Geometric Modeling Summer Semester 2010

Triangle Meshes and Multi-Resolution Representations

Representations · Hierarchical Data Structures · Rendering

Overview...

Topics:

- Blossoming and Polars
- Rational Spline Curves
- Spline Surfaces
- Triangle Meshes & Multi-Resolution Representations
 - Mesh Data Structures
 - Triangulations
 - Spatial Data Structures and Algorithms
 - Mesh Simplification
 - Appearance Approximation

Triangle Meshes Data Structures

Modeling Zoo

Parametric Models

Implicit Models

Primitive Meshes

Particle Models

Triangle Meshes

Triangle Meshes:

- Triangle meshes are probably the most common surface representation in computer graphics
- Triangles are probably the simplest surface primitives that can be assembled into meshes
 - Rendering can be implemented in hardware (z-buffering)
 - Simple algorithms for intersections (raytracing, collisions)

Attributes

How to define a triangle?

- We need three points in \mathbb{R}^3 (obviously).
- But we can have more:

Shared Attributes in Meshes

In Triangle Meshes:

• Attributes might be shared or separated:

adjacent triangles share normals

adjacent triangles have separated normals

"Triangle Soup"

Variants in triangle mesh representations:

- "Triangle Soup"
 - A set $S = \{t_1, ..., t_n\}$ of triangles
 - No further conditions
 - This is "the most common" representation (if you download models from the web, you never know what you get)
- *Triangle Meshes*: Additional consistency conditions
 - Conforming meshes: Vertices meet only at vertices
 - Manifold meshes: No intersections, no T-junctions

Conforming Meshes

Conforming Triangulation:

• Vertices of triangles must only meet at vertices, not in the middle of edges:

• This makes sure that we can move vertices around arbitrarily without creating holes in the surface

Manifold Meshes

Triangulated two-manifold:

- Every edge is incident to exactly 2 triangles (closed manifold)
- ...or to at most two triangles (manifold with boundary)
- No triangles intersect (other than along common edges or vertices)
- Two triangles that share a vertex must share an edge

Attributes

In general:

- Vertex attributes:
 - Position (mandatory)
 - Normals
 - Color
 - Texture Coordinates
- Face attributes:
 - Color
 - Texture
- Edge attributes (rarely used)
 - E.g.: Visible line

The simple approach: List of vertices, edges, triangles

Geometric Modeling SoSem 2010 - Triangle Meshes & Multi-Resolution Representations

Pros & Cons

Advantages:

- Simple to understand and build
- Provides exactly the information necessary for rendering

Disadvantages:

- Dynamic operations are expensive:
 - Removing or inserting a vertex
 → renumber expected edges, triangles
- Adjacency information is one-way
 - Vertices adjacent to triangles, edges \rightarrow direct access
 - Any other relationship \rightarrow need to search
 - Can be improved using hash tables (but still not dynamic)

Adjacency Data Structures

Alternative:

- Some algorithms require extensive neighborhood operations (get adjacent triangles, edges, vertices)
- ...as well as dynamic operations (inserting, deleting triangles, edges, vertices)
- For such algorithms, an *adjacency based* data structure is usually more efficient
 - The data structure encodes the graph of mesh elements
 - Using pointers to neighboring elements

First try...

Straightforward Implementation:

- Use a list of vertices, edges, triangles
- Add a pointer from each element to each of its neighbors

• Global triangle list can be used for rendering

Remaining Problems:

- Lots of redundant information hard to keep consistent
- Adjacency lists might become very long
 - Need to search again (might become expensive)
 - This is mostly a "theoretical problem" (O(n) search)

Less Redundant Data Structures

Half edge data structure:

- Half edges, connected by clockwise / ccw pointers
- Pointers to opposite half edge
- Pointers to/from start vertex of each edge
- Pointers to/from left face of each edge

