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Overview... 

Topics: 

• Blossoming and Polars 

• Rational Spline Curves 

• Spline Surfaces 

• Triangle Meshes & Multi-Resolution Representations 

 Mesh Data Structures 

 Triangulations 

 Spatial Data Structures and Algorithms 

 Mesh Simplification 

 Appearance Approximation 



Triangle Meshes 
Data Structures 
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 Parametric Models Primitive Meshes 

 

 

 Implicit Models Particle Models 

Modeling Zoo 
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Triangle Meshes 

Triangle Meshes: 

• Triangle meshes are probably the most common surface 
representation in computer graphics 

• Triangles are probably the simplest surface primitives that 
can be assembled into meshes 

 Rendering can be implemented in hardware (z-buffering) 

 Simple algorithms for intersections (raytracing, collisions) 
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Attributes 

How to define a triangle? 

• We need three points in 3 (obviously). 

• But we can have more: 

per-vertex normals 
(represent smooth 
surfaces more accurately) 

per-vertex color 

texture per-vertex texture 
coordinates 

(etc...) 



Geometric Modeling SoSem 2010  –  Triangle Meshes & Multi-Resolution Representations 7 / 120 

Shared Attributes in Meshes 

In Triangle Meshes: 

• Attributes might be shared or separated: 

adjacent triangles  
share normals 

adjacent triangles  
have separated normals 
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“Triangle Soup” 

Variants in triangle mesh representations: 

• “Triangle Soup” 

 A set S = {t1, ..., tn} of triangles 

 No further conditions 

 This is “the most common” representation (if you download 
models from the web, you never know what you get) 

• Triangle Meshes: Additional consistency conditions 

 Conforming meshes: Vertices meet only at vertices 

 Manifold meshes: No intersections, no T-junctions 
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Conforming Meshes 

Conforming Triangulation: 

• Vertices of triangles must only meet at vertices, not in the 
middle of edges: 

 

 

 

 

 

• This makes sure that we can move vertices around 
arbitrarily without creating holes in the surface 
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Manifold Meshes 

Triangulated two-manifold: 

• Every edge is incident to exactly 2 triangles 
(closed manifold) 

• ...or to at most two triangles (manifold with boundary) 

• No triangles intersect (other than along common edges or 
vertices) 

• Two triangles that share a vertex must share an edge 
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Attributes 

In general: 

• Vertex attributes: 

 Position (mandatory) 

 Normals 

 Color 

 Texture Coordinates 

• Face attributes: 

 Color 

 Texture 

• Edge attributes (rarely used) 

 E.g.: Visible line 



Geometric Modeling SoSem 2010  –  Triangle Meshes & Multi-Resolution Representations 12 / 120 

Data Structures 

The simple approach: List of vertices, edges, triangles 
 

v1: (posx posy posy), attrib1, ..., attribnav 
                    ... 

vnv: (posx posy posy), attrib1, ..., attribnav 

 

e1: (index1 index2), attrib1, ..., attribnae 
                    ... 

ene: (index1 index2), attrib1, ..., attribnae 

 

t1: (idx1 idx2 idx3), attrib1, ..., attribnat 
                    ... 

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat 
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Pros & Cons 

Advantages: 

• Simple to understand and build 

• Provides exactly the information necessary for rendering 

Disadvantages: 

• Dynamic operations are expensive: 

 Removing or inserting a vertex  
 renumber expected edges, triangles 

• Adjacency information is one-way 

 Vertices adjacent to triangles, edges  direct access 

 Any other relationship  need to search 

 Can be improved using hash tables (but still not dynamic) 
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Adjacency Data Structures 

Alternative: 

• Some algorithms require extensive neighborhood 
operations (get adjacent triangles, edges, vertices) 

• ...as well as dynamic operations (inserting, deleting 
triangles, edges, vertices) 

• For such algorithms, an adjacency based data structure is 
usually more efficient 

 The data structure encodes the graph of mesh elements 

 Using pointers to neighboring elements 
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First try... 

