
Geometric Modeling
Summer Semester 2010

Triangle Meshes and Multi-Resolution
Representations

Representations · Hierarchical Data Structures · Rendering

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 2 / 120

Overview...

Topics:

• Blossoming and Polars

• Rational Spline Curves

• Spline Surfaces

• Triangle Meshes & Multi-Resolution Representations

 Mesh Data Structures

 Triangulations

 Spatial Data Structures and Algorithms

 Mesh Simplification

 Appearance Approximation

Triangle Meshes
Data Structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 4 / 120

 Parametric Models Primitive Meshes

 Implicit Models Particle Models

Modeling Zoo

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 5 / 120

Triangle Meshes

Triangle Meshes:

• Triangle meshes are probably the most common surface
representation in computer graphics

• Triangles are probably the simplest surface primitives that
can be assembled into meshes

 Rendering can be implemented in hardware (z-buffering)

 Simple algorithms for intersections (raytracing, collisions)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 6 / 120

Attributes

How to define a triangle?

• We need three points in 3 (obviously).

• But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

per-vertex color

texture per-vertex texture
coordinates

(etc...)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 7 / 120

Shared Attributes in Meshes

In Triangle Meshes:

• Attributes might be shared or separated:

adjacent triangles
share normals

adjacent triangles
have separated normals

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 8 / 120

“Triangle Soup”

Variants in triangle mesh representations:

• “Triangle Soup”

 A set S = {t1, ..., tn} of triangles

 No further conditions

 This is “the most common” representation (if you download
models from the web, you never know what you get)

• Triangle Meshes: Additional consistency conditions

 Conforming meshes: Vertices meet only at vertices

 Manifold meshes: No intersections, no T-junctions

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 9 / 120

Conforming Meshes

Conforming Triangulation:

• Vertices of triangles must only meet at vertices, not in the
middle of edges:

• This makes sure that we can move vertices around
arbitrarily without creating holes in the surface

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 10 / 120

Manifold Meshes

Triangulated two-manifold:

• Every edge is incident to exactly 2 triangles
(closed manifold)

• ...or to at most two triangles (manifold with boundary)

• No triangles intersect (other than along common edges or
vertices)

• Two triangles that share a vertex must share an edge

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 11 / 120

Attributes

In general:

• Vertex attributes:

 Position (mandatory)

 Normals

 Color

 Texture Coordinates

• Face attributes:

 Color

 Texture

• Edge attributes (rarely used)

 E.g.: Visible line

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 12 / 120

Data Structures

The simple approach: List of vertices, edges, triangles

v1: (posx posy posy), attrib1, ..., attribnav
 ...

vnv: (posx posy posy), attrib1, ..., attribnav

e1: (index1 index2), attrib1, ..., attribnae
 ...

ene: (index1 index2), attrib1, ..., attribnae

t1: (idx1 idx2 idx3), attrib1, ..., attribnat
 ...

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 13 / 120

Pros & Cons

Advantages:

• Simple to understand and build

• Provides exactly the information necessary for rendering

Disadvantages:

• Dynamic operations are expensive:

 Removing or inserting a vertex
 renumber expected edges, triangles

• Adjacency information is one-way

 Vertices adjacent to triangles, edges direct access

 Any other relationship need to search

 Can be improved using hash tables (but still not dynamic)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 14 / 120

Adjacency Data Structures

Alternative:

• Some algorithms require extensive neighborhood
operations (get adjacent triangles, edges, vertices)

• ...as well as dynamic operations (inserting, deleting
triangles, edges, vertices)

• For such algorithms, an adjacency based data structure is
usually more efficient

 The data structure encodes the graph of mesh elements

 Using pointers to neighboring elements

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 15 / 120

First try...

