

Music Synchronization: Audio-Audio

- Koopman \rightsquigarrow $V := (v^1, v^2, \dots, v^N)$ N = 12Ruebsam \rightsquigarrow $W := (w^1, w^2, \dots, w^M)$ M = 18
- v^n, w^m = 12-dimensional normalized chroma vectors
- Local cost measure $c:\mathbb{R}^{12}\times\mathbb{R}^{12}\to\mathbb{R}$ $c(v^n,w^m):=1-\langle v^n,w^m\rangle$
- $N \times M$ cost matrix $C(n,m) := c(v^n, w^m)$

Music Synchronization: Audio-Audio

Cost-minimizing warping path

Feature resolution: 1 Hz

Cost-Minimizing Warping Path

- Computation via dynamic programming
 - → Dynamic Time Warping (DTW)
- Memory requirements and running time: O(NM)
- Problem: Infeasible for large N and M
- Example: Feature resolution 10 Hz, pieces 15 min
 ⇒ *N*, *M* ~ 10,000
 ⇒ *N* · *M* ~ 100,000,000

Resolution 4 Hz

Resolution 1 Hz

Resolution 2 Hz

Problem: Cost matrix may degenerate → useless warping path

Strategy: Multiscale Approach

Improve robustness by enhancing cost matrix

Improve robustness by enhancing cost matrix

Strategy: Multiscale Approach

Chroma features at three levels: 0.33 Hz / 1 Hz / 10 Hz

Recording 1	length [sec]	Recording 2	length [sec]	$t_{ m DTW}$ [sec]	$t_{ m MsDTW}$ [sec]	[%]
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Strategy: Multiscale Approach

Chroma features at three levels: 0.33 Hz / 1 Hz / 10 Hz

Recording 1	length [sec]	Recording 2	length [sec]	t _{DTW} [sec]	$t_{ m MsDTW}$ [sec]	[%]
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Number of matrix entries needed for DTW and MsDTW:

	DTW	MsDTW	%
Level 1	120,808,050	2,117,929	1.75
Level 2	1,209,030	17,657	1.46
Level 3	134,464	134,464	100

Music Synchronization: Audio-Audio

Applications

- Efficient music browsing
- Blending from one interpretation to another one
- Mixing and morphing different interpretations
- Tempo studies

System: SyncPlayer/AudioSwitcher

Music Synchronization: Audio-Audio

Conclusions

- Chroma features
 - \rightsquigarrow suited for harmony-based music
- Relatively coarse but good global alignments
- Multiscale approach: simple, robust, fast

System: Match (Dixon)

Argerich1965_Chopin_op15_1 Arrau1978_Chopin_op15_1 Ashkenazy1985_Chopin_op15_1 Barenboim1981_Chopin_op15_1 Harasiewicz1961_Chopin_op15_1 Horowttz1957_Chopin_op15_1 Leonskaja1992_Chopin_op15_1 Perahia1994_Chopin_op15_1 Pires1996_Chopin_op15_1 Polini1968_Chopin_op15_1 Richter1968_Chopin_op15_1 Rubinstein1965_Chopin_op15_1

Music Synchronization: MIDI-Audio

Music Synchronization: Scan-Audio

Application: Score Viewer

Audio Recording

.

Music Synchronization: Lyrics-Audio

Difficult task!

High-Resolution Music Synchronization

Example: C - C - D - D

High-Resolution Music Synchronization

Onset Detection

- General goal: Detection of onsets of musical notes
- Typical signal properties at note onset positions:
 - increase in energy
 - change of pitch
 - change of spectral content
 - high frequency content
- Idea: locate note onset candidates by measuring changes in spectral content

Steps:

1. Spectrogram

Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression

$Y = \log(1 + C \cdot |X|)$

- human sensation
- enhances low intensity values
- high frequency content
- reduces influence of amplitude
 - modulation

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation

energy increase to be captured

only positive values considered

Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation

Novelty Curve

Onset Detection

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation
- 4. Accumulation

Novelty Curve

High-Resolution Music Synchronization

Cost matrix based on decaying impulses

High-Resolution Music Synchronization

Ideas:

- Build up cost matrix with corridors of low cost
- Decaying strategy enforce corridor structure
- Each corridor corresponds to MIDI-audio pair of note onset candidates
- Warping path tends to run through corridors of low cost
 - $\rightarrow\,$ note onset positions are likely to be aligned

High-Resolution Music Synchronization

Cost matrix for decaying impulses

High-Resolution Music Synchronization

Cost matrix based on decaying impulses

High-Resolution Music Synchronization

High-Resolution Music Synchronization

Cost matrix for decaying impulses

- Accuracy
- Variablity of music

Conclusions: Music Synchronization

Combination of various strategies

- Feature level
- Local cost measure level
- Global alignment level
- Evidence pooling using competing strategies

Conclusions: Music Synchronization

Offline vs. Online

- Online version: Dixon/Widmer (ISMIR 2005)
- Hidden Markov Models: Raphael (ISMIR 2004)
- Score-following
- Automatic accompaniment

Conclusions: Music Synchronization

Presence of variations

- Instrumentation
- Musical structure
- Polyphony
- Musical key
-