
Geometric Modeling
Summer Semester 2012

Linear Algebra & Function Spaces

(Recap)

Announcement

Room change:
• On Thursday, April 26th, room 024 is occupied.

• The lecture will be moved to room 021, E1 4
(the Tuesday’s lecture room).

• Only on this date.

Today...

Topics:

• Introduction: Geometric Modeling

 Motivation

 Overview: Topics

 Basic modeling techniques

• Mathematical Background

 Function Spaces

 Differential Geometry

• Interpolation and approximation

• Spline curves

Vector Spaces

Vectors

vectors are arrows in space
classically: 2 or 3 dim. Euclidian space

Vector Operations

v

w

v + w

“Adding” Vectors:
Concatenation

Vector Operations

v

Scalar Multiplication:
Scaling vectors (incl. mirroring)

1.5·v

2.0·v

-1.0·v

You can combine it...

v

Linear Combinations:
This is basically all you can do.

w

2w + v

n

i
ii

1

vr

Vector Spaces

Vector space:

• Set of vectors V

• Based on field F (we use only F =)

• Two operations:

 Adding vectors u = v + w (u, v, w V)

 Scaling vectors w = v (u V, F)

• Vector space axioms:

Additional Tools

More concepts:
• Subspaces, linear spans, bases

• Scalar product
 Angle, length, orthogonality

 Gram-Schmidt orthogonalization

• Cross product (ℝ3)

• Linear maps
 Matrices

• Eigenvalues & eigenvectors

• Quadratic forms

(Check your old math books)

Structure

Vector spaces

• Any finite-dim., real vector space is isomorphic to ℝ𝑛

 Arrays of numbers

 Behave like arrows in a flat (Euclidean) geometry

• Proof:

 Construct basis

 Represent as span of basis vectors

Infinite-dimensional spaces

• Require more numbers

 Same principle

 Approximate with finite basis

Example Spaces

Function spaces:

• Space of all functions f:

• Space of all smooth Ck functions f:

• Space of all functions f: [0..1]5 8

• etc...

0 1 0 1 0 1

+ =

Function Spaces

Intuition:

• Start with a finite dimensional vector

• Increase sampling density towards infinity

• Real numbers: uncountable amount of dimensions

0 1 0 1 0 1
d = 9 d = 18 d =

 [f1,f2,...,f9]T [f1,f2,...,f18]T f(x)

Dot Product on Function Spaces

Scalar products

• For square-integrable functions f, g: n ,
standard scalar product defined as:

• Measures abstract length and “angle”
(not in a geometric sense)

Orthogonal functions:

• No mutual influence in linear combinations

• Adding one to the other does not change the value in the
other ones direction.

 dxxgxfgf)()(:

Approximation of Function Spaces

Finite dimensional subspaces:

• Function spaces with infinite dimension are hard to
represented on a computer

• For numerical purpose, finite-dimensional subspaces are
used to approximate the larger space

• Two basic approaches

Approximation of Function Spaces

Task:

• Given: Infinite-dimensional function space V.

• Task: Find f V with a certain property.

Recipe: “Finite Differences”

• Sample function f on discrete grid

• Approximate property discretely

 Derivatives => finite differences

 Integrals => Finite sums

• Optimization: Find best discrete function

Approximation of Function Spaces

Recipe: “Finite Elements”

• Choose basis functions b1, ..., bd V

• Find 𝑓 = 𝜆𝑖𝑏𝑖
𝑑
𝑖=1 that matches the property best

• 𝑓 is described by (1,...,d)

actual solution function space basis approximate solution

Examples

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2

Monomial basis

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2

Fourier basis

0 2

B-spline basis

“Best Match”

Linear combination matches best

• Solution 1: Least squares minimization

 𝑓 𝑥 − 𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 → 𝑚𝑖𝑛

ℝ

• Solution 2: Galerkin method

∀𝑖 = 1. . 𝑛: 𝑓 − 𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑖 = 0

• Both are equivalent

Optimality Criterion

Given:

• Subspace W ⊆ V

• An element 𝐯 ∈ V

Then we get:

• 𝐰 ∈ W minimizes the quadratic error w − 𝐯 2

(i.e. the Euclidean distance) if and only if:

• the residual w − 𝐯 is orthogonal to W

Least squares = minimal Euclidean distance

W

V
𝐯

𝐰

Formal Derivation

Least-squares

E 𝑓 = 𝑓 𝑥 − 𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥

ℝ

 = 𝑓2 𝑥 − 2 𝜆𝑖𝑓 𝑥 𝑏𝑖 𝑥 + 𝜆𝑖

𝑛

𝑖=1

𝜆𝑗𝑏𝑖 𝑥 𝑏𝑗 𝑥

𝑛

𝑖=1

𝑛

𝑖=1

𝑑𝑥

ℝ

Setting derivatives to zero:

𝛻E 𝑓 = −2
𝜆1 𝑓, 𝑏1

⋮
𝜆𝑛 𝑓, 𝑏𝑛

+ 𝜆1, … , 𝜆𝑛

⋱ ⋮ ⋰
⋯ 𝑏𝑖 𝑥 , 𝑏𝑗 𝑥 ⋯

⋰ ⋮ ⋱

Result:

∀𝑗 = 1. . 𝑛: 𝑓 − 𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑗 = 0

Linear Maps

Linear Maps

A Function

• f: V W between vector spaces V, W

is linear if and only if:

• v1,v2V: f (v1+v2) = f (v1) + f (v2)

• vV, F: f (v) = f (v)

Constructing linear mappings:

A linear map is uniquely determined if we specify a mapping
value for each basis vector of V.

Matrix Representation

Finite dimensional spaces

• Linear maps can be represented as matrices

• For each basis vector vi of V, we specify the mapped
vector wi.

• Then, the map f is given by:

nn

n

vv

v

v

ff wwv

 ...)(11

1

Matrix Representation

This can be written as matrix-vector product:

The columns are the images of the basis vectors (for which the
coordinates of v are given)

n

n

v

v

vf
1

1

||

||

)(ww

Affine Maps

Intuition

• Linear maps do not permit translations

• Affine map = linear map + translation

Representation

• 𝑓: ℝ𝑛 → ℝ𝑚

• 𝑓 𝐱 = 𝐌𝐱 + 𝐭

• Matrix 𝐌 ∈ ℝ𝑛×𝑚, vector 𝐭 ∈ ℝ𝑚

Affine Maps

Formal characterization

𝑓 is affine if and only if:

Given weights 𝛼𝑖 with

 𝛼𝑖

𝑛

𝑘=1

= 1

we always have:

𝑓 𝑥1, … , 𝛼𝑖𝑥𝑖
𝑘

, … , 𝑥𝑚

𝑛

𝑘=1

= 𝛼𝑖𝑓 𝑥1, … , 𝑥𝑖
𝑘

, … , 𝑥𝑚

𝑛

𝑘=1

Geometric Intuition

Weighted averages of points are preserved:

1 –

p1

p2

p1

p2

p3

p 1

3

2

Geometric Intuition

Weighted averages of points are preserved:

Linear Systems of Equations

Problem: Invert an affine map

• Given: Mx = b

• We know M, b

• Looking for x

Solution

• Set of solutions: always an affine subspace of n,
or the empty set.

 Point, line, plane, hyperplane...

• Innumerous algorithms for solving linear systems

Solvers for Linear Systems

Algorithms for solving linear systems of equations:

• Gaussian elimination: O(n3) operations for n n matrices

• We can do better, in particular for special cases:

 Band matrices:
constant bandwidth

 Sparse matrices:
constant number of non-zero
entries per row

– Store only non-zero entries

– Instead of (3.5, 0, 0, 0, 7, 0, 0),
store [(1:3.5), (5:7)]

Solvers for Linear Systems

Algorithms for solving linear systems of n equations:

• Band matrices, O(1) bandwidth:
 Modified O(n) elimination algorithm.

• Iterative Gauss-Seidel solver
 Converges for diagonally dominant matrices
 Typically: O(n) iterations, each costs O(n) for a sparse matrix.

• Conjugate Gradient solver
 Only symmetric, positive definite matrices
 Guaranteed: O(n) iterations
 Typically good solution after O(n) iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the
Conjugate Gradient Method Without the Agonizing Pain, 1994.

Eigenvectors & Eigenvalues

Definition:

• Linear map M, non-zero vector x with

 Mx = x

• an is eigenvalue of M

• x is the corresponding eigenvector.

Example

Intuition:

• In the direction of an eigenvector, the linear map acts like
a scaling

• Example: two eigenvalues (0.5 and 2)

• Two eigenvectors

• Standard basis contains no eigenvectors

Eigenvectors & Eigenvalues

Diagonalization:

In case an n n matrix M has n linear independent
eigenvectors, we can diagonalize M by transforming to this
coordinate system: M = TDT-1.