Implementation

```
// a half edge
struct HalfEdge {
   HalfEdge* next;
   HalfEdge* previous;
   HalfEdge* opposite;
```

```
Vertex* origin;
Face* leftFace;
EdgeData* edge;
```

```
};
```

```
// the data of the edge
// stored only once
struct EdgeData {
    HalfEdge* anEdge;
    /* attributes */
};
```

// a vertex

```
struct Vertex {
    HalfEdge* someEdge;
    /* vertex attributes */
};
```

```
// the face (triangle, poly)
struct Face {
    HalfEdge* half;
    /* face attributes */
```

};

Implementation

Implementation:

- The data structure should be encapsulated
 - To make sure that updates are consistent
 - Implement abstract data type with more high level operations that guarantee consistency of back and forth pointers
- Free Implementations are available, for example
 - OpenMesh
 - CGAL
- Alternative data structures: for example winged edge (Baumgart 1975)

Triangulations Algorithms and Data Structures

Triangulation

Problem Statement:

- Given a 2-dimensional domain
- We want to triangulate the domain

- We need this for example for rendering parametric surfaces by triangle rasterization
- Adaptive triangulation: Higher resolution in more important area

Different Problem:

- Triangulating a point cloud in \mathbb{R}^3
- This is the surface reconstruction problem (we will look at that later)

Problem Variations

Simplest Version

- Domain is a rectangle or a triangle
- Uniform or adaptive tessellation

More Complex: Constrained Triangulation

- Point constraints: specific points must be included
- Edge constraints: specific edges must be included
- Boundary constraints: triangulate within some area only

Unconstrained Uniform Triangulation

Unconstrained uniform triangulation:

• This is simple

Adaptive Triangulation

Unconstrained adaptive triangulation:

- Hierarchy of rectangles / triangles (Quadtree)
- Use "balancing" to limit depth differences
- Balancing will increase the number of nodes in the tree by a factor of at most O(1)
- Finally, create a conforming triangulation (fixed number of cases per node)

Implementation

Storage: Tree Structure

- Tree can be represented directly
- Neighbor search for balancing:
 - We can store fixed pointers to neighboring cells (not that elegant, easy to mess up the consistency)
 - Alternative: use neighborhood search
 - Go up in tree until common ancestor is found
 - Then go down again
 - O(1) expected running time

Adaptive Rendering

Adaptive rendering algorithm

- Recursive algorithm
- Starts at root node
- Is precision sufficient?
 - If so \rightarrow stop recursion
 - Otherwise \rightarrow go to child nodes
- The recursion extracts a subgraph of the tree ("cut")
- Next: The subgraph needs to be balanced
- Then, a triangulation can be created

Adaptive Rendering

Termination Criteria:

- Rendering error:
 - Projected size on screen shrinks with 1/z (where z is the depth in camera coordinates)
 - Might also depend on viewing angle (typically, this is neglected)
- Geometric error:
 - Tessellating a curved surface with planar faces is only an approximation
 - Error depends on curvature

Adaptive Rendering

Termination Criteria:

- Typically: divide geometric error by z
- To estimate z, use a bounding box (for splines: convex hull property)

- Chooses nearest *z* (conservative estimate)
- REYES algorithm [Cook, Carpenter, Catmull 1987] (Pixar's RenderMan)
 - Stop subdivision when BB below one pixel on screen size
 - Subdivision connectivity not really necessary in that case

Subdivision Connectivity Meshes

Generalization: Arbitrary Domains

- Start with a base mesh
 - "3D parametrization"
 - A conforming two-manifold mesh in 3D used as parametrization domain
- The base mesh fixes the topology
- Subdivide recursively as needed
- Now: Balancing/triangulation, also across borders
- Then compute the final surface

consistency across boundaries

Hardware Friendly Version

Problems:

- Costs for hierarchy creation / balancing are quite large
- In particular: Problematic for rendering
- Rendering triangles is very cheap these days
- But we still need adaptivity (moving camera, we can get arbitrarily close)
- Solution: Subdivision connectivity grids

