
Music Processing

Meinard Müller

Advanced Course Computer Science

Saarland University and MPI Informatik
meinard@mpi-inf.mpg.de

Summer Term 2010

Audio Retrieval

Overview (Audio Retrieval)

� Audio identification

(audio fingerprinting)

� Audio matching� Audio matching

� Cover song identification

Overview (Audio Retrieval)

� Audio identification

(audio fingerprinting)

� Audio matching� Audio matching

� Cover song identification

Audio Identification

� Allamanche et al. (AES 2001)

� Cano et al. (IEEE MMSP 2002)

� Kurth/Clausen/Ribbrock (AES 2002)

� Wang (ISMIR 2003)

� Shrestha/Kalker (ISMIR 2004)

Audio Identification

� User hears music playing in the environment

� User records music fragment (5-15 seconds) with

mobile phone

Shazam application scenario

mobile phone

� Audio fingerprints are extracted from recording

and sent to a service

� Server identifies audio recording based on fingerprints

� Server sends back metadata (track title, artist) to user

[Wang, ISMIR 2003]

Audio Identification

Shazam application scenario

``The Moment´´

Radio – Car, home, work

TV and cinema

Clubs and bars

Cafes, shops, restaurants

[Wang, ISMIR 2003]

Audio Identification

Shazam application scenario: Target audience

[Wang, ISMIR 2003]

Audio Identification

Requirements:

� Discriminative power

An audio fingerprint is a content-based compact

signature that summarizes a piece of audio content

� Discriminative power

� Invariance to distortions

� Compactness

� Computational simplicity

Audio Identification

Requirements:

� Discriminative power

An audio fingerprint is a content-based compact

signature that summarizes a piece of audio content

� Ability to accurately identify an

item within a huge number of

other items� Discriminative power

� Invariance to distortions

� Compactness

� Computational simplicity

other items

(informative, high entropy)

� Low probability of false positives

� Recorded query excerpt

(only a few seconds)

� Large audio collection on the

server side (millions of songs)

Audio Identification

Requirements:

� Discriminative power

An audio fingerprint is a content-based compact

signature that summarizes a piece of audio content

� Recorded query may be

distorted and superimposed with

other audio sources� Discriminative power

� Invariance to distortions

� Compactness

� Computational simplicity

other audio sources

� Background noise

� Pitching

(audio played faster or slower)

� Equalization

� Compression artifacts

� Cropping, framing

� …

Audio Identification

Requirements:

� Discriminative power

An audio fingerprint is a content-based compact

signature that summarizes a piece of audio content

� Reduction of complex

multimedia objects

� Discriminative power

� Invariance to distortions

� Compactness

� Computational simplicity

� Reduction of dimensionality

� Making indexing feasible

� Allowing for fast search

Audio Identification

Requirements:

� Discriminative power

An audio fingerprint is a content-based compact

signature that summarizes a piece of audio content

� Computational efficiency

Extraction of fingerprint should � Discriminative power

� Invariance to distortions

� Compactness

� Computational simplicity

� Extraction of fingerprint should

be simple

� Size of fingerprint should be

small

Matching Fingerprints (Shazam)

[Wang, ISMIR 2003]

� For each database document (audio file), generate

reproducible landmarks

� Each landmark occurs at a time position

� For each landmark, generate a “fingerprint” that

characterizes its location

� Do same for query fragment

Matching Fingerprints (Shazam)

� Generate list of matching fingerprints

(matches between query and database document)

� Each match is represented by a pair (tdatabase, tquery) of

time positions

� Matching segment is characterized by set M of pairs � Matching segment is characterized by set M of pairs

each having the same time difference

tdatabase – tquery = constant for (tdatabase, tquery) M

� Set of false positives have random time differences

� Filter out cruft by doing a histogram on time differences

� Score is size of largest histogram peak

[Wang, ISMIR 2003]

∩∩ ∩∩

Matching Fingerprints (Shazam)

T
im

e
 (

Q
u

e
ry

)

Scatter plot of matching hash locations

[Wang, ISMIR 2003]

Time (Database)