Spectral Theorem

Spectral Theorem:

Given: symmetric n n matrix M of real numbers (M = MT)

It follows: There exists an orthogonal set of n eigenvectors.

This implies:

Every (real) symmetric matrix can be diagonalized:

M = TDTT with an orthogonal matrix T, diagonal matrix D.

Computation

Simple algorithm

• “Power iteration” for symmetric matrices

• Computes largest eigenvalue even for large matrices

• Algorithm:

 Start with a random vector (maybe multiple tries)

 Repeatedly multiply with matrix

 Normalize vector after each step

 Repeat until ration before / after normalization converges
(this is the eigenvalue)

• Intuition:

 Largest eigenvalue = “dominant” component/direction

Powers of Matrices

What happens:

• A symmetric matrix can be written as:

• Taking it to the k-th power yields:

• Bottom line: Eigenvalue analysis key to understanding
powers of matrices.

T

1

T TTTDTM

n

T

1

TTTT ... TTTTDTDTTDTTDTM

k

n

k

kk

Improvements

Improvements to the power method:

• Find smallest? – use inverse matrix.

• Find all (for a symmetric matrix)? – run repeatedly,
orthogonalize current estimate to already known
eigenvectors in each iteration (Gram Schmidt)

• How long does it take? – ratio to next smaller eigenvalue,
gap increases exponentially.

There are more sophisticated algorithms based on
this idea.

Generalization: SVD

Singular value decomposition:

• Let M be an arbitrary real matrix (may be rectangular)

• Then M can be written as:

 M = U D VT

 The matrices U, V are orthogonal

 D is a diagonal matrix (might contain zeros)

 The diagonal entries are called singular values.

• U and V are usually different

• Diagonalizable matrices:

 U = V

 Singular values = eigenvalues

M U D

VT

Singular Value Decomposition

Singular value decomposition

1

2

3

4

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0 0

0 0 0

=

orthogonal

orthogonal

Singular Value Decomposition

Singular value decomposition

• Can be used to solve linear systems of equations

• For full rank, square M:

 M = U D VT

 M-1 = (U D VT)-1 = (VT)-1 D-1 (U-1) = V D-1 UT

• Good numerical properties (numerically stable)

• More expensive than iterative solvers

• The OpenCV library provides a very good implementation
of the SVD

Example:
Linear Inverse Problems

Inverse Problems

Settings

• A (physical) process f takes place

• It transforms the original input x into an output b

• Task: recover x from b

Examples:

• 3D structure from photographs

• Tomography: values from line integrals

• 3D geometry from a noisy 3D scan

Linear Inverse Problems

Assumption: f is linear and finite dimensional

f (x) = b Mf x = b

Inversion of f is said to be an ill-posed problem, if one
of the following three conditions hold:

• There is no solution

• There is more than one solution

• There is exactly one solution, but the SVD contains very
small singular values.

Ill posed Problems

Ratio: Small singular values amplify errors

• Assume inexact input

 Measurement noise

 Numerical noise

• Reminder: M-1 = V D-1 UT

• Orthogonal transforms preserve norm of x,
so V and U do not cause problems

does not hurt
(orthogonal)

does not hurt
(orthogonal)

this one is decisive

Ill posed Problems

Ratio: Small singular values amplify errors

• Reminder: x = M-1b = (V D-1 UT)b

• Say D looks like that:

• Any input noise in b in the direction of the fourth right
singular vector will be amplified by 109.

• If our measurement precision is less than that, the result
will be unusable.

• Does not depend on how we invert the matrix.

• Condition number: max /min

000000001.0000

09.000

001.10

0005.2

:D

Ill Posed Problems

Two problems:

(1) Mapping destroys information

 goes below noise level

 cannot be recovered by any means

(2) Inverse mapping amplifies noise

 yields garbage solution

 even remaining information not recovered

 extremely large random solutions are obtained

We can do something about problem #2

000000001.0000

09.000

001.10

0005.2

:D

Regularization

Regularization
• Avoiding destructive noise caused by inversion

 Various techniques

 Goal: ignore the misleading information

Approaches
• Subspace inversion: Ignore subspace with small singular values

 Needs an SVD, risk of “ringing”

• Additional assumptions:
 smoothness (or something similar)

 make compound problem (f
-1 + assumptions) well posed

Illustration of the Problem

original function smoothed function

f g f ⊗ g forward
problem

Illustration of the Problem

f’ f ⊗ g inverse
problem

smoothed function reconstructed function

Illustration of the Problem

f’ f ⊗ g inverse
problem

regularized
reconstructed function

smoothed function

Quadratic Forms

Multivariate Polynomials

A multi-variate polynomial of total degree d:

• A function f: n , x f(x)

• f is a polynomial in the components of x

• Any 1D direction f(s + tr) is a polynomial of
maximum degree d in t.