Subdivision Connectivity Grids

Idea:

- Do the same thing (hierarchical triangulation)
- But use a grid of many triangles in each node:

Subdivision Connectivity Grids

Advantage:

- Amortizes hierarchy creation / traversal costs over many triangles
- Well suited for graphics hardware (GPU) implementations (regular structure)

- Less adaptivity
- This is ok for the 1/z term in perspective rendering (we will see that later)
- But geometry will be oversampled

Geometric Modeling SoSem 2010 - Triangle Meshes & Multi-Resolution Representations

Constraint Triangulations

Additional Constraints:

- Vertices, edges, area
- Need to augment subdivision algorithm

Hierarchical Subdivision:

- Subdivide until a simple case is found
 - At most one vertex in each cell
 - At most one line segment intersecting each cell
 - At most two boundary / cell intersections
- Then triangulate according to fixed rules
Vertex Constraints

Vertex Constraints:

- When only one point is left in each box
- Subdivide once more
- Move center to point
- Then balance and triangulate (proceed as before)

Edge / Area Constraints

Edge and area constraints

- Subdivide until intersection with edges / boundary curves has constant complexity (e.g. two intersections per cell)
- Then apply fixed subdivision rule
- Edge constraints:
 - Keep all triangles
- Area constraint:
 - Delete outside triangles

Alternative Algorithm

Alternative: (constrained) Delaunay triangulation

- Delaunay triangulation of a point set:
 - Triangulation in which the circumcircle of each triangle is empty
 - This triangulation *maximizes* the *minimum angle* in any triangle
 - The triangulation always exist
 - Can be computed by iterated edge flipping or (more efficiently) by line sweep algorithms (O(n log n) time for n points)
- Constrained Delaunay triangulation:
 - Additional edge / polygonal area constraints
 - More involved to compute

Spatial Data Structures Range Queries, Collision Detection

Spatial Data Structures

Motivation:

- Common problems:
 - Select a handle point by mouse click (millions of handles)
 - Click on other stuff (edges, triangles, patches)
 - Find the nearest point in a point set
 - Find the k nearest points (e.g. for surface fitting)
 - Find all geometry within a range (cube, sphere, etc.)
- This should work on large models
 - Billions of primitives
 - Frequent operations
 - E.g.: compute 20 nearest points for 1.000.000 points
 - Quadratic runtime is unacceptable
- Such operations can be speed up tremendously using spatial indexing data structures

Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

- Almost all approaches commonly used in practice are based on hierarchical spatial decompositions
- For some problems, there are more sophisticated data structures from computational geometry, but they often have to large space requirements
- In practice, anything beyond linear space is out of question

Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

- If the number of objects is still too large:
 - Cluster geometry into a small number of spatially coherent groups
 - Compute a simple bounding volume for each group
 - Apply this principle recursively to all subgroups formed
- We obtain a tree of bounding volumes

Hierarchical Space Partitioning

Formally:

- We have a set of objects $\Omega = \{s_1, ..., s_n\}, s_i \subseteq \mathbb{R}^d$ (where *d* is small, usually *d* = 2..3)
- We form a hierarchy of nodes N_i .
 - Let C(N_i) be the set of child nodes, ...
 - ...and P(N_i) the unique parent node, or null, if N_i is the root node R.
- We associate a set of objects $S(N_i)$ with each node N_i .
- We demand S(R) = Ω (root contains everything) and N_j ∈ C(N_i) ⇒ S(N_j) ⊆ S(N_i) (inner nodes represent the whole subtree)

Hierarchical Space Partitioning

Formally:

- Bounding volumes: let $B(N_i)$ be a bounding volume of node N_i , $B(N_i) \subseteq \mathbb{R}^d$.
- This means: S(N_i) ⊆ B(N_i)
 (objects are contained in the bounding volume)
- Typically, a bounding volume is a much simpler object than the stored geometry S(N_i).
 - It should be easy to test for intersections with other bounding volumes, geometric ranges and objects to be sorted into the hierarchy.
 - Usually, the memory footprint of $B(N_i)$ is O(1).
 - Axis aligned boxes, spheres and the similar are popular.