Matching Fingerprints (Shazam)
T

im
e

 (
Q

u
e

ry
)

Scatter plot of matching hash locations

[Wang, ISMIR 2003]

Time (Database)

Matching Fingerprints (Shazam)

T
im

e
 (

Q
u

e
ry

)

Scatter plot of matching hash locations

[Wang, ISMIR 2003]

Time (Database)

Time offset

Histogram of time differences

Matching Fingerprints (Shazam)

T
im

e
 (

Q
u

e
ry

)

Scatter plot of matching hash locations

[Wang, ISMIR 2003]

Time (Database)

Time offset

Histogram of time differences

Matching Fingerprints (Shazam)

T
im

e
 (

Q
u

e
ry

)

Scatter plot of matching hash locations

[Wang, ISMIR 2003]

Time (Database)

Time offset

Histogram of time differences

no peak → no matching segment

Matching Fingerprints (Shazam)

T
im

e
 (

Q
u

e
ry

)

Scatter plot of matching hash locations

[Wang, ISMIR 2003]

Time (Database)

Time offset

Histogram of time differences

Matching Fingerprints (Shazam)

T
im

e
 (

Q
u

e
ry

)

Scatter plot of matching hash locations

[Wang, ISMIR 2003]

Time (Database)

Time offset

Histogram of time differences

Matching segment
(starting at position 40)

Fingerprints (Shazam)

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Steps:

1. Spectrogram

[Wang, ISMIR 2003]

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Time (Seconds)

� Efficiently computable

� Standard transform

� Robust

Fingerprints (Shazam)

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Steps:

1. Spectrogram

2. Peaks

[Wang, ISMIR 2003]

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Time (Seconds)

� ``Constellation map´´

� Robust to noise, reverb,

room acoustics

� Tend to survive through

voice codec

Fingerprints (Shazam)

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Steps:

1. Spectrogram

2. Peaks

[Wang, ISMIR 2003]

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Time (Seconds)

Problem:

� Individual peaks have low

entropy

� Not suitable for indexing

Fingerprints (Shazam)

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Steps:

1. Spectrogram

2. Peaks

3. Target zone

4. Pairs of peaks

[Wang, ISMIR 2003]

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Time (Seconds)

� Fix anchor point

� Define target zone

� Use pairs of points

� Use every point as anchor

point

Fingerprints (Shazam)

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Steps:

1. Spectrogram

2. Peaks

3. Target zone

4. Pairs of peaks

[Wang, ISMIR 2003]

F
re

q
u

e
n

c
y

(H
e

rt
z
)

Time (Seconds)

� Fix anchor point

� Define target zone

� Use pairs of points

� Use every point as anchor

point

Indexing (Shazam)

� Hash is formed between anchor point and each point in

target zone using frequency values and time difference.

� Fan-out (taking pairs of peaks) may cause a

combinatorial explosion in the number of tokens.

However, this can be controlled by the size of the traget

[Wang, ISMIR 2003]

However, this can be controlled by the size of the traget

zone.

� Using more complex hashes increases specificity

(leading to much smaller hash bucktes) and speed

(making the retrieval much faster).

Indexing (Shazam)

Definitions:

� N = number of spectral peaks

� p = probability that a spectral peak can be found in (noisy and distorted) query

� F = fan-out of target zone, e. g. F = 10

� B = #(bits) used to encode spectral peaks and time difference

Consequences:

[Wang, ISMIR 2003]

Consequences:

� F · N = #(tokens) to be indexed

� 2B+B = increase of specifity (2B+B+B instead of 2B)

� p2 = propability of a hash to survive

� p·(1-(1-p)F) = probability of at least on hash survives per anchor point

Example: F = 10 and B = 10

� Memory requirements: F · N = 10 · N

� Speedup factor: 2B+B / F2 ~ 106 / 102 = 10000
(F times as many tokens in query and database, respectively)

Results (Shazam)

Test dataset of 10000 tracks

Search time: 5 to 500 milliseconds

1 15 sec

2 10 sec

5 sec

[Wang, ISMIR 2003]
Signal/ Noise Ration (dB)