Straightforward Implementation:
• Use a list of vertices, edges,

triangles

• Add a pointer from each element
to each of its neighbors

• Global triangle list can be used for rendering

Remaining Problems:

• Lots of redundant information – hard to keep consistent

• Adjacency lists might become very long

 Need to search again (might become expensive)

 This is mostly a “theoretical problem” (O(n) search)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 16 / 120

Half edge data structure:

• Half edges, connected by clockwise / ccw pointers

• Pointers to opposite half edge

• Pointers to/from start vertex of each edge

• Pointers to/from left face of each edge

Less Redundant Data Structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 17 / 120

// a vertex

struct Vertex {

 HalfEdge* someEdge;

 /* vertex attributes */

};

// the face (triangle, poly)

struct Face {

 HalfEdge* half;

 /* face attributes */

};

Implementation

// a half edge

struct HalfEdge {

 HalfEdge* next;

 HalfEdge* previous;

 HalfEdge* opposite;

 Vertex* origin;

 Face* leftFace;

 EdgeData* edge;

};

// the data of the edge

// stored only once

struct EdgeData {

 HalfEdge* anEdge;

 /* attributes */

};

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 18 / 120

Implementation

Implementation:

• The data structure should be encapsulated

 To make sure that updates are consistent

 Implement abstract data type with more high level operations
that guarantee consistency of back and forth pointers

• Free Implementations are available, for example

 OpenMesh

 CGAL

• Alternative data structures: for example winged edge
(Baumgart 1975)

Triangulations
Algorithms and Data Structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 20 / 120

Triangulation

Problem Statement:
• Given a 2-dimensional domain

• We want to triangulate the domain

• We need this for example for rendering parametric
surfaces by triangle rasterization

• Adaptive triangulation: Higher resolution in more
important area

Different Problem:
• Triangulating a point cloud in 3

• This is the surface reconstruction problem
(we will look at that later)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 21 / 120

Problem Variations

Simplest Version

• Domain is a rectangle or a triangle

• Uniform or adaptive tessellation

More Complex: Constrained Triangulation

• Point constraints:
specific points must be included

• Edge constraints:
specific edges must be included

• Boundary constraints:
triangulate within some area only

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 22 / 120

Unconstrained Uniform Triangulation

Unconstrained uniform triangulation:

• This is simple

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 23 / 120

Adaptive Triangulation

Unconstrained adaptive
triangulation:

• Hierarchy of rectangles / triangles
(Quadtree)

• Use “balancing” to limit depth
differences

• Balancing will increase the number
of nodes in the tree by a factor of
at most O(1)

• Finally, create a conforming
triangulation (fixed number of
cases per node)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 24 / 120

Implementation

Storage: Tree Structure

• Tree can be represented directly

• Neighbor search for balancing:

 We can store fixed pointers to
neighboring cells
(not that elegant, easy to mess up
the consistency)

 Alternative: use neighborhood
search

– Go up in tree until common
ancestor is found

– Then go down again

– O(1) expected running time

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 25 / 120

Adaptive Rendering

Adaptive rendering algorithm

• Recursive algorithm

• Starts at root node

• Is precision sufficient?

 If so stop recursion

 Otherwise go to child nodes

• The recursion extracts a subgraph of the tree (“cut”)

• Next: The subgraph needs to be balanced

• Then, a triangulation can be created

“cut”

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 26 / 120

Adaptive Rendering

Termination Criteria:

• Rendering error:

 Projected size on screen shrinks
with 1/z (where z is the depth
in camera coordinates)

 Might also depend on viewing
angle (typically, this is neglected)

• Geometric error:

 Tessellating a curved surface with planar faces is only an
approximation

 Error depends on curvature

?

go deeper?

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 27 / 120

Adaptive Rendering

Termination Criteria:

• Typically: divide geometric
error by z

• To estimate z, use a bounding
box (for splines: convex hull
property)

• Chooses nearest z (conservative estimate)

• REYES algorithm [Cook, Carpenter, Catmull 1987]
(Pixar’s RenderMan)

 Stop subdivision when BB below one pixel on screen size

 Subdivision connectivity not really necessary in that case

?

go deeper?