Variants

Variants:

- Bounding volume hierarchy
 - Most general definition, we can use any bounding volumes
 - Each inner node represents the union of objects in the subtrees
- BSP-tree
 - Use planes to split the nodes into half-spaces
 - Usually stored as a binary tree ("binary space partition")
 - Cells are not O(1), but each tree level cuts of a half space, which can be tested incrementally.

Variants

Variants

- kD-tree / axis aligned BSP tree
 - Use axis parallel splitting planes
 - Special case kD-tree:
 - Cyclically alternating splitting dimensions
 - Use median cut
- Quadtrees / Octrees
 - Always divide into 4 (8) cubes of the same size
 - This is a special case of a BSP- / kD-tree (identifying 3 consecutive binary splits with one octree node)

Extended Objects

Construction for extended objects (other than points)

- Extended objects:
 - Triangles
 - Polygons
 - Patches
 - Line segments
 - etc...
- Division of space might intersect with object
- Two solutions
 - Splitting objects
 - Overlapping nodes

Splitting Objects

First solution: splitting objects

- For example, sorting triangles into a BSP tree:
 - Split each triangle along splitting plane, if necessary
 - Try to optimize such that as few as possible triangles are split
- (Rather) easy to see:
 - A BSP tree needs at least worst case O(n²) fragments for *n* triangles (in practice typically ≈ O(n log n))
 - This is worst-case quadratic storage
 - The same bound also applies to kD trees, octrees etc (special cases)
- Splitting objects is usually too expensive
 - Used in early low-polygon 3D engines for visibility computation

Overlapping Regions

Other alternative:

- Allow objects to exceed the region associated with each node
- Store a second, extended bounding box to reflect this information
- Typical strategy:
 - Allow up to 10% oversize (exceeding node limits by 10% in each direction)
 - If this does not fit into leaf nodes, use an inner node.
- Effective bounding volumes may overlap now
 - Limiting the percentage limits the amount of space covered multiple times (e.g. 10% in each direction means $1.2^3 \approx 1.7 \times$)

Range Query Algorithm

Start at root node: Then, recursively

- If range overlaps bounding box
 - Collect inner node primitives
 - Test for range intersection
 - Go on recursively for child nodes
- If range does not overlap bounding box
 - End recursion

works for all hierarchy types

Examples

Parametric Surfaces

In case every primitive itself is a parametric object:

- We can "continue" the hierarchy
- Use a regular subdivision of the parameter domain (binary splits, quadtree)
- Form bounding volumes dynamically (e.g. convex hull of subdivided control points)

Abstract Implementation

Geometric Ranges:

- We just need to define two methods:
 - Intersection primitive ↔ range
 - Intersection bounding volume \leftrightarrow range
- With this information, we can implement a generic hierarchical range search algorithm
- Important special cases:
 - Boxes, Spheres, etc...
 - Rays (raytracing)
 - Projective extrusions (2D curve extended into space by central projection; this can be used for drawing selection regions on screen and retrieving the corresponding objects)

Collision Detection

Related Problem: Collision Detection

- We want to compute whether two geometric objects intersect with each other
- Important problem for dynamic simulations
- Also useful for CAD applications (arrange objects that do not collide)

Simple Solution:

- Test every part of object A for collision with every part of object B (e.g. each triangle with each other triangle)
- This is usually to expensive [O(mn)]

Hierarchical Collision Detection

Hierarchical Collision Detection

- Precompute a hierarchy for both objects A and B that should be tested for collision.
- Then apply a hierarchical collision test (next slide)

Hierarchical Collision Test

Collision Test: Input – nodes N_A, N_B from objects A, B.