R
e

c
o

g
n

it
io

n
 r

a
te

Conclusions (Shazam)

Many parameters to choose:

� Temporal and spectral resolution in spectrogram

� Peak picking strategy

[Wang, ISMIR 2003]

� Peak picking strategy

� Target zone and fan-out parameter

� Hash function

� …

Conclusions (Audio Identification)

� Identifies audio recording (not piece of music)

� Highly robust to noise, artifacts, deformations

� May even work to handle superimposed recordings� May even work to handle superimposed recordings

� Does not allow to identify studio recordings by

query taken from live recordings

� Does not generalize to identify different

interpretations of the same piece of music

Overview (Audio Retrieval)

� Audio identification

(audio fingerprinting)

� Audio matching� Audio matching

� Cover song identification

Audio Matching

� Pickens et al. (ISMIR 2002)

� Müller/Kurth/Clausen (ISMIR 2005)

� Suyoto et al. (IEEE TASLP 2008)

� Kurth/Müller (IEEE TASLP 2008)� Kurth/Müller (IEEE TASLP 2008)

Audio Matching

Various interpretations – Beethoven‘s Fifth

Bernstein

Karajan

Scherbakov (piano)

MIDI (piano)

Audio Matching

Given: Large music database containing several

– recordings of the same piece of music

– interpretations by various musicians

– arrangements in different instrumentations

Goal: Given a short query audio clip, identify all

corresponding audio clips of similar musical content

– irrespective of the specific interpretation and instrumentation

– automatically and efficiently

Query-by-Example paradigm

[Müller et al., ISMIR 2005]

Audio Matching

General strategy

� Normalized and smoothed chroma features

– correlate to harmonic progression

– robust to variations in dynamics, timbre, articulation,
local tempolocal tempo

� Robust matching procedure

– efficient

– robust to global tempo variations

– scalable using index structure

[Müller et al., ISMIR 2005]

Feature Design

Subband

decom-

position

88 bands

Chroma

energy

distribution

12 bands

Statistics

Quantization

Convolution

Normalization

Downsampling

CENS

Audio

signal

Two stages:

Stage 1: Local chroma energy distribution features

Stage 2: Normalized short-time statistics

CENS = Chroma Energy Normalized Statistics

Feature Design

Beethoven‘s Fifth: Bernstein

Resolution: 10 features/second

Feature window size: 200 milliseconds

Feature Design

Beethoven‘s Fifth: Bernstein

Resolution: 10 features/second

Feature window size: 200 milliseconds

Feature Design

Beethoven‘s Fifth: Bernstein

Resolution: 1 features/second

Feature window size: 4000 milliseconds

Feature Design

Beethoven‘s Fifth: Bernstein vs. Sawallisch

Resolution: 10 features/second

Feature window size: 200 milliseconds

Feature Design

Beethoven‘s Fifth: Bernstein vs. Sawallisch

Resolution: 1 features/second

Feature window size: 4000 milliseconds

Matching Procedure

Compute CENS feature sequences

� Database

� Query

�

Global distance function

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Best audio matches: 1

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Best audio matches: 2

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Best audio matches: 3

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Best audio matches: 4

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Best audio matches: 5

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Best audio matches: 6

Matching Procedure

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Best audio matches: 7

Global Tempo Variations

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster useless

Solution?

Global Tempo Variations

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster useless

Solution: Make Bernstein query faster and comute new

Global Tempo Variations

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster useless

Solution: Compute for various tempi

Global Tempo Variations

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Problem: Karajan is much faster useless

Solution: Minimize over all resulting ’s

Experiments

� Audio database > 110 hours, 16.5 GB

� Preprocessing CENS features, 40.3 MB

� Query clip 20 seconds

� Query response time < 10 seconds

Experiments

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Experiments

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds

Experiments

Query: Shostakovich, Waltz/Chailly, first 27 seconds

Experiments

Query: Shostakovich, Waltz/Chailly, first 21 seconds

Index-based Matching

Indexing stage

� Convert database into feature sequence (chroma/CENS)