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 28 / 120

Subdivision Connectivity Meshes

Generalization: Arbitrary Domains

• Start with a base mesh

 “3D parametrization”

 A conforming two-manifold mesh
in 3D used as parametrization domain

• The base mesh fixes the topology

• Subdivide recursively as needed

• Now: Balancing/triangulation,
also across borders

• Then compute the final surface

base mesh

consistency across boundaries

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 29 / 120

Hardware Friendly Version

Problems:

• Costs for hierarchy creation / balancing are quite large

• In particular: Problematic for rendering

• Rendering triangles is very cheap these days

• But we still need adaptivity (moving camera, we can get
arbitrarily close)

• Solution: Subdivision connectivity grids

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 30 / 120

Subdivision Connectivity Grids

Idea:

• Do the same thing (hierarchical triangulation)

• But use a grid of many triangles in each node:

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 31 / 120

Subdivision Connectivity Grids

Advantage:

• Amortizes hierarchy creation /
traversal costs over many triangles

• Well suited for graphics hardware (GPU)
implementations (regular structure)

Disadvantage:

• Less adaptivity

• This is ok for the 1/z term in perspective rendering
(we will see that later)

• But geometry will be oversampled

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 32 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 33 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 34 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 35 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 36 / 120

Constraint Triangulations

Additional Constraints:

• Vertices, edges, area

• Need to augment subdivision algorithm

Hierarchical Subdivision:

• Subdivide until a simple case is found

 At most one vertex in each cell

 At most one line segment intersecting each cell

 At most two boundary / cell intersections

• Then triangulate according to fixed rules

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 37 / 120

Vertex Constraints

Vertex Constraints:

• When only one point is left
in each box

• Subdivide once more

• Move center to point

• Then balance and
triangulate
(proceed as before)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 38 / 120

Edge / Area Constraints

Edge and area constraints

• Subdivide until intersection with
edges / boundary curves has
constant complexity (e.g. two
intersections per cell)

• Then apply fixed subdivision rule

• Edge constraints:

 Keep all triangles

• Area constraint:

 Delete outside triangles

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 39 / 120

Alternative Algorithm

Alternative: (constrained) Delaunay triangulation

• Delaunay triangulation of a point set:

 Triangulation in which the circumcircle
of each triangle is empty

 This triangulation maximizes the
minimum angle in any triangle

 The triangulation always exist

 Can be computed by iterated
edge flipping or (more efficiently)
by line sweep algorithms (O(n log n) time for n points)

• Constrained Delaunay triangulation:

 Additional edge / polygonal area constraints

 More involved to compute

Spatial Data Structures
Range Queries, Collision Detection

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 41 / 120

Spatial Data Structures

Motivation:
• Common problems:

 Select a handle point by mouse click (millions of handles)

 Click on other stuff (edges, triangles, patches)

 Find the nearest point in a point set

 Find the k nearest points (e.g. for surface fitting)

 Find all geometry within a range (cube, sphere, etc.)

• This should work on large models
 Billions of primitives

 Frequent operations

– E.g.: compute 20 nearest points for 1.000.000 points

– Quadratic runtime is unacceptable

• Such operations can be speed up tremendously
using spatial indexing data structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 42 / 120

Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

• Almost all approaches commonly used in practice are
based on hierarchical spatial decompositions

• For some problems, there are more sophisticated data
structures from computational geometry, but they often
have to large space requirements

• In practice, anything beyond linear space is out of
question

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 43 / 120

Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

• If the number of objects is still too large:

 Cluster geometry into a small number
of spatially coherent groups

 Compute a simple bounding
volume for each group

 Apply this principle recursively
to all subgroups formed

• We obtain a tree of bounding volumes

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 44 / 120

Hierarchical Space Partitioning

Formally:

• We have a set of objects = {s1, ..., sn}, si d

(where d is small, usually d = 2..3)

• We form a hierarchy of nodes Ni.

 Let C(Ni) be the set of child nodes, ...

 ...and P(Ni) the unique parent node, or null,
if Ni is the root node R.

• We associate a set of objects S(Ni) with each node Ni.

• We demand S(R) = (root contains everything)
and Nj C(Ni) S(Nj) S(Ni) (inner nodes represent the
whole subtree)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 45 / 120

Hierarchical Space Partitioning

Formally:

• Bounding volumes: let B(Ni) be a bounding volume of
node Ni, B(Ni) d.

• This means: S(Ni) B(Ni)
(objects are contained in the bounding volume)

• Typically, a bounding volume is a much simpler object
than the stored geometry S(Ni).