- Test bounding volumes $B(N_A)$, $B(N_B)$ for intersection
- If $B(N_A) \cap B(N_B) \neq \emptyset$:
 - Test all objects S(N_A), S(N_B) for intersection
 - Output those objects that do intersect
 - If diameter(B(N_A)) > diameter(B(N_B)):
 - For all children $C \in C(N_A)$
 - CollisionTest(*C*, *N*_B)
 - Otherwise:
 - For all children $C \in C(N_B)$
 - CollisionTest(*C*, *N*_A)

Parametric Objects

Collision of parametric objects:

- Again, we can "continue" the hierarchy in the parametric domain
- Useful for speeding up patch-patch collision detection
- We can also compute intersection lines hierarchically

Parametric Objects

Computing intersection lines:

- Hierarchical intersections until a number of small boxes is left
- Place a control point in each box
- Use a Newton iteration to project points on intersection line
 - Move points in direction orthogonal to line only (avoid degeneracies)
- Fit a spline through the control points (spline interpolation problem, linear system)
- Can be additionally constrained to lie on intersection line
 - Minimize integral residual of distances to patches
 - But this is a non-linear optimization problem (Newton solver)

Intersection lines

Projecting a Point

Quasi-Newton Scheme

Nearest Neighbor Queries

Problem:

- Given *n* objects *s_i* and a point **p** in space
- Two variants:
 - Find the object that is closest to p
 - Find the k closest objects (k-nearest neighbors, kNN)

Operations:

- Compute distance point \leftrightarrow primitive
- Compute distance point ↔ bounding volume

Hierarchical Query Algorithm

Data Structures:

- The query algorithm needs some bounding volume hierarchy for the objects
 - A kD tree works best in practice, but other data structures also do the job
- In addition, two auxiliary data structures are needed:
 - A priority queue of objects Q_{obj}
 - A priority queue of bounding volumes Q_{BB}
 - Both sorted by distance to the query point

Hierarchical Query Algorithm

Algorithm: Compute k nearest neighbors

Input: Hierarchy of objects *N*, query point **p**

- Initialization: Put root node on Q_{BB}
- While *#output* < *k* and both priority queues non-empty
 - Compute distance to min(Q_{BB}) and min(Q_{obj})
 - If an object is closer
 - output the object
 - Otherwise, if a box is closer
 - Take the box from the queue
 - Insert all objects into Q_{obj} and all child nodes into Q_{BB} (for this, the corresponding distances need to be computed)

Mesh Simplification
Mesh Simplification

Mesh Simplification:

- Triangle meshes are often oversampled
- In particular, meshes from 3D scanners

- We want to decimate the number of triangles such that the shape of the object is roughly maintained
- We want to do this automatically

Variants of the Problem

Problem Variations:

- Mesh simplification
 - Reduce the number of triangles
 - Fixed triangle budget or fixed approximation error
- Multi-resolution models
 - Create a representation that provides many levels of resolution
 - The matching level-of-detail can be extracted at runtime
 - Useful for real-time rendering
 - Choose level of detail for each object in the scene
 - More sophisticated: varying level of detail across one object (the whole scene can be one object)

Curve Simplification

Curve Simplification:

- Compute an approximation of a piecewise linear curve by another piecewise linear curve with fewer segments
- The optimal least-squares solution can be computed in O(mn²) time using dynamic programming
 - where n = #(input line segments)
 - and m = #(output line segments)
- Usually, this is still to costly.

Curve Simplification

Curve Simplification:

- Most frequently used heuristic: *Douglas-Peucker Algorithm*.
- Simple Idea:
 - Start with a line connecting the end points
 - Find the input point farthest away from the straight line
 - Insert a new vertex there. We obtain two new segments
 - Apply the algorithm recursively to the parts (a number of times)
- Usually gives (visually) good results

Mesh Simplification

Mesh Simplification:

• We need to find an approximating mesh to a given mesh

Optimal solution?