� Quantize features with respect to a fixed codebook

� Create an inverted file index

– contains for each codebook vector an inverted list

– each list contains feature indices in ascending order

[Kurth/Müller, IEEE-TASLP 2008]

Index-based Matching

Visualization (3D)

Quantization

� Feature space

Visualization (3D)

Index-based Matching

� Feature space

� Codebook selection

Quantization

� Codebook selection

of suitable size R

� Quantization using nearest neighbors

Index-based Matching

� Codebook selection by unsupervised learning

– Linde–Buzo–Gray (LBG) algorithm

– similar to k-means

– adjust algorithm to spheres

How to derive a good codebook?

– adjust algorithm to spheres

� Codebook selection based on musical knowledge

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Index-based Matching

LBG algorithm
Steps:

1. Initialization of

codebook vectors

2. Assignment

3. Recalculation3. Recalculation

4. Iteration (back to 2.)

Until convergence

Index-based Matching

LBG algorithm for spheres

� Example: 2D

� Assignment

� Recalculation

� Projection� Projection

Index-based Matching

LBG algorithm for spheres

� Example: 2D

� Assignment

� Recalculation

� Projection� Projection

Index-based Matching

LBG algorithm for spheres

� Example: 2D

� Assignment

� Recalculation

� Projection� Projection

Index-based Matching

LBG algorithm for spheres

� Example: 2D

� Assignment

� Recalculation

� Projection� Projection

Index-based Matching

Codebook using musical knowledge

� Observation: Chroma features capture

harmonic information

� Example: C-Major� Example: C-Major

� Example: C#-Major

� Experiments: For more then 95% of all chroma features

>50% of energy lies in at most 4 components

Index-based Matching

Codebook using musical knowledge

� C-Major

� C#-Major

n 1 2 3 4

template

12 66 220 495 793

� Choose codebook to contain n-chords for n=1,2,3,4

Index-based Matching

Codebook using musical knowledge

Additional consideration of harmonics in chord templates

Example: 1-chord C

Replace by

with suitable weights for the harmonics

Harmonics 1 2 3 4 5 6

Pitch C3 C4 G4 C5 E5 G5

Frequency 131 262 392 523 654 785

Chroma C C G C E C

Index-based Matching

Quantization

Original

Orignal chromagram and projections on codebooks

LBG-based Model-based

Index-based Matching

Query and retrieval stage

� Query consists of a short audio clip (10-40 seconds)

� Specification of fault tolerance setting

– fuzzyness of query

– number of admissable mismatches

– tolerance to tempo variations

– tolerance to modulations

Index-based Matching

� Medium sized database

– 500 pieces

– 112 hours of audio

– mostly classical music

Retrieval results

� Selection of various queries

– 36 queries

– duration between 10 and 40 seconds

– hand-labelled matches in database

� Indexing leads to speed-up factor between 15 and 20

(depending on query length)

� Only small degradation in precision and recall

Index-based Matching

Retrieval results

A
v
e

ra
g

e
 P

re
c
is

io
n

No index

LBG-based index

Model-based index

Average Recall

A
v
e

ra
g

e
 P

re
c
is

io
n

Conclusions (Index-based Matching)

� Described method suitable for medium-sized databases

– index is assumed to be in main memory

– inverted lists may be long

� Goal was to find all meaningful matches

– high-degree of fault-tolerance required (fuzzyness, mismatches)– high-degree of fault-tolerance required (fuzzyness, mismatches)

– number of intersections and unions may explode

� What to do when dealing with millions of songs?

� Can the quantization be avoided?

� Better indexing and retrieval methods needed!

