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Overview (Audio Retrieval)

= Audio identification
(audio fingerprinting)

= Audio matching

= Cover song identification

Overview (Audio Retrieval)

= Audio identification
(audio fingerprinting)

Audio Identification

= Allamanche et al. (AES 2001)

= Cano et al. (IEEE MMSP 2002)

= Kurth/Clausen/Ribbrock (AES 2002)
= Wang (ISMIR 2003)

= Shrestha/Kalker (ISMIR 2004)

Audio Identification

Shazam application scenario

= User hears music playing in the environment

= User records music fragment (5-15 seconds) with
mobile phone

= Audio fingerprints are extracted from recording
and sent to a service

= Server identifies audio recording based on fingerprints

= Server sends back metadata (track title, artist) to user

[Wang, ISMIR 2003]

Audio Identification

Shazam application scenario

“THE MOMENT”

-
I | Radio - Car, Home, Work i
.

TV and Cinema
Clubs and Bars

Cafes, Shops, Restaurants

.3

[Wang, ISMIR 2003]




Audio ldentification Audio Identification

Shazam application scenario: Target audience

Early ’ !
Music mobile

+ 18-25 years old * 14-17 years old + 26-40 years old
« Struggle to keep up || « Identify next purchase|| « Identify classic hits
with LATEST quickly as well as new music

RELEASES + Enjoy practical + Need advice on what . . .
« Enjoy new services to buy = |nvariance to distortions
technologies -

An audio fingerprint is a content-based compact
signature that summarizes a piece of audio content

Requirements:

= Discriminative power

= Compactness

\ v = Computational simplicity
Music Music
Music ‘Experts’ Community Confidence

[Wang, ISMIR 2003]

Audio ldentification Audio Identification

An audio fingerprint is a content-based compact
signature that summarizes a piece of audio content

An audio fingerprint is a content-based compact
signature that summarizes a piece of audio content

Requirements: Requirements:

= Ability to accurately identify an
item within a huge number of

= Recorded query may be
distorted and superimposed with

= Discriminative power
= Invariance to distortions
= Compactness

= Computational simplicity

other items
(informative, high entropy)

Low probability of false positives

Recorded query excerpt
(only a few seconds)

Large audio collection on the
server side (millions of songs)

= Discriminative power
= |nvariance to distortions
= Compactness

= Computational simplicity

other audio sources
Background noise
Pitching

(audio played faster or slower)

Equalization
Compression artifacts
Cropping, framing

Audio Identification

An audio fingerprint is a content-based compact
signature that summarizes a piece of audio content

Requirements:

= Discriminative power

= |nvariance to distortions
= Compactness

= Computational simplicity

Reduction of complex
multimedia objects

Reduction of dimensionality
Making indexing feasible

Allowing for fast search

Audio Identification

An audio fingerprint is a content-based compact
signature that summarizes a piece of audio content

Requirements:

= Discriminative power

= Invariance to distortions
= Compactness

= Computational simplicity

Computational efficiency

Extraction of fingerprint should

be simple

Size of fingerprint should be

small




Matching Fingerprints (Shazam)

= For each database document (audio file), generate
reproducible landmarks

= Each landmark occurs at a time position

= For each landmark, generate a “fingerprint” that
characterizes its location

= Do same for query fragment
[Wang, ISMIR 2003]

Matching Fingerprints (Shazam)

= Generate list of matching fingerprints
(matches between query and database document)

= Each match is represented by a pair (fyaapases tguery) Of
time positions

= Matching segment is characterized by set M of pairs
each having the same time difference

tdatabase - tquery = constant  for (tdatabase! tquery) eM

= Set of false positives have random time differences
= Filter out cruft by doing a histogram on time differences
= Score is size of largest histogram peak

[Wang, ISMIR 2003]

Matching Fingerprints (Shazam)

Scatter plot of matching hash locations
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Matching Fingerprints (Shazam)

Scatter plot of matching hash locations
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Matching Fingerprints (Shazam)

Scatter plot of matching hash locations
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Matching Fingerprints (Shazam)

Scatter plot of matching hash locations
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Matching Fingerprints (Shazam)

Scatter plot of matching hash locations
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Matching Fingerprints (Shazam)

Scatter plot of matching hash locations
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Matching Fingerprints (Shazam)

Scatter plot of matching hash locations
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Frequency (Hertz)

Fingerprints (Shazam)

Steps:

1.