Straightforward Implementation: 
• Use a list of vertices, edges, 

triangles 

• Add a pointer from each element 
to each of its neighbors 

• Global triangle list can be used for rendering 

Remaining Problems: 

• Lots of redundant information – hard to keep consistent 

• Adjacency lists might become very long 

 Need to search again (might become expensive) 

 This is mostly a “theoretical problem” (O(n) search) 
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Half edge data structure: 

• Half edges, connected by clockwise / ccw pointers 

• Pointers to opposite half edge 

• Pointers to/from start vertex of each edge 

• Pointers to/from left face of each edge 

Less Redundant Data Structures 
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// a vertex 

struct Vertex { 

   HalfEdge* someEdge; 

   /* vertex attributes */ 

}; 

 

// the face (triangle, poly) 

struct Face { 

   HalfEdge* half; 

   /* face attributes */ 

}; 

Implementation 

// a half edge 

struct HalfEdge { 

   HalfEdge* next; 

   HalfEdge* previous; 

   HalfEdge* opposite; 

 

   Vertex* origin; 

   Face* leftFace; 

   EdgeData* edge; 

}; 

 

// the data of the edge 

// stored only once 

struct EdgeData { 

   HalfEdge* anEdge; 

   /* attributes */ 

}; 
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Implementation 

Implementation: 

• The data structure should be encapsulated 

 To make sure that updates are consistent 

 Implement abstract data type with more high level operations 
that guarantee consistency of back and forth pointers 

• Free Implementations are available, for example 

 OpenMesh 

 CGAL 

• Alternative data structures: for example winged edge 
(Baumgart 1975) 



Triangulations 
Algorithms and Data Structures 
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Triangulation 

Problem Statement: 
• Given a 2-dimensional domain 

• We want to triangulate the domain 

• We need this for example for rendering parametric 
surfaces by triangle rasterization 

• Adaptive triangulation: Higher resolution in more 
important area 

Different Problem: 
• Triangulating a point cloud in 3 

• This is the surface reconstruction problem 
(we will look at that later) 
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Problem Variations 

Simplest Version 

• Domain is a rectangle or a triangle 

• Uniform or adaptive tessellation 

More Complex: Constrained Triangulation 

• Point constraints:  
specific points must be included 

• Edge constraints: 
specific edges must be included 

• Boundary constraints: 
triangulate within some area only 
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Unconstrained Uniform Triangulation 

Unconstrained uniform triangulation: 

• This is simple 
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Adaptive Triangulation 

Unconstrained adaptive 
triangulation: 

• Hierarchy of rectangles / triangles 
(Quadtree) 

• Use “balancing” to limit depth 
differences 

• Balancing will increase the number 
of nodes in the tree by a factor of 
at most O(1) 

• Finally, create a conforming 
triangulation (fixed number of 
cases per node) 
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Implementation 

Storage: Tree Structure 

• Tree can be represented directly 

• Neighbor search for balancing: 

 We can store fixed pointers to 
neighboring cells 
(not that elegant, easy to mess up 
the consistency) 

 Alternative: use neighborhood 
search 

– Go up in tree until common 
ancestor is found 

– Then go down again 

– O(1) expected running time 
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Adaptive Rendering 

Adaptive rendering algorithm 

• Recursive algorithm 

• Starts at root node 

• Is precision sufficient? 

 If so  stop recursion 

 Otherwise  go to child nodes 

• The recursion extracts a subgraph of the tree (“cut”) 

• Next: The subgraph needs to be balanced 

• Then, a triangulation can be created 

“cut” 
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Adaptive Rendering 

Termination Criteria: 

• Rendering error: 

 Projected size on screen shrinks 
with 1/z (where z is the depth  
in camera coordinates) 

 Might also depend on viewing 
angle (typically, this is neglected) 

• Geometric error: 

 Tessellating a curved surface with planar faces is only an 
approximation 

 Error depends on curvature 

? 

go deeper? 
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Adaptive Rendering 

Termination Criteria: 

• Typically: divide geometric  
error by z 

• To estimate z, use a bounding  
box (for splines: convex hull 
property) 

• Chooses nearest z (conservative estimate) 

• REYES algorithm [Cook, Carpenter, Catmull 1987] 
(Pixar’s RenderMan) 

 Stop subdivision when BB below one pixel on screen size 

 Subdivision connectivity not really necessary in that case 

? 

go deeper? 
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Subdivision Connectivity Meshes 