– kd-trees

– locality sensitive hashing

– …

Conclusions (Audio Matching)

Strategy: Absorb variations at feature level

� Chroma invariance to timbre

� Normalization invariance to dynamics

� Smoothing invariance to local time deviations

Conclusions (Audio Matching)

Global matching procedure

� Strategy: Exact matching and multiple scaled queries

– simulate tempo variations by feature resampling

– different queries correspond to different tempi

– indexing possible– indexing possible

� Strategy: Dynamic time warping

– subsequence variant

– more flexible (in particular for longer queries)

– indexing hard

Application: Audio Matching Application: Audio Matching

Overview (Audio Retrieval)

� Audio identification

(audio fingerprinting)

� Audio matching� Audio matching

� Cover song identification

Cover Song Identification

� Gómez/Herrera (ISMIR 2006)

� Casey/Slaney (ISMIR 2006)

� Serrà (ISMIR 2007)

� Ellis/Polioner (ICASSP 2007)� Ellis/Polioner (ICASSP 2007)

� Serrà/Gómez/Herrera/Serra (IEEE TASLP 2008)

Cover Song Identification

Goal: Given a music recording of a song or piece of music,

find all corresponding music recordings within a huge

collection that can be regarded as a kind of version,

interpretation, or cover song.

� Live versions

Instance of document-based retrieval!

� Live versions

� Versions adapted to particular country/region/language

� Contemporary versions of an old song

� Radically different interpretations of a musical piece

� …

Cover Song Identification

� Automated organization of music collections

``Find me all covers of …´´

Motivation

� Musical rights management

� Learning about music itself

``Understanding the essence of a song´´

Cover Song Identification

Bob Dylan
Knockin’ on Heaven’s Door key

Avril Lavigne
Knockin’ on Heaven’s Door

Metallica Apocalyptica

Nearly anything can change! But something doesn't change.

Often this is chord progression and/or melody

Metallica
Enter Sandman timbre

Apocalyptica
Enter Sandman

Nirvana
Poly [Incesticide Album] tempo

Nirvana
Poly [Unplugged]

Black Sabbath
Paranoid lyrics

Cindy & Bert
Der Hund Der Baskerville

AC/DC
High Voltage recording conditions

AC/DC
High Voltage [live]

song structure

Cover Song Identification

How to compare two different songs?

Song A

Song A

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma

Sequence

How to compare two different songs?

Song A

Chroma

Sequence
Song A

� Feature computation

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma

Sequence

How to compare two different songs?

Optimal

Transposition

Song A

Chroma

Sequence

Transposition

Song A

� Feature computation

� Dealing with different keys

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma

Sequence

Binary

Similarity

Matrix

How to compare two different songs?

Optimal

Transposition

Song A

Chroma

Sequence

Matrix
Transposition

Song A

� Feature computation

� Dealing with different keys

� Local similarity measure

[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma

Sequence

Binary

Similarity

Matrix

How to compare two different songs?

Optimal

Transposition

Dyncamic

Programming

Local
Score

Song A

Chroma

Sequence

Matrix
Transposition Local

Alignment

Song A

� Feature computation

� Dealing with different keys

� Local similarity measure

� Global similarity measure
[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Feature computation

� Chroma features

– correlates to harmonic progression

– robust to changes in timbre and instrumentation

20 40 60 80 100 120 140

C
C#
D

D#
E
F

F#
G

G#
A

A#
B

– normalization introduces invariance to dynamics

� Enhancement strategies

– model for considering harmonics

– compensation of tuning differences

– finer resolution (1, 1/2, 1/3 semitone resolution)
→ 12/24/36 dimensional chroma features [Gómez, PhD 2006]

Cover Song Identification

Dealing with different keys

Bob Dylan – Knockin’ on Heaven’s Door

Avril Lavigne – Knockin’ on Heaven’s Door

� Compute average chroma vectors for each song

� Consider cyclic shifts of the chroma vectors to

simulate transpositions

� Determine optimal shift indices so that the shifted

chroma vectors are matched with minimal cost

� Transpose the songs accordingly

Cyclic Chroma Shifts

� Feature space:

� Chroma vector:

� Cyclic shift operator:� Cyclic shift operator:

� Composition of shifts: ,

� Note:

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
y

Shift index

C
o

s
t

0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ (y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ

2(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

Shift index

x
σ

3(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ

4(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ

5(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

Shift index

x
σ

6(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ

7(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ

8(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ

9(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

x
σ

10(y)

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

Shift index

x
σ

11(y)

0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

Cyclic Chroma Shifts

� Given chroma vectors

� Fix a local cost measure

� Compute cost between x and shifted y

� Minimizing shift index: 3

Shift index
0 1 2 3 4 5 6 7 8 9 10 11

1

0.5

0

C
o

s
t

x
σ

3(y)

� What is a good local cost

meaure for chroma space?