Spectrogram

Efficiently computable
Standard transform
Robust

Time (Seconds)

[Wang, ISMIR 2003]

Fingerprints (Shazam)
Steps:

1. Spectrogram
2. Peaks

5 = “Constellation map”
X . " x = Robust to noise, reverb,
room acoustics
= Tend to survive through
voice codec

Frequency (Hertz)
g

g

Time (Seconds)

[Wang, ISMIR 2003]

Fingerprints (Shazam)

Time (Seconds)

Steps:
1. Spectrogram

3500 X X
2. Peaks
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&0 5 Problem:

= X

= X R . x = Individual peaks have low

1000) X M X entropy
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X = Not suitable for indexing
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[Wang, ISMIR 2003]




Fingerprints (Shazam)

Fingerprints (Shazam)

Steps: Steps:
o o
1. Spectrogram 1. Spectrogram
X X X X
2. Peaks 2. Peaks
X X X X
200 00
s x C 3. Target zone 5 x x fo/o 3. Target zone
x X . X X .
g ol ® ¢ ) 4. Pairs of peaks £ A o ; 4. Pairs of peaks
> 4 % - X .
Qo X 9 o M
g X = X . - 3 X x X " -
g,wu . 3 = Fix anchor point g 150 . i = Fix anchor point
e x - ) X = Define target zone o x L . x = Define target zone
s X x . o 4 = Use pairs of points L x « x *ox & = Use pairs of points
i * . . Us_e every point as anchor " * . = Us_e every point as anchor
point point
X X X X X X
3 2 4 6 8 10 12 t ] 4 6 8 0 2
Time (Seconds) Time (Seconds)
[Wang, ISMIR 2003] [Wang, ISMIR 2003]
Indexing (Shazam) Indexing (Shazam)
Definitions:

= Hash is formed between anchor point and each point in
target zone using frequency values and time difference.

= Fan-out (taking pairs of peaks) may cause a
combinatorial explosion in the number of tokens.
However, this can be controlled by the size of the traget
zone.

= Using more complex hashes increases specificity
(leading to much smaller hash bucktes) and speed
(making the retrieval much faster).

[Wang, ISMIR 2003]

= N =number of spectral peaks

= p=probability that a spectral peak can be found in (noisy and distorted) query

= F=fan-out of target zone, e. g. F=10

= B = #(bits) used to encode spectral peaks and time difference

Consequences:

= F-N = #(tokens) to be indexed

= 2BB = increase of specifity (28+8+8 instead of 25)
= p? = propability of a hash to survive

= p(1-(1-p))

Example: F=10and B=10
= Memory requirements: F-N=10-N

= Speedup factor: 28+6/F2 ~ 106/ 10% = 10000
(Ftimes as many tokens in query and database, respectively)

probability of at least on hash survives per anchor point

[Wang, ISMIR 2003]

Results (Shazam)

Test dataset of 10000 tracks
Search time: 5 to 500 milliseconds
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Conclusions (Shazam)

Many parameters to choose:

= Temporal and spectral resolution in spectrogram

= Peak picking strategy

= Target zone and fan-out parameter

= Hash function

[Wang, ISMIR 2003]




Conclusions (Audio Identification)

= |dentifies audio recording (not piece of music)
= Highly robust to noise, artifacts, deformations
= May even work to handle superimposed recordings

= Does not allow to identify studio recordings by
query taken from live recordings

= Does not generalize to identify different
interpretations of the same piece of music

Overview (Audio Retrieval)

= Audio matching

Audio Matching

= Pickens et al. (ISMIR 2002)

= Miller/Kurth/Clausen (ISMIR 2005)
= Suyoto et al. (IEEE TASLP 2008)

= Kurth/Mller (IEEE TASLP 2008)

Audio Matching

Various interpretations — Beethoven's Fifth

Bernstein >
Karajan >
Scherbakov (piano) >
MIDI (piano) >

Audio Matching

Given: Large music database containing several
recordings of the same piece of music
interpretations by various musicians
arrangements in different instrumentations

Goal: Given a short query audio clip, identify all
corresponding audio clips of similar musical content

irrespective of the specific interpretation and instrumentation
automatically and efficiently