Generalization: Arbitrary Domains 

• Start with a base mesh 

 “3D parametrization” 

 A conforming two-manifold mesh  
in 3D used as parametrization domain 

• The base mesh fixes the topology 

• Subdivide recursively as needed 

• Now: Balancing/triangulation, 
also across borders 

• Then compute the final surface 

base mesh 

consistency across boundaries 
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Hardware Friendly Version 

Problems: 

• Costs for hierarchy creation / balancing are quite large 

• In particular: Problematic for rendering 

• Rendering triangles is very cheap these days 

• But we still need adaptivity (moving camera, we can get 
arbitrarily close) 

• Solution: Subdivision connectivity grids 
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Subdivision Connectivity Grids 

Idea: 

• Do the same thing (hierarchical triangulation) 

• But use a grid of many triangles in each node: 
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Subdivision Connectivity Grids 

Advantage: 

• Amortizes hierarchy creation / 
traversal costs over many triangles 

• Well suited for graphics hardware (GPU) 
implementations (regular structure) 

Disadvantage: 

• Less adaptivity 

• This is ok for the 1/z term in perspective rendering 
(we will see that later) 

• But geometry will be oversampled 
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Example 
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Example 
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Example 



Geometric Modeling SoSem 2010  –  Triangle Meshes & Multi-Resolution Representations 35 / 120 

Example 



Geometric Modeling SoSem 2010  –  Triangle Meshes & Multi-Resolution Representations 36 / 120 

Constraint Triangulations 

Additional Constraints: 

• Vertices, edges, area 

• Need to augment subdivision algorithm 

Hierarchical Subdivision: 

• Subdivide until a simple case is found 

 At most one vertex in each cell 

 At most one line segment intersecting each cell 

 At most two boundary / cell intersections 

• Then triangulate according to fixed rules 
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Vertex Constraints 

Vertex Constraints: 

• When only one point is left 
in each box 

• Subdivide once more 

• Move center to point 

• Then balance and  
triangulate 
(proceed as before) 
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Edge / Area Constraints 

Edge and area constraints 

• Subdivide until intersection with 
edges / boundary curves has 
constant complexity (e.g. two 
intersections per cell) 

• Then apply fixed subdivision rule 

• Edge constraints: 

 Keep all triangles 

• Area constraint: 

 Delete outside triangles 
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Alternative Algorithm 

Alternative: (constrained) Delaunay triangulation 

• Delaunay triangulation of a point set: 

 Triangulation in which the circumcircle 
of each triangle is empty 

 This triangulation maximizes the 
minimum angle in any triangle 

 The triangulation always exist 

 Can be computed by iterated 
edge flipping or (more efficiently) 
by line sweep algorithms (O(n log n) time for n points) 

• Constrained Delaunay triangulation: 

 Additional edge / polygonal area constraints 

 More involved to compute 



Spatial Data Structures 
Range Queries, Collision Detection 
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Spatial Data Structures 

Motivation: 
• Common problems:  

 Select a handle point by mouse click (millions of handles) 

 Click on other stuff (edges, triangles, patches) 

 Find the nearest point in a point set 

 Find the k nearest points (e.g. for surface fitting) 

 Find all geometry within a range (cube, sphere, etc.) 

• This should work on large models 
 Billions of primitives 

 Frequent operations 

– E.g.: compute 20 nearest points for 1.000.000 points 

– Quadratic runtime is unacceptable 

• Such operations can be speed up tremendously 
using spatial indexing data structures 
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Spatial Data Structures 

Basic Idea: Hierarchical decomposition of space 

• Almost all approaches commonly used in practice are 
based on hierarchical spatial decompositions 

• For some problems, there are more sophisticated data 
structures from computational geometry, but they often 
have to large space requirements 

• In practice, anything beyond linear space is out of 
question 
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Spatial Data Structures 

Basic Idea: Hierarchical decomposition of space 

• If the number of objects is still too large: 

 Cluster geometry into a small number 
of spatially coherent groups 

 Compute a simple bounding 
volume for each group 

 Apply this principle recursively 
to all subgroups formed 

• We obtain a tree of bounding volumes 
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Hierarchical Space Partitioning 

Formally: 

• We have a set of objects  = {s1, ..., sn}, si  d 

(where d is small, usually d = 2..3) 

• We form a hierarchy of nodes Ni.  