- It can be shown that finding an L_∞ -norm best approximation to a mesh is NP-hard
- For other cases (e.g., least-squares) no efficient optimal techniques are known.

Mesh Simplification

Approximation algorithms:

 Polynomial time approximation algorithms with strict error guarantees are known, but they are too slow for practical applications

> Michelangelo's St. Matthew 386,488,573 triangles [Stanford Digital Michelangelo Project]

Parametric Simplification

If we have a parametric representation

- Spline surface
- Trimmed NURBS
- or the similar

we can just retessellate the original. No need for mesh-based simplification.

In the following: Input is a mesh (no side information)

Mesh Simplification

Three classes of techniques:

- Mesh refinement
 - Start with a simple base mesh, refine to approximate the object
 - "Gift-wrapping"
 - Complicated to implement (need to adjust topology)
- Mesh decimation
 - Start with full mesh
 - Keep on throwing away triangles until precision is met
 - This is the current standard technique
- Other approaches
 - Transform into implicit function and retessellate
 - Vertex clustering on a regular grid (useful for out-of-core impl.)

Mesh Decimation

Mesh decimation – basic idea:

- Start with the full mesh
- Then, subsequently remove
 - Triangles (fill hole)
 - Vertices (retriangulate hole)
 - Edges (kills two triangles)
- Edge contraction ("edge collapse") algorithms are nowadays the most common technique
- Robust and simple to implement

Edge contraction:

Edge contraction algorithm:

- Questions:
 - Which edges can be collapsed?
 - What error does this cause?
 - Edges collapse into points where should we place the new point?
 - What is the best order for edge collapses?
- Standard algorithm:
 - Greedy algorithm
 - Put edges in priority queue
 - Pick the "cheapest" edge and remove it
 - Recompute costs

Algorithm:

- For each edge in the mesh, compute the costs of collapsing the edge
 - If an edge collapse changes the topology, set costs to $+\infty$
 - Put all (finite cost) edges in priority queue sorted by cost
- While queue not empty and result not simple enough
 - Remove min-cost edge
 - Collapse the edge
 - Recompute costs of all affected edges (incl. topology check)
 - Update the priority queue accordingly

Affected edges:

Components

The algorithm needs the following components:

- Topology check (mostly fixed)
- Error metric (lots of choices)
- Placement of new vertices (lots of choices)

Topology Check

We do not want to change the topology of the mesh

- Input is a triangulated two-manifold, probably with boundary
- This means:
 - Every edge is adjacent to one or two triangles (boundary / interior)
 - Triangles do not intersect
 - The mesh is conforming no vertices in the middle of edges (fortunately, edge collapsing cannot change this)

Problem #1: Folds

Problem #1:

- Edge collapses can cause topological folds in meshes
- We need a criterion to prevent this

Criterion

Criterion:

- Consider the two vertices of the edge v_1, v_2
- Let R⁽¹⁾(v) be the on-ring neighborhood of v, excluding v₁, v₂
- If $#(R^{(1)}(v_1) \cap R^{(1)}(v_2)) = 2$, the collapse is permitted
- For boundary points: $#(R^{(1)}(v_1) \cap R^{(1)}(v_2)) = 1$

Illustration

this works

this folds

Intersections

Preventing Intersections

- The previous criterion only guarantees topologically correct meshes
- The embedding into space (read: vertex placement in R³) can still cause self intersections
- We need to check this separately:
 - Do the newly created triangles intersect with the shape
 - (Hierarchical intersection test with dynamic hierarchy)
 - If so, avoid the collapse operation
- Often, people omit this check (hard to implement, does not happen frequently in practice)

Components

The algorithm needs the following components:

- Topology check (mostly fixed)
- Error metric (lots of choices)
- Placement of new vertices (lots of choices)

Error Metrics

Various potential error metrics:

- S = original, S' = approximation, dist(\cdot , \cdot) = smallest distance
- L₂-error: $\int_{S} dist(S', x)^2 dx$
- L_1 -error: $\int_{S} |dist(S',x)| dx$
- L_{∞} -error: $\max_{x \in S} |dist(S', x)|$
- Hausdorff error: $\max\left(\max_{x \in S} |dist(S', x)|, \max_{x \in S'} |dist(S, x)|\right)$

(two sided maximum distance, symmetric measure)

Complexity Problem

Evaluating the error metric can be expensive:

- Compute the distance between two objects in $\Omega(n+m)$
- Naive computation takes O(nm)
- Doing this for each edge collapse is expensive

Solutions:

- Compute distance to previous level of detail only (works well in practice, but no guarantees)
- Use an approximate distance measure.

Quadric Error Metric

Quadric error metric: [Garland and Heckbert 1997]

- Very efficient solution to the error quantification problem
- However, the estimates might be too pessimistic

Idea:

- Measure distance to planes, rather than original triangles
- The error is represented as a 3D quadric

Quadric Error Metric

Implicit plane equation:

 $\langle \mathbf{n}, \mathbf{x} - \mathbf{x}_0 \rangle = 0$

Quadratic error function:

Minimum distance to several planes:

Quadric Error Metrics

Use in mesh simplification:

- Assign an initial error quadric to each vertex
 - Formed by summing up the plane error functions of the planes of all adjacent triangles
 - Weight components by triangle area
 - Error will be zero for the vertex itself (intersection of all planes)
- For each possible edge contraction:
 - Just add the error quadrics of both vertices involved
 - This means, the new, contracted vertex should approximate the planes of all triangles involved so far as well as possible

Quadric Error Metrics

Use in mesh simplification:

- For each possible edge contraction:
 - Compute the optimum vertex position according to the summed error metric
 - Evaluate the quadric to determine the error
 - This is the candidate move (error, position) that is stored in the edge contraction queue
- When an edge contraction occurs:
 - Use the computed position
 - To recompute neighborhood error quadrics, add the error matrix of the new vertex to each neighboring vertex
 - This gives new edge contraction costs

Extension

Meshes also have attributes, such as:

- Color
- Texture coordinates

This can be handled using quadric error metrics as well:

- Just store additional columns in the x-vectors
- Treat color values (etc.) as additional dimensions of the vertex position, weighted by relative importance to preserve them

How well does this work?

Advantage:

• Very fast: Evaluating the error metric and finding a new vertex position is O(1)

Disadvantage:

• For noisy meshes, the error approximation is bad:

- Possible solutions:
 - Mesh smoothing (normals from larger neighborhoods)
 - Reset quadrics after a few computation steps

fine scale

Components

The algorithm needs the following components:

- Topology check (mostly fixed)
 Error metric (lots of choices)
- Placement of new vertices (lots of choices) \checkmark

Conclusion:

- Quadric error metrics are a very popular choice due to their simplicity and performance.
- More accurate alternatives exist (at higher costs).

Multi-Resolution Meshes

Multi-resolution version:

- We want to store multiple levels of detail in one representation
- Simple, but effective approach: Progressive meshes [Hoppe 1996]

Progressive meshes:

- Simplify as strongly as possible (we get a *base mesh*)
- Record all edge contractions in a list

Progressive Meshes

Adjusting the level of detail:

- Start with the base mesh
- Perform *inverse edge contractions*, which are *vertex splits*, to increase the level of detail
- Perform edge contractions to reduce the level of detail
- The index in the list of edge contractions controls the level of detail:
 - Index up: Level of detail increases
 - Index down: Level of detail decreases

Example

[H. Hoppe, Microsoft Research, 1996]

Hardware Friendly Implementation

Progressive meshes are expensive:

- Graphics hardware can render billions of triangles
- Performing precomputed edge collapses / vertex splits still takes a lot of computational resources

Hardware Friendly approach:

- Precompute a number of levels of detail
- Just render them as needed
- Use linear interpolation to smoothly blend in the new vertices (avoid popping)

Adaptive Rendering

Problem:

- Assume we are handling a very large object
- For example a terrain model of the globe (Google earth)
- Progressive levels of detail are not helpful
 - Either too coarse or too much geometry
- We need adaptive extraction of details
 - Level-of-detail varying across the object
 - How can this be done with a progressive mesh representation?