Examples:

• f(x, y) := x + xy + y is of total degree 2. In diagonal
direction, we obtain f(t[1/ 2, 1/ 2]T) = t2.

• f(x, y) := c20x2 + c02y2 + c11xy + c10x + c01y + c00 is a
quadratic polynomial in two variables

Quadratic Polynomials

In general, any quadratic polynomial in n variables
can be written as:

• xTA x + bTx + c

• A is an n n matrix, b is an n-dim. vector, c is a number

• Matrix A can always be chosen to be symmetric

• If it isn’t, we can substitute by 0.5·(A + AT), not changing
the polynomial

Example

Example:

xxxx

xxx

45.2

5.21

42

31

43

21

2

1

4)5.25.2(1

4)32(1

4321

43

21
][

43

21
][

43

21
)(

TT

22

22

T

yxyx

yxyx

yyxyyxxx

yx

yx
yx

y

x
yx

f
y

x
f

Quadratic Polynomials

Specifying quadratic polynomials:

• xTA x + bTx + c

• b shifts the function in space (if A has full rank):

• c is an additive constant

 cxx

cxxxx

cxx

xAA

AAA

A

2T
sym.) (A

TTT

T

= b

Some Properties

Important properties

• Multivariate polynomials form a vector space

• We can add them component-wise:

 2x2 + 3y2 + 4xy + 2x + 2y + 4

+ 3x2 + 2y2 + 1xy + 5x + 5y + 5

= 5x2 + 5y2 + 5xy + 7x + 7y + 9

• In vector notation:

 xTA1 x + b1
Tx + c1

 + (xTA2x + b2
Tx + c2)

 = xT(A1 + A2)x + (b1 + b2)Tx + (c1 + c2)

Quadratic Polynomials

Quadrics

• Zero level set of a quadratic polynomial: “quadric”

• Shape depends on eigenvalues of A

• b shifts the object in space

• c sets the level

Shapes of Quadrics

Shape analysis:

• A is symmetric

• A can be diagonalized with orthogonal eigenvectors

• Q contains the principal axis of the quadric

• The eigenvalues determine the quadratic growth
(up, down, speed of growth)

 xx

xx

n

n

QQ

QQAxx

1T

1TTT

Shapes of Quadratic Polynomials

1 = 1, 2 = 1 1 = 1, 2 = -1 1 = 1, 2 = 0

The Iso-Lines: Quadrics

1 > 0, 2 > 0 1 < 0, 2 > 0

elliptic hyperbolic

1 = 0, 2 0

degenerate case

Quadratic Optimization

Quadratic Optimization

• Minimize quadratic objective function

xTA x + bTx + c

• Required: A > 0 (only positive eigenvalues)

 It’s a paraboloid with a unique minimum

 The vertex (critical point) can be determined
by simply solving a linear system

• Necessary and sufficient condition

2A x = –b

Condition Number

How stable is the solution?

• Depends on Matrix A

good bad

Regularization

Regularization

• Sums of positive semi-definite matrices are
positive semi-definite

• Add regularizing quadric

 “Fill in the valleys”

 Bias in the solution

Example

• Original: xTA x + bTx + c

• Regularized: xT(A + I)x + bTx + c

A + I

Rayleigh Quotient

Relation to eigenvalues:

• Min/max eigenvalues of a symmetric A expressed as
constraint quadratic optimization:

• The other way round – eigenvalues solve a certain type of
constrained, (non-convex) optimization problem.

 Axx
xx

Axx T

1T

T

min minmin

x

 Axx
xx

Axx T

1T

T

max maxmax

x

Coordinate Transformations

One more interesting property:

• Given a positive definite symmetric (“SPD”) matrix M
(all eigenvalues positive)

• Such a matrix can always be written as square of another
matrix:

n

T
T

T

D

DTDTDTTDDT

1

2
TTDTM

SPD Quadrics

Interpretation:

• Start with a unit positive quadric xTx.