 It should be easy to test for intersections with other bounding
volumes, geometric ranges and objects to be sorted into the
hierarchy.

 Usually, the memory footprint of B(Ni) is O(1).

 Axis aligned boxes, spheres and the similar are popular.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 46 / 120

Variants

Variants:

• Bounding volume hierarchy

 Most general definition, we can use any
bounding volumes

 Each inner node represents the union of
objects in the subtrees

• BSP-tree

 Use planes to split the nodes into half-spaces

 Usually stored as a binary tree (“binary space
partition”)

 Cells are not O(1), but each tree level cuts of a
half space, which can be tested incrementally.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 47 / 120

Variants

Variants

• kD-tree / axis aligned BSP tree

 Use axis parallel splitting planes

 Special case kD-tree:

– Cyclically alternating splitting dimensions

–Use median cut

• Quadtrees / Octrees

 Always divide into 4 (8) cubes of the same
size

 This is a special case of a BSP- / kD-tree
(identifying 3 consecutive binary splits with
one octree node)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 48 / 120

Extended Objects

Construction for extended objects (other than points)

• Extended objects:

 Triangles

 Polygons

 Patches

 Line segments

 etc...

• Division of space might intersect with object

• Two solutions

 Splitting objects

 Overlapping nodes

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 49 / 120

Splitting Objects

First solution: splitting objects

• For example, sorting triangles into a BSP tree:

 Split each triangle along splitting plane, if necessary

 Try to optimize such that as few as possible triangles are split

• (Rather) easy to see:

 A BSP tree needs at least worst case O(n2) fragments for
n triangles (in practice typically O(n log n))

 This is worst-case quadratic storage

 The same bound also applies to kD trees, octrees etc (special
cases)

• Splitting objects is usually too expensive

 Used in early low-polygon 3D engines for visibility computation

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 50 / 120

Overlapping Regions

Other alternative:

• Allow objects to exceed the region
associated with each node

• Store a second, extended bounding box
to reflect this information

• Typical strategy:

 Allow up to 10% oversize (exceeding node limits by 10% in each
direction)

 If this does not fit into leaf nodes, use an inner node.

• Effective bounding volumes may overlap now

 Limiting the percentage limits the amount of space covered
multiple times (e.g. 10% in each direction means 1.23 1.7)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 51 / 120

Range Query Algorithm

Start at root node: Then, recursively

• If range overlaps bounding box

 Collect inner node primitives

 Test for range intersection

 Go on recursively for child nodes

• If range does not overlap bounding box

 End recursion

Nodes overlapping
the geometric range

types hierarchy

all for works

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 52 / 120

Examples

Range Range Range

Nodes overlapping
the geometric range

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 53 / 120

Parametric Surfaces

In case every primitive itself is a parametric object:

• We can “continue” the hierarchy

• Use a regular subdivision of the parameter domain
(binary splits, quadtree)

• Form bounding volumes dynamically (e.g. convex hull of
subdivided control points)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 54 / 120

Abstract Implementation

Geometric Ranges:

• We just need to define two methods:

 Intersection primitive range

 Intersection bounding volume range

• With this information, we can implement a generic
hierarchical range search algorithm

• Important special cases:

 Boxes, Spheres, etc...

 Rays (raytracing)

 Projective extrusions (2D curve extended into space by central
projection; this can be used for drawing selection regions on
screen and retrieving the corresponding objects)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 55 / 120

Collision Detection

Related Problem: Collision Detection

• We want to compute whether two geometric objects
intersect with each other

• Important problem for dynamic simulations

• Also useful for CAD applications (arrange objects that do
not collide)

Simple Solution:

• Test every part of object A for collision with every part of
object B (e.g. each triangle with each other triangle)

• This is usually to expensive [O(mn)]

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 56 / 120

Hierarchical Collision Detection

Hierarchical Collision Detection

• Precompute a hierarchy for both objects A and B that
should be tested for collision.

• Then apply a hierarchical collision test (next slide)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 57 / 120

Hierarchical Collision Test

Collision Test: Input – nodes NA, NB from objects A, B.