Cyclic Chroma Shifts

C
C#
D

D#
E
F

F#
G

G#
A

A#
B

?

1 2 3

C
C#

� What is a good local cost

meaure for chroma space?

Euclidean? Cosine distance?

Cyclic Chroma Shifts

C
C#
D

D#
E
F

F#
G

G#
A

A#
B

d

α

?

� Is the chroma space Euclidean?

Probably not!

For example, C is musically closer to G than C#

� Idea: Usage of very coarse binary cost measure

that indicates the same tonal root
[Serrà et al., IEEE-TASLP 2009]

1 2 3

C
C#α

Cyclic Chroma Shifts

� Original local cost measure

� Binary cost measure

[Serrà et al., IEEE-TASLP 2009]

for

Cyclic Chroma Shifts

Cost matrix based on c Binary cost matrix based on cb

1

[Serrà et al., IEEE-TASLP 2009]

Song B

S
o

n
g

A

Song B

0

Cyclic Chroma Shifts

Binary similarity matrixCost matrix based on c

Think positive!

1

[Serrà et al., IEEE-TASLP 2009]

Song B Song B

-1

S
o

n
g

A

Cover Song Identification

Chroma

Sequence

Binary

Similarity

Matrix

How to compare two different songs?

Optimal

Transposition

Dyncamic

Programming

Local
Score

Song A

Chroma

Sequence

Matrix
Transposition Local

Alignment

Song A

� Feature computation

� Dealing with different keys

� Local similarity measure

� Global similarity measure
[Serrà et al., IEEE-TASLP 2009]

Cover Song Identification

Chroma

Sequence

Binary

Similarity

Matrix

How to compare two different songs?

Optimal

Transposition

Dyncamic

Programming

Local
Score

Song A

Chroma

Sequence

Matrix
Transposition Local

Alignment

Song A

� Feature computation

� Dealing with different keys

� Local similarity measure

� Global similarity measure
[Serrà et al., IEEE-TASLP 2009]

Local Alignment

Assumption:

Two songs are considered as similar if they contain

possibly long subsegments that possess a similar

harmonic progression

Task:

Let X=(x1,…,xN) and Y=(y1,…,yM) be the two chroma

sequences of the two given songs, and let S be the

resulting similarity matrix. Then find the maximum similarity

of a subsequence of X and a subsequence of Y.

Local Alignment

Note:

This problem is also known from bioinformatics.

The Smith-Waterman algorithm is a well-known algorithm

for performing local sequence alignment; that is, for

determining similar regions between two nucleotide ordetermining similar regions between two nucleotide or

protein sequences.

Strategy:

We use a variant of the Smith-Waterman algorithm.

Local Alignment

� Classical DTW
Global correspondence
between X and Y

� Subsequence DTW

X

Y

X

� Subsequence DTW
Subsequence of Y corresponds
to X

� Local Alignment
Subsequence of Y corresponds
to subequence of X

X

Y

Y

Local Alignment

Computation of accumulated score matrix D

from given binary similarity (score) matrix S

� Zero-entry allows for jumping to any cell without penalty

� g penalizes``inserts´´ and ``delets´´ in alignment

� Best local alignment score is the highest value in D

� Best local alignment ends at cell of highest value

� Start is obtained by backtracking to first cell of value zero

Knockin' on Heaven's Door

100

120

140

0.4

0.6

0.8

1

Example: Knockin’ on Heaven’s Door

1

Binary similarity

matrix

Local Alignment

Guns and Roses

B
o
b

 D
y
la

n

50 100 150 200 250 300

20

40

60

80

100

-0.8

-0.6

-0.4

-0.2

0

0.2

Guns and Roses

B
o

b
 D

y
la

n

-1

Knockin' on Heavens's Door

100

120

140

70

80

90

Example: Knockin’ on Heaven’s Door

Accumulated

score matrix

Local Alignment

94.2

90

Guns and Roses

B
o
b

 D
y
la

n

50 100 150 200 250 300

20

40

60

80

10

20

30

40

50

60

Guns and Roses

B
o

b
 D

y
la

n

60

30

0

Knockin' on Heavens's Door

100

120

140

70

80

90

Example: Knockin’ on Heaven’s Door

Accumulated

score matrix

Cell with max.