Query-by-Example paradigm

[Miller et al., ISMIR 2005]

Audio Matching

General strategy

= Normalized and smoothed chroma features
correlate to harmonic progression

robust to variations in dynamics, timbre, articulation,
local tempo

= Robust matching procedure
efficient
robust to global tempo variations
scalable using index structure

[Miller et al., ISMIR 2005]




Feature Design

Feature Design

Beethoven's Fifth: Bernstein >

Audio | Subband [ | Chroma | B_|statisties | & _[ Convolution | B >
signal | decom- - |energy N o : o : 09
——| position " distribution o Quantization| (—t Normalization o#  CENS 08
88 bands [ 5, | 12 bands <, _C | bownsampling|_€ 07
— 06
0.5
Two stages: Z:
0.2
Stage 1: Local chroma energy distribution features ot
Stage 2: Normalized short-time statistics 0
~+ CENS = Chroma Energy Normalized Statistics Resolutioq: 10 fea.tures/secqn‘d
Feature window size: 200 milliseconds
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Feature Design

Beethoven's Fifth: Bernstein vs. Sawallisch
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Feature Design

Beethoven's Fifth: Bernstein vs. Sawallisch
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Matching Procedure

Compute CENS feature sequences

= Database D ~» F[D] = ( ..... o)
= Query Q ~ FlQ] = (whw?, ..., wM)
= N~ 500000, M ~ 20

= . | ST IS
| A A A | I |
| i T 5 T | | M 1
| w I w= I I w I

A(i) = local distance((v', o't ... oM (ot w? L w

~~ Global distance function A : [1: N] — [0, 1]

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds
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Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich
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Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich
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Best audio matches: 2

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich
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Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich
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Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich
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Best audio matches: 5

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich
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Best audio matches: 6

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich
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Best audio matches: 7

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster ~» useless A

Solution?
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Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster - useless A

Solution: Make Bernstein query faster and comute new A
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Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster ~~ useless A

Solution: Compute A for various tempi
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Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster ~» useless A

Solution: Minimize over all resulting A’s ~» A™in

L I L L
0 50 100 150 200 250 300 350 400

Experiments

= Audio database > 110 hours, 16.5 GB
= Preprocessing ~~ CENS features, 40.3 MB
= Query clip &~ 20 seconds

= Query response time < 10 seconds

Experiments
Query: Beethoven's Fifth / Bernstein, first 20 seconds

ol Scherbakov Sawa

g_g[ TR YR T Y W T PRI [ TRy T TY Y
0.6
04
0.2

o

Experiments

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Rank Amin - Piece Position
1 0.0114 Beethoven’s Fifth/Bernstein 0-21 @
2 0.0150 Beethoven’s Fifth/Bernstein 101-122 >
< 0.0438 Beethoven’s Fifth/Karajan 86-103 »
10 0.1796 Beethoven’s Fifth/Karajan 252-271 &
11 0.1827 Beethoven (Liszt) Fifth/Scherbakov 0-19 »
12 0.1945 Beethoven'’s Fifth/Sawallisch 275-296 >
13 0.1970 Beethoven’s Fifth (Liszt)/Scherbakov 86-103 »
>

14 0.2169 Schumann op 97,1/Levine 28 -43

Experiments
Query: Shostakovich, Waltz/Chailly, first 27 seconds

Chailly Yablonsky

clarinet  sirings trowbone  Luiii clarinel  sirvings  rombone  butii

08
0.6

Rl Rl BE R
1 T2 -7 T4 T3 5

8 6

7

Experiments

Query: Shostakovich, Waltz/Chailly, first 21 seconds

Rank Amin - Piece Position

1 0.0172  Shostakovich/Chailly 0-21 >
2 0.0505 Shostakovich/Chailly 41-60 >
3 0.0983  Shostakovich/Chailly 180-198 >
4 0.1044 Shostakovich/Yablonsky 1-19 &
5 0.1090 Shostakovich/Yablonsky 36-52 »
6 0.1401  Shostakovich/Yablonsky 156 -174 >
7 0.1476  Shostakovich/Chailly 144 -162 »
8 0.1626 Bach BWV 582/Chorzempa 358 -373 &
9 0.1668 Beethoven op 37,1/Toscanini 12-28 »
10 >