• Test bounding volumes B(NA), B(NB) for intersection

• If B(NA) B(NB) :
 Test all objects S(NA), S(NB) for intersection

 Output those objects that do intersect

 If diameter(B(NA)) > diameter(B(NB)):

– For all children C C(NA)

- CollisionTest(C, NB)

 Otherwise:

– For all children C C(NB)

- CollisionTest(C, NA)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 58 / 120

A

Illustration

B

A B

A B

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 59 / 120

Illustration

A

B

A

B

A

B

A

B

A

B

A

B

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 60 / 120

Parametric Objects

Collision of parametric objects:

• Again, we can “continue” the hierarchy in the parametric
domain

• Useful for speeding up patch-patch collision detection

• We can also compute intersection lines hierarchically

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 61 / 120

Parametric Objects

Computing intersection lines:
• Hierarchical intersections until a number of small boxes is left

• Place a control point in each box

• Use a Newton iteration to project points on intersection line

 Move points in direction orthogonal to line only
(avoid degeneracies)

• Fit a spline through the control points (spline interpolation
problem, linear system)

• Can be additionally constrained to lie on intersection line
 Minimize integral residual of distances to patches

 But this is a non-linear optimization problem (Newton solver)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 62 / 120

Intersection lines

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 63 / 120

Projecting a Point

Quasi-Newton Scheme

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 64 / 120

Nearest Neighbor Queries

Problem:

• Given n objects si and a point p in space

• Two variants:

 Find the object that is closest to p

 Find the k closest objects (k-nearest neighbors, kNN)

Operations:

• Compute distance point primitive

• Compute distance point bounding volume

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 65 / 120

Hierarchical Query Algorithm

Data Structures:

• The query algorithm needs some bounding volume
hierarchy for the objects

 A kD tree works best in practice, but other data structures also
do the job

• In addition, two auxiliary data structures are needed:

 A priority queue of objects Qobj

 A priority queue of bounding volumes QBB

 Both sorted by distance to the query point

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 66 / 120

Hierarchical Query Algorithm

Algorithm: Compute k nearest neighbors

Input: Hierarchy of objects N, query point p

• Initialization: Put root node on QBB

• While #output < k and both priority queues non-empty

 Compute distance to min(QBB) and min(Qobj)

 If an object is closer

– output the object

 Otherwise, if a box is closer

– Take the box from the queue

– Insert all objects into Qobj and all child nodes into QBB
(for this, the corresponding distances need to be computed)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 67 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 68 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 69 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 70 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 71 / 120

Illustration

QBB Qobj

Mesh Simplification

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 73 / 120

Mesh Simplification

Mesh Simplification:

• Triangle meshes are
often oversampled

• In particular, meshes
from 3D scanners

• We want to decimate the number of triangles such that
the shape of the object is roughly maintained

• We want to do this automatically

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 74 / 120

Variants of the Problem

Problem Variations:

• Mesh simplification

 Reduce the number of triangles

 Fixed triangle budget or fixed approximation error

• Multi-resolution models

 Create a representation that provides many levels of resolution

 The matching level-of-detail can be extracted at runtime

 Useful for real-time rendering

– Choose level of detail for each object in the scene

– More sophisticated: varying level of detail across one object
(the whole scene can be one object)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 75 / 120

Curve Simplification

Curve Simplification:

• Compute an approximation of a piecewise linear curve by
another piecewise linear curve with fewer segments

• The optimal least-squares solution can be computed in
O(mn2) time using dynamic programming

 where n = #(input line segments)

 and m = #(output line segments)

• Usually, this is still to costly.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 76 / 120

Curve Simplification

Curve Simplification:

• Most frequently used heuristic:
Douglas-Peucker Algorithm.

• Simple Idea:

 Start with a line connecting the end points

 Find the input point farthest away from the straight line

 Insert a new vertex there. We obtain two new segments

 Apply the algorithm recursively to the parts (a number of times)

• Usually gives (visually) good results

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 77 / 120

Mesh Simplification

Mesh Simplification:

• We need to find an approximating mesh to a given mesh

Optimal solution?