Local Alignment

94.2

90

Guns and Roses

B
o
b

 D
y
la

n

50 100 150 200 250 300

20

40

60

80

10

20

30

40

50

60

Guns and Roses

B
o

b
 D

y
la

n

score = 94.2
60

30

0

Knockin' on Heaven's Door

100

120

140

70

80

90

Example: Knockin’ on Heaven’s Door

Accumulated

score matrix

Cell with max.

Local Alignment

94.2

90

Guns and Roses

B
o
b

 D
y
la

n

50 100 150 200 250 300

20

40

60

80

10

20

30

40

50

60

Guns and Roses

B
o

b
 D

y
la

n

score = 94.2

Alignment path

of maximal score

60

30

0

Knockin' on Heaven's Door

100

120

140

70

80

90

Example: Knockin’ on Heaven’s Door

94.2

90 Accumulated

score matrix

Cell with max.

Local Alignment

94.2

Guns and Roses

B
o
b

 D
y
la

n

50 100 150 200 250 300

20

40

60

80

10

20

30

40

50

60

Guns and Roses

B
o

b
 D

y
la

n

60

30

0

score = 94.2

Alignment path

of maximal score

A
c
c
u

m
u

la
te

d
 s

c
o

re

Alignment path

94.2

Knockin' on Heaven's Door

100

120

140

70

80

90

Example: Knockin’ on Heaven’s Door

90 Accumulated

score matrix

Cell with max.

Local Alignment

Guns and Roses

B
o
b

 D
y
la

n

50 100 150 200 250 300

20

40

60

80

10

20

30

40

50

60

Guns and Roses

B
o

b
 D

y
la

n

60

30

0

score = 94.2

Alignment path

of maximal score

Matching

subsequences

Cover Song Identification

Query: Bob Dylan – Knockin’ on Heaven’s Door

Retrieval result:

Rank Recording Score

1. Guns and Roses: Knockin‘ On Heaven’s Door 94.2

2. Avril Lavigne: Knockin‘ On Heaven’s Door 86.6

3. Wyclef Jean: Knockin‘ On Heaven’s Door 83.8

4. Bob Dylan: Not For You 65.4

5. Guns and Roses: Patience 61.8

6. Bob Dylan: Like A Rolling Stone 57.2

7.-14. …

Cover Song Identification

Query: AC/DC – Highway To Hell

Retrieval result:

Rank Recording Score

1. AC/DC: Hard As a Rock 79.2

2. Hayseed Dixie: Dirty Deeds Done Dirt Cheap 72.9

3. AC/DC: Let There Be Rock 69.6

4. AC/DC: TNT (Live) 65.0

5.-11. …

12. Hayseed Dixie: Highway To Hell 30.4

13. AC/DC: Highway To Hell Live (live) 21.0

14. …

Conclusions (Cover Song Identification)

� Harmony-based approach

� Binary cost measure a good trade-off between

robustness and expressiveness

� Measure is suitable for document retrieval, but seems to

be too coarse for audio matching applications

� Every song has to be compared with any other

→ method does not scale to large data collection

� What are suitable indexing methods?

Conclusions (Audio Retrieval)

Retrieval
task

Audio
identification

Audio
matching

Cover song
identification

Identification Concrete audio
recording

Different
interpretations

Different
versions

Query Short fragment Audio clip Entire songQuery Short fragment
(5-10 seconds)

Audio clip
(10-40 seconds)

Entire song

Retrieval level Subsequence Subsequence Document

Features Spectral peaks
(abstract)

Chroma
(harmony)

Chroma
(harmony)

Indexing Hashing Inverted lists No indexing