0.1729 Beethoven op 37,1/Pollini 202 -218




Index-based Matching

Indexing stage

Codebook
Cr Q
Extraction lml;eilrted
f CENS BV e
- of CENS Quantization Index
Music Features function
database (W=dl Q
D d=10)

= Convert database into feature sequence (chroma/CENS)
= Quantize features with respect to a fixed codebook
= Create an inverted file index

contains for each codebook vector an inverted list
each list contains feature indices in ascending order

[Kurth/Mdiller, IEEE-TASLP 2008]

Index-based Matching

Quantization
= Feature space F={velo, 1]12 | [[v]l2 = 1}

Visualization (3D) o] ¥

07 08 03

Index-based Matching

Quantization

= Feature space Fi={ve[0,1]®?||v)a=1}

= Codebook selection

of suitable size R {e1,...,cp} CF

= Quantization using nearest neighbors

Q[v] := argmin, .. gjarccos((v, ;)

Index-based Matching

How to derive a good codebook?

= Codebook selection by unsupervised learning
Linde—Buzo—Gray (LBG) algorithm

similar to k-means
adjust algorithm to spheres

= Codebook selection based on musical knowledge

Index-based Matching
LBG algorithm

Steps:
1.
O
o 2.
©) 3
O 4
'e) O

Index-based Matching

LBG algorith
algorithm Steps:

1. Initialization of
codebook vectors

o}
o 2.
E Om 3
o} 4




Index-based Matching
LBG algorithm

Index-based Matching
LBG algorithm

Steps: Steps:
1. 1.
2. Assignment PS ® 2.
3. [5) = 3. Recalculation
4, u ) 4,
) @
Index-based Matching Index-based Matching
LBG algorithm Steps: LBG algorithm Steps:
1, I
o o 2. 2. Assignment
o) = 3. 3.
u ©) 4. lteration (back to 2.) 4.
'e) O
Index-based Matching Index-based Matching
LBG algorithm Steps: LBG algorithm Steps:
1, !
() (<]
) 2 . ° 2.
. ® =) 3. Recalculation a ® =} 3.
@ 4. @ 4.
° ® ° o

Until convergence




Index-based Matching
LBG algorithm for spheres

= Example: 2D

Index-based Matching
LBG algorithm for spheres

= Assignment

Index-based Matching
LBG algorithm for spheres

= Recalculation

Index-based Matching
LBG algorithm for spheres

= Projection

Index-based Matching

Codebook using musical knowledge

= Observation: Chroma features capture
harmonic information

= Example: C-Major %(1.0.0.0.1.0.0.1.0.0.0.0)

1
= Example: C*-Major ﬁ(u, 1,0,0,0,1,0,0,1,0,0,0)
= Experiments: For more then 95% of all chroma features
>50% of energy lies in at most 4 components

Index-based Matching

Codebook using musical knowledge

1 1. . .
= C-Maj —(1,0,0,0,1,0,0.1,0,0,0,0) = —=(01 + 65 + 0
C-Major \/3( ) \/5(” ds)
= C*-Major L(OA 1,0,0,0,1,0,0,1,0,0,0) = L(0‘2 + 86 + d9)
= Choose codebook to contain n-chords for n=1,2,3,4
n 1 2 3 4
. 1 1 . . 1
template | 9J ﬁwﬁrm) ﬁ@r““)u‘“’m) ﬁ(on;+(§17271)H;71)H4)

# 12 66 220 495 793




Index-based Matching

Codebook using musical knowledge

Additional consideration of harmonics in chord templates

Example: 1-chord C

Harmonics 1 2 3 4 5 6
Pitch C3 Cc4 G4 C5 E5 G5
Frequency 131 262 392 523 654 785
Chroma C Cc G C E C

Replace 01 by w101 + w20 + w3ds + w4d| + w505 + weds
with suitable weights for the harmonics

Index-based Matching

Quantization

Orignal chromagram and projections on codebooks

Original LBG-based Model-based

Index-based Matching

Query and retrieval stage

-
User input Codebook Tnverted Ranking
Query Cr File Index Strategies
(audio clip) l l l
Fault
" Fuzzy
tolerance Multiple \Ialch}es Ranked
settings > Fuzzy ——| (‘W“h mis. —>| Listof
(optional) Queries matches) Matches