• It can be shown that finding an L-norm best
approximation to a mesh is NP-hard

• For other cases (e.g., least-squares) no efficient optimal
techniques are known.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 78 / 120

Mesh Simplification

Approximation algorithms:

• Polynomial time approximation
algorithms with strict error guarantees
are known, but they are too slow for
practical applications

Michelangelo's St. Matthew
386,488,573 triangles

[Stanford Digital Michelangelo Project]

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 79 / 120

Parametric Simplification

If we have a parametric representation

• Spline surface

• Trimmed NURBS

• or the similar

we can just retessellate the original. No need for
mesh-based simplification.

In the following: Input is a mesh (no side information)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 80 / 120

Mesh Simplification

Three classes of techniques:

• Mesh refinement
 Start with a simple base mesh, refine to approximate the object

 “Gift-wrapping”

 Complicated to implement (need to adjust topology)

• Mesh decimation
 Start with full mesh

 Keep on throwing away triangles until precision is met

 This is the current standard technique

• Other approaches
 Transform into implicit function and retessellate

 Vertex clustering on a regular grid (useful for out-of-core impl.)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 81 / 120

Mesh Decimation

Mesh decimation – basic idea:

• Start with the full mesh

• Then, subsequently remove

 Triangles (fill hole)

 Vertices (retriangulate hole)

 Edges (kills two triangles)

• Edge contraction (“edge collapse”) algorithms are
nowadays the most common technique

• Robust and simple to implement

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 82 / 120

Edge Contraction

Edge contraction:

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 83 / 120

Edge Contraction

Edge contraction algorithm:

• Questions:

 Which edges can be collapsed?

 What error does this cause?

 Edges collapse into points –
where should we place the new point?

 What is the best order for edge collapses?

• Standard algorithm:

 Greedy algorithm

 Put edges in priority queue

 Pick the “cheapest” edge and remove it

 Recompute costs

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 84 / 120

Edge Contraction

Algorithm:

• For each edge in the mesh, compute the costs of
collapsing the edge

 If an edge collapse changes the topology, set costs to +

 Put all (finite cost) edges in priority queue sorted by cost

• While queue not empty and result not simple enough

 Remove min-cost edge

 Collapse the edge

 Recompute costs of all affected edges (incl. topology check)

 Update the priority queue accordingly

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 85 / 120

Edge Contraction

Affected edges:

affected edges edge contraction

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 86 / 120

Components

The algorithm needs the following components:

• Topology check (mostly fixed)

• Error metric (lots of choices)

• Placement of new vertices (lots of choices)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 87 / 120

Topology Check

We do not want to change the topology of the mesh

• Input is a triangulated two-manifold, probably with
boundary

• This means:

 Every edge is adjacent to one or two triangles
(boundary / interior)

 Triangles do not intersect

 The mesh is conforming – no vertices in the middle of edges
(fortunately, edge collapsing cannot change this)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 88 / 120

Problem #1: Folds

Problem #1:

• Edge collapses can cause topological folds in meshes

• We need a criterion to prevent this

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 89 / 120

Criterion

Criterion:

• Consider the two vertices of the edge v1, v2

• Let R(1)(v) be the on-ring neighborhood of v,
excluding v1, v2

• If #(R(1)(v1) R(1)(v2)) = 2, the collapse is permitted

• For boundary points: #(R(1)(v1) R(1)(v2)) = 1

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 90 / 120

this works

Illustration

this folds

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 91 / 120

Intersections

Preventing Intersections

• The previous criterion only guarantees topologically
correct meshes

• The embedding into space (read: vertex placement in 3)
can still cause self intersections

• We need to check this separately:

 Do the newly created triangles intersect with the shape

– (Hierarchical intersection test with dynamic hierarchy)

 If so, avoid the collapse operation

• Often, people omit this check (hard to implement, does
not happen frequently in practice)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 92 / 120

Components

The algorithm needs the following components:

• Topology check (mostly fixed)

• Error metric (lots of choices)

• Placement of new vertices (lots of choices)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 93 / 120

Error Metrics

Various potential error metrics:

• S = original, S’ = approximation, dist(·,·) = smallest distance

• L2-error:

• L1-error:

• L-error:

• Hausdorff error:

(two sided maximum distance, symmetric measure)

S

dxxSdist 2),'(

S

dxxSdist),'(

),'(max xSdist
Sx

),(max,),'(maxmax

'
xSdistxSdist

SxSx

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 94 / 120

Complexity Problem

Evaluating the error metric can be expensive:

• Compute the distance between two objects in (n + m)

• Naive computation takes O(nm)

• Doing this for each edge collapse is expensive

Solutions:

• Compute distance to previous level of detail only
(works well in practice, but no guarantees)

• Use an approximate distance measure.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 95 / 120

Quadric Error Metric

Quadric error metric: [Garland and Heckbert 1997]

• Very efficient solution to the error quantification problem

• However, the estimates might be too pessimistic

Idea:

• Measure distance to planes, rather than original triangles

• The error is represented as a 3D quadric

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 96 / 120

variable

variable

2

0, xxn

Quadric Error Metric

Implicit plane equation:

Quadratic error function:

Minimum distance to
several planes:

squared
distance function

0, 0 xxn
x0

x n

x0
(1)

n(1)

x0
(2)

n(2)

n

i

ii

1

2
)(

0
)(, xxn

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 97 / 120

Quadric Error Metrics

Use in mesh simplification:

• Assign an initial error quadric to each vertex

 Formed by summing up the plane error functions of the planes
of all adjacent triangles

 Weight components by triangle area

 Error will be zero for the vertex itself (intersection of all planes)

• For each possible edge contraction:

 Just add the error quadrics of both vertices involved

 This means, the new, contracted vertex should approximate the
planes of all triangles involved so far as well as possible

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 98 / 120

Quadric Error Metrics

Use in mesh simplification:

• For each possible edge contraction:

 Compute the optimum vertex position according to the summed
error metric

 Evaluate the quadric to determine the error

 This is the candidate move (error, position) that is stored in the
edge contraction queue

• When an edge contraction occurs:

 Use the computed position

 To recompute neighborhood error quadrics, add the error matrix
of the new vertex to each neighboring vertex

 This gives new edge contraction costs

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 99 / 120

Extension

Meshes also have attributes, such as:

• Color

• Texture coordinates

This can be handled using quadric error metrics as
well:

• Just store additional columns in the x-vectors

• Treat color values (etc.) as additional dimensions of the
vertex position, weighted by relative importance to
preserve them

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 100 / 120

How well does this work?

Advantage:
• Very fast: Evaluating the error metric and finding a new

vertex position is O(1)

Disadvantage:
• For noisy meshes, the error approximation is bad:

• Possible solutions:

 Mesh smoothing (normals from larger neighborhoods)

 Reset quadrics after a few computation steps

scale fine

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 101 / 120

Components

The algorithm needs the following components:

• Topology check (mostly fixed)

• Error metric (lots of choices)

• Placement of new vertices (lots of choices)

Conclusion:

• Quadric error metrics are a very popular choice due to
their simplicity and performance.

• More accurate alternatives exist (at higher costs).

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 102 / 120

Multi-Resolution Meshes

Multi-resolution version:

• We want to store multiple levels of detail in one
representation

• Simple, but effective approach: Progressive meshes
[Hoppe 1996]

Progressive meshes:

• Simplify as strongly as possible (we get a base mesh)

• Record all edge contractions in a list

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 103 / 120

Progressive Meshes

Adjusting the level of detail:

• Start with the base mesh

• Perform inverse edge contractions, which are vertex splits,
to increase the level of detail

• Perform edge contractions to reduce the level of detail

• The index in the list of edge contractions controls the
level of detail:

 Index up: Level of detail increases

 Index down: Level of detail decreases

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 104 / 120

Example

[H. Hoppe, Microsoft Research, 1996]

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 105 / 120

Hardware Friendly Implementation

Progressive meshes are expensive:

• Graphics hardware can render billions of triangles

• Performing precomputed edge collapses / vertex splits
still takes a lot of computational resources

Hardware Friendly approach:

• Precompute a number of levels of detail

• Just render them as needed

• Use linear interpolation to smoothly blend in the new
vertices (avoid popping)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 106 / 120

Adaptive Rendering

Problem:

• Assume we are handling a very large object

• For example a terrain model of the globe (Google earth)

• Progressive levels of detail are not helpful

 Either too coarse or too much geometry

• We need adaptive extraction of details

 Level-of-detail varying across the object

 How can this be done with a progressive mesh representation?

