implicit functions,
variational modeling

e Meshes: meshes, multi-resolution, subdivision
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Overview: Geometric Modeling 2010

Geometry Processing
e 3D Scanning: Overview
e Registration: ICP, NDT

e Surface Reconstruction: smoothing, topology
reconstruction, moving least-squares

e Editing: free-form deformation

Preliminary List:
e Topics might change
e Not presented strictly in this order
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Topics Overview

Current List of Topics (subject to changes):

e Math Background:
= Linear Algebra, Analysis, Differential Geometry, Numerics, Topology

e Interpolation and Approximation
e Spline Curves

e Blossoming and Polar Forms

e Rational Splines

e Spline Surfaces

e Subdivision Surfaces

e Implicit Functions

e Variational Modeling

e Point Based Representations

e Multi Resolution Representations
e Surface Parametrization
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Overview
Modeling Techniques



Geometric Modeling

What do we want to do?

RI| —— empty space

/ (typically R3)

\ geometric object
_/ B - R3
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Fundamental Problem

The Problem:

Rd

infinite number of points my computer: 8GB of memory

We need to encode a continuous model with a finite
amount of information
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Modeling Approaches

Two Basic Approaches
e Discrete representations

= Fixed discrete bins

e “Continuous” representations
= Mathematical description
= Evaluate continuously
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Discrete Representations

You know this...
e Fixed Grid of values:

(ig) oo ig) € ZF5 — (X3, ..., Xg) € R

e Typical scenarios:

= d.=2,d,=3: Bitmap images
= d.=3,d,=1: Volume data
(scalar fields)

= d,=2,d,=1: Depth maps (range
images)

e PDEs: “Finite Differences”
models
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Modeling Approaches

Two Basic Approaches
e Discrete representations

= Fixed discrete bins

e “Continuous” representations
= Mathematical description
= Evaluate continuously
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Continuous Models

Basic Principle: Procedural Modeling

Query Parameters

a continuous set)

(a finite set of numbers from |

Algorithm(s)

determines the

class of objects that can

be represented

finite set of
Shape Parameters

determines the object shape

Answer

_
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Example: Continuous Model

Example: Sphere
e Shape Parameters: center, radius (4 numbers)

e Algorithms:

= Ray Intersection (e.g. for display)
— Input: Ray (angle, position: 5 numbers)
— Output: {true, false}

= Inside/outside test (e.g. for rasterization)
— Input: Position (3 numbers)
— Output: {true, false}

= Parametrization (e.g. for display)
— Input: longitude, latitude (a., ()
— Output: position (3 numbers)
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So Many Questions...

Several algorithms for the same representation:

Parametrization — compute surface points according to
continuous parameters

(Signed) distance computation — distance to surface of points
in space, inside/outside test

Intersection — with rays (rendering), other objects (collision
detection)

Conversion — into other representations.
Many more...

In addition, we also need algorithms to construct and
alter the models.
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Continuous, Procedural Models

“Continuous” representations

An algorithm describes the shape

The shape is determined by a finite number of
continuous parameters

The shape can be queried with a finite number of continuous
parameters

More involved (have to ask for information)
But potentially “infinite” resolution (continuous model)

Structural model complexity still limited by algorithm
and parameters

This lecture examines these representations and the
corresponding algorithms
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Classes of Models

(Main) classes of models in this lecture:
e Primitive meshes
e Parametric models
e Implicit models
e Particle / point-based models

Remarks
e Most models are hybrid (combine several of these)
e Representations can be converted (may be approximate)

e Some questions are much easier to answer for certain
representations
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Modeling Zoo

[
»

Parametric Models

e

Implicit Models

Particle Models
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Modeling Zoo

[
»

Parametric Models

e

Implicit Models

Particle Models
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Parametric Models

A
vl QSR

(&, V)

Parametric Models

e Function f maps from parameter domain €2 to target space
e Evaluation of f gives one point on the model
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Modeling Zoo

AN

A

AW
VA
2 Nﬁﬂ&bﬂ‘\

LIS

ive Meshes

imi

Pr

Parametric Models

A

E; ’—

Particle Models

it Models

Implic
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Primitive Meshes

Primitive Meshes

e Collection of geometric primitives

= Triangles

= Quadrilaterals
= More general primitives
(spline patches)
e Typically, the primitives are
parametric surfaces

e Composite model:
= Mesh encodes topology, rough shape
= Primitive parameter encode local geometry

e Triangle meshes rule the world (“triangle soup”)
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Primitive Meshes

Complex Topology for Parametric Models
e Mesh of parameter domains attached in a mesh
e Domain can have complex shape (“trimmed patches”)

e Separate mapping function f for each part
(typically of the same class)
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Meshes are Great