= Query consists of a short audio clip (10-40 seconds)
= Specification of fault tolerance setting

fuzzyness of query

number of admissable mismatches

tolerance to tempo variations

tolerance to modulations

Index-based Matching

Retrieval results

= Medium sized database
500 pieces
112 hours of audio
mostly classical music
= Selection of various queries
36 queries
duration between 10 and 40 seconds
hand-labelled matches in database
Indexing leads to speed-up factor between 15 and 20
(depending on query length)
Only small degradation in precision and recall

Index-based Matching

Retrieval results

—x— LBG-based index
Model-based index

[ e No index

Average Precision
o

0.2 03 04 05 06 07 08 09 1

Average Recall

Conclusions (Index-based Matching)

= Described method suitable for medium-sized databases
index is assumed to be in main memory
inverted lists may be long

= Goal was to find all meaningful matches
high-degree of fault-tolerance required (fuzzyness, mismatches)
number of intersections and unions may explode

= What to do when dealing with millions of songs?

= Can the quantization be avoided?

= Better indexing and retrieval methods needed!
kd-trees
locality sensitive hashing




Conclusions (Audio Matching)

Strategy: Absorb variations at feature level

= Chroma ~- invariance to timbre
= Normalization ~ invariance to dynamics

= Smoothing ~ invariance to local time deviations

Conclusions (Audio Matching)

Global matching procedure

= Strategy: Exact matching and multiple scaled queries
simulate tempo variations by feature resampling
different queries correspond to different tempi
indexing possible

= Strategy: Dynamic time warping
subsequence variant
more flexible (in particular for longer queries)
indexing hard

Application: Audio Matching

=loix
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Application: Audio Matching

Overview (Audio Retrieval)

= Cover song identification

Cover Song ldentification

= Godmez/Herrera (ISMIR 2006)

= Casey/Slaney (ISMIR 2006)

= Serra (ISMIR 2007)

= Ellis/Polioner (ICASSP 2007)

= Serra/Gémez/Herrera/Serra (IEEE TASLP 2008)




Cover Song ldentification

Goal: Given a music recording of a song or piece of music,
find all corresponding music recordings within a huge
collection that can be regarded as a kind of version,
interpretation, or cover song.

= Live versions

= Versions adapted to particular country/region/language
= Contemporary versions of an old song

= Radically different interpretations of a musical piece

Instance of document-based retrieval!

Cover Song Identification
Motivation
= Automated organization of music collections

““Find me all covers of ...”"
= Musical rights management

= Learning about music itself

““Understanding the essence of a song””

Cover Song Identification

Nearly anything can change! But something doesn't change.
Often this is chord progression and/or melody

Bob Dylan Avril Lavigne
b Knockin’” on Heaven’s Door key Knockin’ on Heaven’s Door =
Metallica . Apocalyptica
Enter Sandman timbre Enter Sandman
Nirvana Nirvana
> Poly [Incesticide Album] tempﬂ Poly [Unplugged]
Black Sabbath lyri Cindy & Bert
Paranoid yrics Der Hund Der Baskerville
AC/DC . e AC/DC
= High Voltage recording conditions High Voltage [live] >
song structure

Cover Song ldentification

How to compare two different songs?

[Serra et al., IEEE-TASLP 2009]

Cover Song Ildentification

How to compare two different songs?

Chroma
A |——>|
| Song Sequence |

Chroma
Sequence

Song A

= Feature computation

[Serra et al., IEEE-TASLP 2009]

Cover Song ldentification

How to compare two different songs?

Chroma
| Song A Sequence

Optimal
Transposition

Chroma
Song A Sequence

= Feature computation
= Dealing with different keys

[Serra et al., IEEE-TASLP 2009]




Cover Song ldentification

How to compare two different songs?

Chroma
Song A Sequence

- Binary
Optimal P

Transposition Slmllarlty
Matrix

Chroma
Song A Sequence

= Feature computation
= Dealing with different keys
= Local similarity measure

[Serra et al., IEEE-TASLP 2009]

Cover Song Identification

How to compare two different songs?