 Let C(Ni) be the set of child nodes, ... 

 ...and P(Ni) the unique parent node, or null,  
if Ni is the root node R. 

• We associate a set of objects S(Ni) with each node Ni. 

• We demand S(R) =  (root contains everything) 
and Nj  C(Ni)  S(Nj)  S(Ni) (inner nodes represent the 
whole subtree) 
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Hierarchical Space Partitioning 

Formally: 

• Bounding volumes: let B(Ni) be a bounding volume of 
node Ni, B(Ni)  d. 

• This means: S(Ni)  B(Ni) 
(objects are contained in the bounding volume) 

• Typically, a bounding volume is a much simpler object 
than the stored geometry S(Ni). 

 It should be easy to test for intersections with other bounding 
volumes, geometric ranges and objects to be sorted into the 
hierarchy. 

 Usually, the memory footprint of B(Ni) is O(1). 

 Axis aligned boxes, spheres and the similar are popular. 
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Variants 

Variants: 

• Bounding volume hierarchy 

 Most general definition, we can use any 
bounding volumes 

 Each inner node represents the union of 
objects in the subtrees 

• BSP-tree 

 Use planes to split the nodes into half-spaces 

 Usually stored as a binary tree (“binary space 
partition”) 

 Cells are not O(1), but each tree level cuts of a 
half space, which can be tested incrementally. 
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Variants 

Variants 

• kD-tree / axis aligned BSP tree 

 Use axis parallel splitting planes 

 Special case kD-tree:  

– Cyclically alternating splitting dimensions 

–Use median cut 

• Quadtrees / Octrees 

 Always divide into 4 (8) cubes of the same 
size 

 This is a special case of a BSP- / kD-tree 
(identifying 3 consecutive binary splits with 
one octree node) 
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Extended Objects 

Construction for extended objects (other than points) 

• Extended objects: 

 Triangles 

 Polygons 

 Patches 

 Line segments 

 etc... 

• Division of space might intersect with object 

• Two solutions 

 Splitting objects 

 Overlapping nodes 
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Splitting Objects 

First solution: splitting objects 

• For example, sorting triangles into a BSP tree: 

 Split each triangle along splitting plane, if necessary 

 Try to optimize such that as few as possible triangles are split 

• (Rather) easy to see: 

 A BSP tree needs at least worst case O(n2) fragments for 
n triangles (in practice typically   O(n log n) ) 

 This is worst-case quadratic storage 

 The same bound also applies to kD trees, octrees etc (special 
cases) 

• Splitting objects is usually too expensive 

 Used in early low-polygon 3D engines for visibility computation 
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Overlapping Regions 

Other alternative: 

• Allow objects to exceed the region 
associated with each node 

• Store a second, extended bounding box 
to reflect this information 

• Typical strategy: 

 Allow up to 10% oversize (exceeding node limits by 10% in each 
direction) 

 If this does not fit into leaf nodes, use an inner node. 

• Effective bounding volumes may overlap now 

 Limiting the percentage limits the amount of space covered 
multiple times (e.g. 10% in each direction means 1.23  1.7) 



Geometric Modeling SoSem 2010  –  Triangle Meshes & Multi-Resolution Representations 51 / 120 

Range Query Algorithm 

Start at root node: Then, recursively 

• If range overlaps bounding box 

 Collect inner node primitives 

 Test for range intersection 

 Go on recursively for child nodes 

• If range does not overlap bounding box 

 End recursion 

Nodes overlapping 
the geometric range 

 
types hierarchy

all for works
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Examples 

Range Range Range 

Nodes overlapping 
the geometric range 
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Parametric Surfaces 

In case every primitive itself is a parametric object: 

• We can “continue” the hierarchy 

• Use a regular subdivision of the parameter domain 
(binary splits, quadtree) 

• Form bounding volumes dynamically (e.g. convex hull of 
subdivided control points) 
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Abstract Implementation 

Geometric Ranges: 

• We just need to define two methods: 

 Intersection primitive range 

 Intersection bounding volume  range 

• With this information, we can implement a generic 
hierarchical range search algorithm 

• Important special cases: 

 Boxes, Spheres, etc... 