• Scale the main axis (diagonal of D)

• Rotate to a different coordinate system (columns of T)

• Recovering main axis from M: Compute eigensystem
(“principal component analysis”)

 2
T DTTDTMI Identity

main axis

xxT MxxT

Why should I care?

What are quadrics good for?

• log-probability of Gaussian models

• Estimation in Gaussian probabilistic
models...

 ...is quadratic optimization.

 ...is solving of linear systems of equations.

• Quadratic optimization

 easy to use & solve

 feasible :-)

• Approximate more complex models locally

Gaussian normal distribution

2

2

,
2

exp
π2

1
)(

x
xp

Constructing Bases

How to construct a basis?

Goal (of much of this whole lecture):

• Build a good basis for a problem

Ingredients:

• Basis functions

• Placement in space

• Semantics

Basis Function

Shape of individual functions:

• Smoothness

• Symmetry

• Support

Ensembles of Functions

Basis function sets:

• Stationary

 Same function repeating? (dilations)

 Varying shapes

Ensembles of Functions

Basis function sets:

• Orthogonality?

 Basis functions span independent directions?

 Advantages: easier, faster, more stable computations

 Disadvantages: strong constraint on function shape

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2

Monomial basis

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2

Fourier basis

(orthogonal)

0 2

Example: Radial Basis functions

Radial basis function:

• Pick one template function

• Symmetric around “center” point

Instantiate by placing in domain 1D

2D

Placement

Regular grids Irregular

Context:

• Stationary functions, or very similar shape

• How to instantiate?

Placement

Regular grids Irregular
(w/scaling)

Semantics

Explicit representations

• Height field

• Parametric surface

• Function value corresponds
to actual geometry

Implicit representation

• Scalar fields

• Zero crossings correspond
to actual geometry

How to shape basis functions?

Back to this problem:

• Shape the functions of an ensemble (a whole basis)

Tools:

• Consistency order

• Frequency space analysis

Consistency Order

Consistency order:

• A basis of functions is of order k iff it can represent
polynomials of total degree k exactly

• Better fit to smooth targets

• High consistency order: risk of oscillations (later)

approx

target

zero-order

approx

target

first-order

approx

target

third-order
(PPT cubic splines)

Frequency Space Analysis

Which of the following two is better?

Why?

• Long story...

• We’ll look at this next.

A Very Brief Overview
of Sampling Theory

Topics

Topics

• Fourier transform

• Theorems

• Analysis of regularly sampled signals

• Irregular sampling

Fourier Basis

Fourier Basis

• Function space: {𝑓: ℝ → ℝ, 𝑓 sufficiently smooth}

 Fourier basis can represent

– Functions of finite variation

– Lipchitz-smooth functions

• Basis: sine waves of different frequency and phase:

 Real basis:

{sin 2𝜋𝜔𝑥 , cos 2𝜋𝜔𝑥 𝜔 ∈ ℝ

 Complex variant:

{𝑒−2𝜋𝑖𝜔𝑥 𝜔 ∈ ℝ

(Euler‘s formula: 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥)

Fourier Transform

Fourier Basis properties:

• Fourier basis: {𝑒−𝑖2𝜋𝜔𝑥 𝜔 ∈ ℝ

 Orthogonal basis

 Projection via scalar products Fourier transform

• Fourier transform: (f: ℝ → ℂ) → F: ℝ → ℂ

𝐹(𝜔) = 𝑓 𝑥 𝑒−2𝜋𝑖𝑥𝜔𝑑𝑥
∞

−∞

• Inverse Fourier transform: F: ℝ → ℂ → (f: ℝ → ℂ)

𝑓(𝜔) = 𝐹 𝑥 𝑒2𝜋𝑖𝑥𝜔𝑑𝑥
∞

−∞

Fourier Transform

Interpreting the result:

• Transforming a real function f: ℝ → ℝ

• Result: F 𝜔 : ℝ → ℂ

 𝜔 are frequencies (real)

 Real input 𝑓:
Symmetric F −𝜔 = F 𝜔

 Output are complex numbers

– Magnitude: “power spectrum”
(frequency content)

– Phase: phase spectrum
(encodes shifts)