5| Chroma
Song A Sequence

Binary Dyncamic
Optlmgl_ Similarity > IFrEEJETINE Score
Transposition - Local
Matrix h
Alignment

Chroma
Song A Sequence

= Feature computation
= Dealing with different keys
= Local similarity measure

= Global similarity measure
[Serra et al., IEEE-TASLP 2009]

Cover Song Identification

Feature computation

= Chroma features
correlates to harmonic progression
robust to changes in timbre and instrumentation
normalization introduces invariance to dynamics

= Enhancement strategies
model for considering harmonics
compensation of tuning differences

finer resolution (1, 1/2, 1/3 semitone resolution)
— 12/24/36 dimensional chroma features [Gémez, PhD 2006]

Cover Song ldentification

Dealing with different keys

Bob Dylan — Knockin’ on Heaven’s Door >
Avril Lavigne — Knockin’ on Heaven’s Door »

= Compute average chroma vectors for each song

= Consider cyclic shifts of the chroma vectors to
simulate transpositions

= Determine optimal shift indices so that the shifted
chroma vectors are matched with minimal cost

= Transpose the songs accordingly

Cyclic Chroma Shifts

= Feature space: F = R'?
= Chromavector: = := (x(1),...,2(12))" € F
= Cyclic shift operator: o :F — F

o((z(1),...,z(12)T) := (2(12), 2(1) ..., 2(11)7T

Composition of shifts: o' (x) = o(c" ™ (2)), i € Z

= Note: o'?=o"

Cyclic Chroma Shifts

= Given chroma vectors r,y €F
= Fixalocal costmeasure c: Fx F =+ R
= Compute cost between x and shifted y

C C&#D DEE F F# G GE A A B !

C C#D DEE F F# G G A A2 B 0

0.5¢

Cost

o 1 2 3 4 5 6 7 8 9 10 1
Shift index




Cyclic Chroma Shifts

= Given chroma vectors r,y€F
= Fix alocal cost measure ¢: Fx F =R
= Compute cost between x and shifted y

C C# D D# E F F# G G# A A% B !
. - _ N o
oy ITHEE I
B C C#D D# E F F# G G A A# 0

Cyclic Chroma Shifts

= Given chroma vectors r,y €F
= Fix alocal costmeasure c¢: Fx F =R
= Compute cost between x and shifted y

C C#D DEE F F# G G A A# B
X
2
o(y)

A4 B C C#D D E F F# G G# A

1
QOE
0

1
g 05¢ g 0.5¢
0 [1]
o 1 2 3 4 5 6 7 8 9 10 11 0o 1 2 3 4 5 6 7 8 9 10 11
Shift index Shift index
Cyclic Chroma Shifts Cyclic Chroma Shifts
= Given chroma vectors r,y€F = Given chroma vectors x,y €F

= Fix alocalcostmeasure c¢: Fx F =R
= Compute cost between x and shifted y

C C#D DEE F Fé G G# A A% B !

N - B s

3 5
o« N B

A AiB C C&D DiEE F Fi G G# 0

05¢

0 ?

0o 1 2 3 4 5 6 7 8 9 10 M
Shift index

Cost

= Fixalocal costmeasure ¢: Fx F—R
= Compute cost between x and shifted y

C C&#D DEE F F# G G#E A A4 B
X
4
o'(y)

G# A AHB C C#D DEE F F£ G

1
Qof
0

Cost

0.5 ¢ [
0 ?

0 1 2 3 4 5 6 7 8 9 10 1M
Shift index

Cyclic Chroma Shifts

= Given chroma vectors z,y€F
= Fix alocal cost measure c¢: Fx F =R
= Compute cost between x and shifted y

C C#D DEE F F# G GE A A% B !