 Rays (raytracing) 

 Projective extrusions (2D curve extended into space by central 
projection; this can be used for drawing selection regions on 
screen and retrieving the corresponding objects) 
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Collision Detection 

Related Problem: Collision Detection 

• We want to compute whether two geometric objects 
intersect with each other 

• Important problem for dynamic simulations 

• Also useful for CAD applications (arrange objects that do 
not collide) 

Simple Solution: 

• Test every part of object A for collision with every part of 
object B (e.g. each triangle with each other triangle) 

• This is usually to expensive [O(mn)] 
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Hierarchical Collision Detection 

Hierarchical Collision Detection 

• Precompute a hierarchy for both objects A and B that 
should be tested for collision. 

• Then apply a hierarchical collision test (next slide) 
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Hierarchical Collision Test 

Collision Test: Input – nodes NA, NB from objects A, B. 

• Test bounding volumes B(NA), B(NB) for intersection 

• If B(NA)  B(NB) : 
 Test all objects S(NA), S(NB) for intersection 

 Output those objects that do intersect 

 If diameter(B(NA)) > diameter(B(NB)): 

– For all children C  C(NA) 

- CollisionTest(C, NB) 

 Otherwise: 

– For all children C  C(NB) 

- CollisionTest(C, NA) 
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A 

Illustration 

B 

A B 

A B 
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Illustration 

A 
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B 
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Parametric Objects 

Collision of parametric objects: 

• Again, we can “continue” the hierarchy in the parametric 
domain 

• Useful for speeding up patch-patch collision detection 

• We can also compute intersection lines hierarchically 
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Parametric Objects 

Computing intersection lines: 
• Hierarchical intersections until a number of small boxes is left 

• Place a control point in each box 

• Use a Newton iteration to project points on intersection line 

 Move points in direction orthogonal to line only 
(avoid degeneracies) 

• Fit a spline through the control points (spline interpolation 
problem, linear system) 

• Can be additionally constrained to lie on intersection line 
 Minimize integral residual of distances to patches 

 But this is a non-linear optimization problem (Newton solver) 
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Intersection lines 
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Projecting a Point 

Quasi-Newton Scheme 
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Nearest Neighbor Queries 

Problem: 

• Given n objects si and a point p in space 

• Two variants: 

 Find the object that is closest to p 

 Find the k closest objects (k-nearest neighbors, kNN) 

Operations: 

• Compute distance point  primitive 

• Compute distance point  bounding volume 
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Hierarchical Query Algorithm 

Data Structures: 

• The query algorithm needs some bounding volume 
hierarchy for the objects 

 A kD tree works best in practice, but other data structures also 
do the job 

• In addition, two auxiliary data structures are needed: 

 A priority queue of objects Qobj 

 A priority queue of bounding volumes QBB 

 Both sorted by distance to the query point 
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Hierarchical Query Algorithm 

Algorithm: Compute k nearest neighbors 

Input: Hierarchy of objects N, query point p 

• Initialization: Put root node on QBB 

• While #output < k and both priority queues non-empty 

 Compute distance to min(QBB) and min(Qobj) 

 If an object is closer 

– output the object 

 Otherwise, if a box is closer 

– Take the box from the queue 

– Insert all objects into Qobj and all child nodes into QBB 
(for this, the corresponding distances need to be computed) 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 



Mesh Simplification 
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Mesh Simplification 

Mesh Simplification: 

• Triangle meshes are  
often oversampled 

• In particular, meshes  
from 3D scanners 

• We want to decimate the number of triangles such that 
the shape of the object is roughly maintained 

• We want to do this automatically 
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Variants of the Problem 

Problem Variations: 

• Mesh simplification 

 Reduce the number of triangles 

 Fixed triangle budget or fixed approximation error 

• Multi-resolution models 

 Create a representation that provides many levels of resolution 

 The matching level-of-detail can be extracted at runtime 

 Useful for real-time rendering 

– Choose level of detail for each object in the scene 

– More sophisticated: varying level of detail across one object 
(the whole scene can be one object) 
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Curve Simplification 

Curve Simplification: 

• Compute an approximation of a piecewise linear curve by 
another piecewise linear curve with fewer segments 

• The optimal least-squares solution can be computed in 
O(mn2) time using dynamic programming 

 where n = #(input line segments) 

 and m = #(output line segments) 

• Usually, this is still to costly. 
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Curve Simplification 

Curve Simplification: 

• Most frequently used heuristic: 
Douglas-Peucker Algorithm. 