Advantages of mesh-based modeling:
e Compact representation (usually)
e Can represent arbitrary topology

e Using the right parametric surfaces as parts, many
important geometric objects can be represented exactly
(e.g. NURBS: circles, cylinders, spheres — CAD/CAM)
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Meshes are not so great

Problem with Meshes:
e Need to specify a mesh first, then edit geometry

e Problems for larger changes
= Mesh structure and shape need to be adjusted

= Mesh encodes object topology
—> Changing object topology is painful

 Difficult to use for many applications (such as surface
reconstruction)

= Rule of thumb: If the topology or the coarse scale shape changes
drastically and frequently during computations, meshes are hard

to use
= Drastic example: Fluid simulation (surface of splashing water)
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Modeling Zoo
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Implicit Modeling

General Formulation:
e Curve /Surface S ={x | f(x) = 0}
e xeRY(d=2,3),f(x) e R
e Sis (usually) a d-1 dimensional object

This means...:

e The surface is obtained implicitly as the set of points for
which some given function vanishes (f(x) = 0)

o Alternative notation: S = f1(0) (“inverse” yields a set)
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Implicit Modeling

Example: P
e Circle: x> +y2=r ﬁ]
< f(xy)=x2+y?-r’=0 ;
; x>
e Sphere: x* +y?+2z°=r

~~~
Vw -7
L TR

Special Case:
e Signed distance field
e Function value is signed distance to surface

X,y)=sign(x* +y° —r°)|X* +y° —r?|
g

e Negative means inside, positive means outside
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Implicit Modeling

Example:
e Circle:x*+y?=r?
< f(xy)=x2+y?-r’=0

“Signed squared distance field”

(has some useful properties, e.g.

from a statistical point of view)
e Sphere: x> +y?+2%2=1r

~~~
Vw -7
L TR

Special Case:
e Signed distance field
e Function value is signed distance to surface

F(x,y)=sign(x* +y* —1* )| x> +y* -1

e Negative means inside, positive means outside
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Implicit Modeling: Pros & Cons

Advantages:
e More general than parametric techniques

e Topology can be changed easily
(depends on how f is specified, though)

e Implicit representations are the standard technique for
simulations with free boundaries.
Also known as “level-set methods”.

e Typical example: Fluid simulation (evolving water-air
interface)

e Geometric modeling: Surface reconstruction, “blobby
surfaces”
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Implicit Modeling: Pros & Cons

Disadvantages:
e Need to solve inversion problem S = f1(0)

e Algorithms for display, conversion etc. tend to be more
difficult and more expensive (inside/outside test is easy
though for signed distance fields)

e Representing objects takes more memory
(we will discuss standard representations later)
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Modeling Zoo
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Particle Representations

Particle / Point-based Representations
e Geometry is represented as a set of points / particles

e The particles form a (typically irregular) sample of the
geometric object

e Need additional information to deal with “the empty
space around the particles”

o ° additional /\

assumptions
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Particle Representations

Helpful Information
e Each particle may carries a set of attributes

= Must have: Its position

= Additional geometric information:
Particle density (sample spacing), surface normals

= Additionally: Color, physical guantities (mass, pressure,
temperature), ...
e This information can be used to improve the
reconstruction of the geometric object described by the

particles
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The Wrath of Khan

Why Star Trek is at fault...

e Particle methods first used in computer graphics to
represent fuzzy phenomena (fire, clouds, smoke)

e “Particle Systems—a Technique for Modeling a Class of
Fuzzy Objects” [Reeves 1984]

e Probably most well-known example: Genesis sequence
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Genesis Sequence [Reeves 1983]
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Non-Fire Objects

Particle Traces for Modeling Plants
(also from [Reeves 1983])
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Geometric Modeling

How became the geometric modeling crowd
interested in this?

3D Scanners

e 3D scanning devices yield point clouds
(often: measure distance to points in space, one at a time)

e Then you have to deal with the problem anyway

e Need algorithms to directly work on “point clouds”
(this is the geometry name for particle system)
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Geometric Modeling

How became the geometric modeling crowd
interested in this?

Other Reasons:
e Similar advantages as implicit techniques
e Topology does not matter (for the good and for the bad)

= Topology is easy to change

= Multi-scale representations are easy to do
(more details on multi-resolution techniques later)

e Often easier to use than implicit or parametric techniques
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Multi-Scale Geometry w/Points
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Summary

Summary I_@

e Lots of different

;ﬁi“ - %
O 7
Parametric Models Primitive Meshes

representations |
e No silver bullet 3
® In theOry, everything a|Way5 Implicitl Models Particle Models

works, but might be just too
complicated/expensive

e Best choice depends on the application
 We will look on all of this...

= Focus on parametric techniques though
= Most common approach
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