X 05
o« [ NN

G G# A A2 B C C#D D# E F F#

L

Cost

o 1 2 7 8 9 10 1

5 6
Shift index

Cyclic Chroma Shifts

= Given chroma vectors r,y €F
= Fixalocal costmeasure c: Fx F =+ R
= Compute cost between x and shifted y

C C&#D DEE F F# G GE A A B

X
o b(y)

F# G G# A A B C C#D D# E F

Cost

L1

o 1 2 3 4 5 6 7 8 9 10 1
Shift index




Cyclic Chroma Shifts

= Given chroma vectors r,y€F
= Fix alocal cost measure ¢: Fx F =R
= Compute cost between x and shifted y

C C# D D# E F F# G G# A A% B !
N - 2N o
7,
&2 B & B
F F# G G#E A A B C C#D D#E 0

Cost
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Shift index

Cyclic Chroma Shifts

= Given chroma vectors r,y €F
= Fix alocal costmeasure c¢: Fx F =R
= Compute cost between x and shifted y

C C# D DEE F F# G GE A A# B !
« N N 0
8,
A N N
E F F# G GE A A B C C# D D# 0
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Shift index

Cost

Cyclic Chroma Shifts

= Given chroma vectors r,y€F
= Fix alocalcostmeasure c¢: Fx F =R
= Compute cost between x and shifted y

C C#D DEE F FE G GE A A% B !
. . _ N 08
2 :
a2 B 0N B
D# E F F# G GE A A# B C C# D 0

Cyclic Chroma Shifts

= Given chroma vectors x,y €F
= Fix alocal costmeasure ¢: Fx F =R
= Compute cost between x and shifted y

C C&D DEE F FE G G#E A A# B !
B N
10 B

o< Bl I .
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1
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Shift index Shift index
Cyclic Chroma Shifts Cyclic Chroma Shifts
= Given chroma vectors x,y €F = Given chroma vectors T,y €F

= Fix alocal cost measure c¢: Fx F =R
= Compute cost between x and shifted y

C C#D DEE F F# G GE A A% B !
« Bl N EN
11
o) I
C#D DEE F F# G GE A A# B C 0
0.

L Tt

0o 1 2 3 4 5 6 7 8 9 10 1
Shift index

Cost
3]

= Fixalocal costmeasure c¢: Fx F =+ R
= Compute cost between x and shifted y
= Minimizing shift index: 3

C C&#D DEE F F# G GE A A B !
B N
3
o« N I B
A A% B C C#D D# E F F# G G# 0
0.
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Shift index

Cost
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Cyclic Chroma Shifts

= What is a good local cost A

meaure for chroma space? Sp—
-

Dy -

-

Cyclic Chroma Shifts

= What is a good local cost
meaure for chroma space?
Euclidean? Cosine distance?

e

= |s the chroma space Euclidean?
Probably not!
For example, C is musically closer to G than C#

:a‘\‘ d
QORI Fw
N
1THIE

= |dea: Usage of very coarse binary cost measure
that indicates the same tonal root
[Serra et al., IEEE-TASLP 2009]

Cyclic Chroma Shifts
= Qriginal local cost measure c¢: F x F =+ R
= Binary cost measure

ey FxF—{0,1}

(e, y) = argmin, o (e, o' (9)) )

en(z,y)

0 for u(x,y) =0
1 otherwise

for x,yeF

[Serra et al., IEEE-TASLP 2009]

Song A

Cyclic Chroma Shifts

Cost matrix based on ¢

el s El. g
=51 3=2 1
,“:"? s-{"."!
- o s L
“ﬁ;’c“ ;"f-‘!
i ]
Sl e

Song B Song B
[Serra et al., IEEE-TASLP 2009]

Binary cost matrix based on c,

Cyclic Chroma Shifts

Think positive!

Cost matrix based on ¢ Binary similarity matrix

Song B Song B
[Serra et al., IEEE-TASLP 2009]

Cover Song ldentification

How to compare two different songs?

Chroma
| Sy Sequence

Binary Dyncamic

Optimal A Programming
Sty (— "L (] seore

Alignment

Chroma
Semy A Sequence

= Feature computation
= Dealing with different keys
= Local similarity measure

= Global similarity measure
[Serra et al., IEEE-TASLP 2009]




Cover Song ldentification

How to compare two different songs?

Chroma
Song A Sequence

Binary Dyncamic
Op""“?". Similarity [—> FIEEENITIRE Score
Transposition - Local
Matrix )
Alignment

Chroma
Sequence

Song A

= Feature computation
= Dealing with different keys
= Local similarity measure

= Global similarity measure
[Serra et al., IEEE-TASLP 2009]

Local Alignment

Assumption:

Two songs are considered as similar if they contain
possibly long subsegments that possess a similar
harmonic progression

Task:

Let X=(x,...,xy) and Y=(y,,...,y,,) be the two chroma
sequences of the two given songs, and let S be the
resulting similarity matrix. Then find the maximum similarity
of a subsequence of X and a subsequence of Y.