• Simple Idea: 

 Start with a line connecting the end points 

 Find the input point farthest away from the straight line 

 Insert a new vertex there. We obtain two new segments 

 Apply the algorithm recursively to the parts (a number of times) 

• Usually gives (visually) good results 
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Mesh Simplification 

Mesh Simplification: 

• We need to find an approximating mesh to a given mesh 

Optimal solution? 

• It can be shown that finding an L-norm best 
approximation to a mesh is NP-hard 

• For other cases (e.g., least-squares) no efficient optimal 
techniques are known. 
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Mesh Simplification 

Approximation algorithms: 

• Polynomial time approximation 
algorithms with strict error guarantees 
are known, but they are too slow for 
practical applications 

Michelangelo's St. Matthew 
386,488,573 triangles 

[Stanford Digital Michelangelo Project] 
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Parametric Simplification 

If we have a parametric representation 

• Spline surface 

• Trimmed NURBS 

• or the similar 

we can just retessellate the original. No need for 
mesh-based simplification. 

In the following: Input is a mesh (no side information) 
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Mesh Simplification 

Three classes of techniques: 

• Mesh refinement 
 Start with a simple base mesh, refine to approximate the object 

 “Gift-wrapping” 

 Complicated to implement (need to adjust topology) 

• Mesh decimation 
 Start with full mesh 

 Keep on throwing away triangles until precision is met 

 This is the current standard technique 

• Other approaches 
 Transform into implicit function and retessellate 

 Vertex clustering on a regular grid (useful for out-of-core impl.) 
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Mesh Decimation 

Mesh decimation – basic idea: 

• Start with the full mesh 

• Then, subsequently remove 

 Triangles (fill hole) 

 Vertices (retriangulate hole) 

 Edges (kills two triangles) 

• Edge contraction (“edge collapse”) algorithms are 
nowadays the most common technique 

• Robust and simple to implement 
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Edge Contraction 

Edge contraction: 
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Edge Contraction 

Edge contraction algorithm: 

• Questions: 

 Which edges can be collapsed? 

 What error does this cause? 

 Edges collapse into points – 
where should we place the new point? 

 What is the best order for edge collapses? 

• Standard algorithm: 

 Greedy algorithm 

 Put edges in priority queue 

 Pick the “cheapest” edge and remove it 

 Recompute costs 
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Edge Contraction 

Algorithm: 

• For each edge in the mesh, compute the costs of 
collapsing the edge 

 If an edge collapse changes the topology, set costs to + 

 Put all (finite cost) edges in priority queue sorted by cost 

• While queue not empty and result not simple enough  

 Remove min-cost edge 

 Collapse the edge 

 Recompute costs of all affected edges (incl. topology check) 

 Update the priority queue accordingly 
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Edge Contraction 

Affected edges: 

affected edges edge contraction 
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Components 

The algorithm needs the following components: 

• Topology check (mostly fixed) 

• Error metric (lots of choices) 

• Placement of new vertices (lots of choices) 
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Topology Check 

We do not want to change the topology of the mesh 

• Input is a triangulated two-manifold, probably with 
boundary 

• This means: 

 Every edge is adjacent to one or two triangles 
(boundary / interior) 

 Triangles do not intersect 

 The mesh is conforming – no vertices in the middle of edges 
(fortunately, edge collapsing cannot change this) 
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Problem #1: Folds 

Problem #1: 

• Edge collapses can cause topological folds in meshes 

• We need a criterion to prevent this 
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Criterion 

Criterion: 

• Consider the two vertices of the edge v1, v2 

• Let R(1)(v) be the on-ring neighborhood of v, 
excluding v1, v2 

• If #(R(1)(v1)  R(1)(v2)) = 2, the collapse is permitted 

• For boundary points: #(R(1)(v1)  R(1)(v2)) = 1 
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this works 

Illustration 

this folds 
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Intersections 

Preventing Intersections 

• The previous criterion only guarantees topologically 
correct meshes 

• The embedding into space (read: vertex placement in 3) 
can still cause self intersections 