Adaptive LOD Extraction

Adaptive / non-uniform level of detail extraction:

- Assumption:
 - We are given a camera position
 - and a geometric error messure g(x, lod).
 - We want to extract geometry such that $g(x, lod) / z(camera) < \varepsilon$.

Adaptive LOD Extraction

Adaptive / non-uniform level of detail extraction:

- Simple idea:
 - Start with base mesh
 - Test for each vertex if adjacent triangles are accurate enough
 - Conservative test (minimum depth)
 - If accuracy is not sufficient: perform vertex split
- Problem: Vertex splits are not independent
 - We can only perform splits if the vertex already exists
 - Vertices might have been created by previous vertex splits
 - Need to take into account the *dependence hierarchy*.
Multi-Triangulation

Formal Framework: Multi-Triangulation

- During construction of the progressive mesh:
 - An edge contraction *depends* on a previous contraction if one of its vertices is the result of a previous edge contraction.
 - Correspondingly, a vertex split depends on previous splits if its vertex is the result of a previous split
 - One edge contraction might depend on up to two other contractions, which each might depend on up to two others
 - This yields a acyclic directed graph (DAG)

Vertex Split

Affected edges:

Dependencies

Optimizing the Hierarchy

Need to take care of the dependencies:

- Need to store dependencies (DAG)
- When building the hierarchy:
 - Minimizing dependencies maximizes adaptivity, but might reduce quality
 - Possible strategy:
 - Only collapse non-dependent edges
 - When no edges are left, start new round of collapsing
 - Creates hierarchy with several levels

Hardware Friendly Version

Same problems again:

- The representation might be to costly to extract
- Executing a single vertex split / edge collapse from a precomputed hierarchy might still be more expensive than rendering (processing) many triangles
- Solution:
 - Clustered simplification with "large nodes"
 - Same idea as for the adaptive grids, but with edge collapses

Large Node Hierarchies

Idea for a hardware friendly algorithm (sketch):

- Divide the object into hierarchy of clusters
- For example:
 - Octree decomposition
 - Binary splitting along principal axis
 - Or the similar
- Hierarchy:
 - Leaf nodes store original triangles, at least k ≥ a few thousand triangles per node
 - Inner nodes:
 - Union of child node triangles
 - Simplification to reduce complexity to 1/4 of input (octree)

Large Node Hierarchies

Problem: Boundaries

- Triangulations might be non-conforming at boundaries
- Possible solution:
 - For each edge: Compute two triangulations
 - Neighbor with the same resolution
 - Neighbor with resolution one level lower
 - During rendering:
 - Extract balanced cut of the hierarchy
 - Choose appropriate adaptor triangulation
- Alternative solution: [Klein & Guthe]
 - Bounded Hausdorff error approximation
 - Triangles overlap at the boundaries ("fat boarders")

Appearance Simplification (for Large Scene Rendering)

Problems with Mesh Simplification

Problems:

- Mesh simplification cannot perform arbitrarily strong simplifications without destroying object appearance completely
- We need an alternative approach for rendering really large scenes
- As an example: Hierarchical point-based simplification (extra slides set)

Announcement

Written Exam:

- If someone cannot participate in the first of the two exams:
 - In the case of not pass the second (and only) try, we would offer an optional, additional oral exam.
 - If the student passes the oral exam, she/he would pass the lecture.
- This applies only if...
 - ...you need to have an important reason for not being able to take the first exam (for example, collision with another exam on the same day)
 - ...you need to notify us (by email) at least one week before the first exam.