Local Alignment

Note:

This problem is also known from bioinformatics.

The Smith-Waterman algorithm is a well-known algorithm
for performing local sequence alignment; that is, for
determining similar regions between two nucleotide or
protein sequences.

Strategy:
We use a variant of the Smith-Waterman algorithm.

Local Alignment

= Classical DTW
Global correspondence x
between X and Y
Y
= Subsequence DTW .
Subsequence of Y corresponds
to X
Y
= Local Alignment
Subsequence of Y corresponds =
to subequence of X
Y

Local Alignment

Computation of accumulated score matrix D
from given binary similarity (score) matrix S

D(n,0)=D(0,m)=0, ne[0: N],me]l0:M]
0

D(n—1,m)—g
Dn,m—1)—g
D(n—1,m—1)+ S(n,m)

D(n,m) = max n,m >0

= Zero-entry allows for jumping to any cell without penalty
= g penalizes inserts”” and ““delets”” in alignment

= Best local alignment score is the highest value in D

= Bestlocal alignment ends at cell of highest value

= Start is obtained by backtracking to first cell of value zero

Local Alignment

Example: Knockin’ on Heaven’s Door

Binary similarity
matrix

Bob Dylan

> Guns and Roses




Local Alignment

Example: Knockin’ on Heaven’s Door

Bob Dylan

20

> Guns and Roses

94.2

hos Accumulated
score matrix

Local Alignment

Example: Knockin’ on Heaven’s Door
%’ Accumulated
score matrix

Cell with max.

"% score=94.2

Bob Dylan

30

200

> Guns and Roses

Local Alignment

Example: Knockin’ on Heaven’s Door

Bob Dylan

20

> Guns and Roses

94.2

0 Accumulated
score matrix

Cell with max.
score = 94.2

Alignment path
30 of maximal score

Local Alignment

Example: Knockin’ on Heaven’s Door
w?  Accumulated
score matrix

Cell with max.
"% score=94.2
Alignment path
2 of maximal score

Bob Dylan

200

> Guns and Roses

Local Alignment

Example: Knockin’ on Heaven’s Door

Bob Dylan

200

| 2 Guns and Roses

9 Accumulated
score matrix

Cell with max.
score = 94.2

Alignment path
a0 of maximal score

Matching
subsequences

Cover Song ldentification

Query: Bob Dylan — Knockin’ on Heaven’s Door &
Retrieval result:

Rank | Recording Score

1. Guns and Roses: Knockin' On Heaven'’s Door | 94.2 >
2. Avril Lavigne: Knockin* On Heaven’s Door 86.6 >
3. Wyclef Jean: Knockin‘ On Heaven’s Door 83.8

4. Bob Dylan: Not For You 65.4

5. Guns and Roses: Patience 61.8

6. Bob Dylan: Like A Rolling Stone 57.2

7.-14.




Cover Song ldentification

Conclusions (Cover Song Identification)

. : >
QUery. AC/DC — nghway To Hell . Harmony-based approach
Retrieval result:
Rank | Recording Score = Binary cost measure a good trade-off between
robustness and expressiveness
1. AC/DC: Hard As a Rock 79.2
2. Hayseed Dixie: Dirty Deeds Done Dirt Cheap | 72.9 = Measure is suitable for document retrieval, but seems to
3. AC/DC: Let There Be Rock 69.6 be too coarse for audio matching applications
4. AC/DC: TNT (Live) 65.0
5.-11. | ... = Every song has to be compared with any other
12. | Hayseed Dixie: Highway To Hell 304 (g — method does not scale to large data collection
13. | AC/DC: Highway To Hell Live (live) 21.0 |
14. = What are suitable indexing methods?
Conclusions (Audio Retrieval)
Retrieval Audio Audio Cover song
task identification matching identification
Identification Concrete audio | Different Different
recording interpretations versions
Query Short fragment | Audio clip Entire song
(5-10 seconds) | (10-40 seconds)
Retrieval level | Subsequence Subsequence Document
Features Spectral peaks | Chroma Chroma
(abstract) (harmony) (harmony)
Indexing Hashing Inverted lists No indexing