• We need to check this separately: 

 Do the newly created triangles intersect with the shape 

– (Hierarchical intersection test with dynamic hierarchy) 

 If so, avoid the collapse operation 

• Often, people omit this check (hard to implement, does 
not happen frequently in practice) 
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Components 

The algorithm needs the following components: 

• Topology check (mostly fixed) 

• Error metric (lots of choices) 

• Placement of new vertices (lots of choices) 
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Error Metrics 

Various potential error metrics: 

• S = original, S’ = approximation, dist(·,·) = smallest distance 

• L2-error: 

• L1-error: 

• L-error: 

• Hausdorff error: 

(two sided maximum distance, symmetric measure) 
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Complexity Problem 

Evaluating the error metric can be expensive: 

• Compute the distance between two objects in (n + m) 

• Naive computation takes O(nm) 

• Doing this for each edge collapse is expensive 

Solutions: 

• Compute distance to previous level of detail only 
(works well in practice, but no guarantees) 

• Use an approximate distance measure. 
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Quadric Error Metric 

Quadric error metric: [Garland and Heckbert 1997] 

• Very efficient solution to the error quantification problem 

• However, the estimates might be too pessimistic 

Idea: 

• Measure distance to planes, rather than original triangles 

• The error is represented as a 3D quadric 
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Quadric Error Metrics 

Use in mesh simplification: 

• Assign an initial error quadric to each vertex 

 Formed by summing up the plane error functions of the planes 
of all adjacent triangles 

 Weight components by triangle area 

 Error will be zero for the vertex itself (intersection of all planes) 

• For each possible edge contraction: 

 Just add the error quadrics of both vertices involved 

 This means, the new, contracted vertex should approximate the 
planes of all triangles involved so far as well as possible 
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Quadric Error Metrics 

Use in mesh simplification: 

• For each possible edge contraction: 

 Compute the optimum vertex position according to the summed 
error metric 

 Evaluate the quadric to determine the error 

 This is the candidate move (error, position) that is stored in the 
edge contraction queue 

• When an edge contraction occurs: 

 Use the computed position 

 To recompute neighborhood error quadrics, add the error matrix 
of the new vertex to each neighboring vertex 

 This gives new edge contraction costs 
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Extension 

Meshes also have attributes, such as: 

• Color 

• Texture coordinates 

This can be handled using quadric error metrics as 
well: 

• Just store additional columns in the x-vectors 

• Treat color values (etc.) as additional dimensions of the 
vertex position, weighted by relative importance to 
preserve them 
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How well does this work? 

Advantage: 
• Very fast: Evaluating the error metric and finding a new 

vertex position is O(1) 

Disadvantage: 
• For noisy meshes, the error approximation is bad: 

 

 

 

• Possible solutions: 

 Mesh smoothing (normals from larger neighborhoods) 

 Reset quadrics after a few computation steps 

scale fine 
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Components 

The algorithm needs the following components: 

• Topology check (mostly fixed) 

• Error metric (lots of choices) 

• Placement of new vertices (lots of choices) 

Conclusion: 

• Quadric error metrics are a very popular choice due to 
their simplicity and performance. 

• More accurate alternatives exist (at higher costs). 
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Multi-Resolution Meshes 

Multi-resolution version: 

• We want to store multiple levels of detail in one 
representation 

• Simple, but effective approach: Progressive meshes 
[Hoppe 1996] 

Progressive meshes: 

• Simplify as strongly as possible (we get a base mesh) 

• Record all edge contractions in a list 
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Progressive Meshes 

Adjusting the level of detail: 

• Start with the base mesh 

• Perform inverse edge contractions, which are vertex splits, 
to increase the level of detail 

• Perform edge contractions to reduce the level of detail 

• The index in the list of edge contractions controls the 
level of detail: 

 Index up: Level of detail increases 

 Index down: Level of detail decreases 
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Example 

[H. Hoppe, Microsoft Research, 1996] 
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Hardware Friendly Implementation 

Progressive meshes are expensive: 

• Graphics hardware can render billions of triangles 

• Performing precomputed edge collapses / vertex splits 
still takes a lot of computational resources 