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 107 / 120

Adaptive LOD Extraction

Adaptive / non-uniform level of detail extraction:

• Assumption:

 We are given a camera position

 and a geometric error messure g(x, lod).

 We want to extract geometry such that g(x, lod) / z(camera) < .

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 108 / 120

Adaptive LOD Extraction

Adaptive / non-uniform level of detail extraction:

• Simple idea:

 Start with base mesh

 Test for each vertex if adjacent triangles are accurate enough

– Conservative test (minimum depth)

 If accuracy is not sufficient: perform vertex split

• Problem: Vertex splits are not independent

 We can only perform splits if the vertex already exists

 Vertices might have been created by previous vertex splits

 Need to take into account the dependence hierarchy.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 109 / 120

Multi-Triangulation

Formal Framework: Multi-Triangulation

• During construction of the progressive mesh:

 An edge contraction depends on a previous contraction if one of
its vertices is the result of a previous edge contraction.

– Correspondingly, a vertex split depends on previous splits if
its vertex is the result of a previous split

 One edge contraction might depend on up to two other
contractions, which each might depend on up to two others

 This yields a acyclic directed graph (DAG)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 110 / 120

Vertex Split

Affected edges:

vertex split base mesh

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 111 / 120

Dependencies

e1

e2 e3

e5 e6

e4

e1

e2 e4

e3

e6

e5

e1

e2 e3

e5 e6

e4

e1

e2 e4

e3

e6

e5

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 112 / 120

Optimizing the Hierarchy

Need to take care of the dependencies:

• Need to store dependencies (DAG)

• When building the hierarchy:

 Minimizing dependencies maximizes adaptivity, but might
reduce quality

 Possible strategy:

– Only collapse non-dependent edges

– When no edges are left, start new round of collapsing

– Creates hierarchy with several levels

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 113 / 120

Hardware Friendly Version

Same problems again:

• The representation might be to costly to extract

• Executing a single vertex split / edge collapse from a
precomputed hierarchy might still be more expensive
than rendering (processing) many triangles

• Solution:

 Clustered simplification with “large nodes”

 Same idea as for the adaptive grids, but with edge collapses

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 114 / 120

Large Node Hierarchies

Idea for a hardware friendly algorithm (sketch):

• Divide the object into hierarchy of clusters

• For example:

 Octree decomposition

 Binary splitting along principal axis

 Or the similar

• Hierarchy:

 Leaf nodes store original triangles, at least k a few thousand
triangles per node

 Inner nodes:

– Union of child node triangles

– Simplification to reduce complexity to 1/4 of input (octree)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 115 / 120

Large Node Hierarchies

Problem: Boundaries

• Triangulations might be non-conforming at boundaries

• Possible solution:

 For each edge: Compute two triangulations

– Neighbor with the same resolution

– Neighbor with resolution one level lower

 During rendering:

– Extract balanced cut of the hierarchy

– Choose appropriate adaptor triangulation

• Alternative solution: [Klein & Guthe]

 Bounded Hausdorff error approximation

 Triangles overlap at the boundaries (“fat boarders”)

Appearance Simplification
(for Large Scene Rendering)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 117 / 120

Problems with Mesh Simplification

Problems:

• Mesh simplification cannot perform arbitrarily strong
simplifications without destroying object appearance
completely

• We need an alternative approach for rendering really
large scenes

• As an example: Hierarchical point-based simplification
(extra slides set)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations

Announcement

Written Exam:

• If someone cannot participate in the first of the two
exams:

 In the case of not pass the second (and only) try, we would offer
an optional, additional oral exam.

 If the student passes the oral exam, she/he would pass the
lecture.

• This applies only if...

 ...you need to have an important reason for not being able to
take the first exam (for example, collision with another exam on
the same day)

 ...you need to notify us (by email) at least one week before the
first exam.