𝜔 = 𝑒−𝑖𝑥

𝜔
∡𝜔

Im

Re

Important Functions

Some important Fourier-transform pairs

• Box function:

𝑓 𝑥 = box 𝑥 → 𝐹 𝜔 =
sin 𝜔

𝜔
≔ sinc 𝜔

• Gaussian:

𝑓 𝑥 = 𝑒−𝑎𝑥2
 → 𝐹 𝜔 =

𝜋

𝑎
⋅ 𝑒−

𝜋𝜔 2

𝑎

box(x) sinc(𝜔)

Higher Dimensional FT

Multi-dimensional Fourier Basis:

• Functions f: ℝ𝑑 → ℂ

• 2D Fourier basis:

𝑓(𝑥, 𝑦) represented
as combination of

{𝑒−𝑖2𝜋𝜔𝑥𝑥 ⋅ 𝑒−𝑖2𝜋𝜔𝑦𝑦 𝜔𝑥 , 𝜔𝑦 ∈ ℝ

• In general: all combinations of 1D functions

Convolution

Convolution:

• Weighted average of functions

• Definition:

Example:

 dxtxgxftgtf)()()()(

t

g
f

Theorems

Fourier transform is an isometry:

• 𝑓, 𝑔 = 𝐹, 𝐺

• In particular 𝑓 = 𝐹

Convolution theorem:

• 𝐹𝑇 𝑓⨂𝑔 = 𝐹 ⋅ G

• Fourier Transform converts convolution into
multiplication

 All other cases as well:
𝐹𝑇−1 𝑓 ⋅ 𝑔 = 𝐹⨂G, 𝐹𝑇 𝑓 ⋅ 𝑔 = 𝐹⨂G, 𝐹𝑇−1 𝐹 ⋅ 𝐺 = 𝐹⨂G

 Fourier basis diagonalizes shift-invariant linear operators

Sampling a Signal

Given:

• Signal 𝑓: ℝ → ℝ

• Store digitally:

 Sample regularly … 𝑓 0.3 , 𝑓 0.4 , 𝑓 0.5 …

• Question: what information is lost?

Sampling

Regular Sampling

Case I: Sampling

• Band-limited signals can be represented exactly

 Sampling with frequency 𝜈𝑠:
Highest frequency in Fourier spectrum ≤ 𝜈𝑠/2

• Higher frequencies alias

 Aliasing artifacts (low-frequency patterns)

 Cannot be removed after sampling (loss of information)

band-limited aliasing

Regular Sampling

Case II: Reconstruction

• When reconstructing from discrete samples

• Use band-limited basis functions

 Highest frequency in Fourier spectrum ≤ 𝜈𝑠/2

 Otherwise: Reconstruction aliasing

Regular Sampling

Reconstruction Filters

• Optimal filter: sinc
(no frequencies discarded)

• However:

 Ringing artifacts in spatial domain

 Not useful for images (better for audio)

• Compromise

 Gaussian filter
(most frequently used)

 There exist better ones,
such as Mitchell-Netravalli,
Lancos, etc...

Ringing by sinc reconstruction
from [Mitchell & Netravali,

Siggraph 1988]

2D sinc 2D Gaussian

Irregular Sampling

Irregular Sampling

• No comparable formal theory

• However: similar idea

 Band-limited by “sampling frequency”

 Sampling frequency = mean sample spacing

– Not as clearly defined as in regular grids

– May vary locally (adaptive sampling)

• Aliasing

 Random sampling creates noise as aliasing artifacts

 Evenly distributed sample concentrate noise in higher frequency
bands in comparison to purely random sampling

Consequences for our applications

When designing bases for function spaces

• Use band-limited functions

• Typical scenario:

 Regular grid with spacing 𝜎

 Grid points 𝐠𝑖

 Use functions: exp −
𝐱−𝐠𝑖

2

𝜎2

• Irregular sampling:

 Same idea

 Use estimated sample spacing instead of grid width

 Set 𝜎 to average sample spacing to neighbors

Tutorials:

Linear Algebra
Software

GeoX

GeoX comes with several linear algebra libraries:

• 2D, 3D, 4D vectors and matrices: LinearAlgebra.h

• Large (dense) vectors and matrices:
DynamicLinearAlgebra.h

• Gaussian elimination: invertMatrix()

• Sparse matrices: SparseLinearAlgebra.h

• Iterative solvers (Gauss-Seidel, conjugate gradients,
power iteration): IterativeSolvers.h