Hardware Friendly approach: 

• Precompute a number of levels of detail 

• Just render them as needed 

• Use linear interpolation to smoothly blend in the new 
vertices (avoid popping) 
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Adaptive Rendering 

Problem: 

• Assume we are handling a very large object 

• For example a terrain model of the globe (Google earth) 

• Progressive levels of detail are not helpful 

 Either too coarse or too much geometry 

• We need adaptive extraction of details 

 Level-of-detail varying across the object 

 How can this be done with a progressive mesh representation? 
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Adaptive LOD Extraction 

Adaptive / non-uniform level of detail extraction: 

• Assumption: 

 We are given a camera position 

 and a geometric error messure g(x, lod). 

 We want to extract geometry such that g(x, lod) / z(camera) < . 
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Adaptive LOD Extraction 

Adaptive / non-uniform level of detail extraction: 

• Simple idea: 

 Start with base mesh 

 Test for each vertex if adjacent triangles are accurate enough 

– Conservative test (minimum depth) 

 If accuracy is not sufficient: perform vertex split 

• Problem: Vertex splits are not independent 

 We can only perform splits if the vertex already exists 

 Vertices might have been created by previous vertex splits 

 Need to take into account the dependence hierarchy. 
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Multi-Triangulation 

Formal Framework: Multi-Triangulation 

• During construction of the progressive mesh: 

 An edge contraction depends on a previous contraction if one of 
its vertices is the result of a previous edge contraction. 

– Correspondingly, a vertex split depends on previous splits if 
its vertex is the result of a previous split 

 One edge contraction might depend on up to two other 
contractions, which each might depend on up to two others 

 This yields a acyclic directed graph (DAG) 
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Vertex Split 

Affected edges: 

vertex split base mesh 
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Optimizing the Hierarchy 

Need to take care of the dependencies: 

• Need to store dependencies (DAG) 

• When building the hierarchy: 

 Minimizing dependencies maximizes adaptivity, but might 
reduce quality 

 Possible strategy: 

– Only collapse non-dependent edges 

– When no edges are left, start new round of collapsing 

– Creates hierarchy with several levels 
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Hardware Friendly Version 

Same problems again: 

• The representation might be to costly to extract 

• Executing a single vertex split / edge collapse from a 
precomputed hierarchy might still be more expensive 
than rendering (processing) many triangles 

• Solution: 

 Clustered simplification with “large nodes” 

 Same idea as for the adaptive grids, but with edge collapses 
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Large Node Hierarchies 

Idea for a hardware friendly algorithm (sketch): 

• Divide the object into hierarchy of clusters 

• For example: 

 Octree decomposition 

 Binary splitting along principal axis 

 Or the similar 

• Hierarchy: 

 Leaf nodes store original triangles, at least k  a few thousand 
triangles per node 

 Inner nodes: 

– Union of child node triangles 

– Simplification to reduce complexity to 1/4 of input (octree) 
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Large Node Hierarchies 

Problem: Boundaries 

• Triangulations might be non-conforming at boundaries 

• Possible solution: 

 For each edge: Compute two triangulations 

– Neighbor with the same resolution 

– Neighbor with resolution one level lower 

 During rendering: 

– Extract balanced cut of the hierarchy 

– Choose appropriate adaptor triangulation 

• Alternative solution: [Klein & Guthe] 

 Bounded Hausdorff error approximation 

 Triangles overlap at the boundaries (“fat boarders”) 



Appearance Simplification 
(for Large Scene Rendering) 
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Problems with Mesh Simplification 

Problems: 

• Mesh simplification cannot perform arbitrarily strong 
simplifications without destroying object appearance 
completely 

• We need an alternative approach for rendering really 
large scenes 

• As an example: Hierarchical point-based simplification 
(extra slides set) 
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Announcement 

Written Exam: 

• If someone cannot participate in the first of the two 
exams: 

 In the case of not pass the second (and only) try, we would offer 
an optional, additional oral exam. 

 If the student passes the oral exam, she/he would pass the 
lecture. 

• This applies only if... 

 ...you need to have an important reason for not being able to 
take the first exam (for example, collision with another exam on 
the same day) 

 ...you need to notify us (by email) at least one week before the 
first exam. 


