Geometric Modeling

Summer Semester 2012

Linear Algebra & Function Spaces (Recap)

Room change:

- On Thursday, April 26th, room 024 is occupied.
- The lecture will be moved to room 021, E1 4 (the Tuesday's lecture room).
- Only on this date.

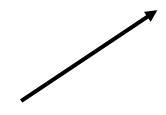
Today...

Topics:

- Introduction: Geometric Modeling
 - Motivation
 - Overview: Topics
 - Basic modeling techniques
- Mathematical Background
 - Function Spaces
 - Differential Geometry
- Interpolation and approximation
- Spline curves

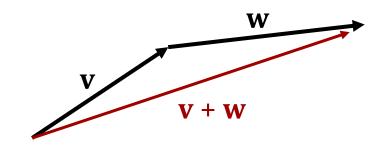
Vector Spaces

Vectors



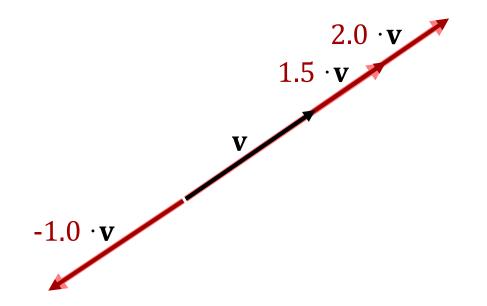
vectors are arrows in space classically: 2 or 3 dim. Euclidian space

Vector Operations



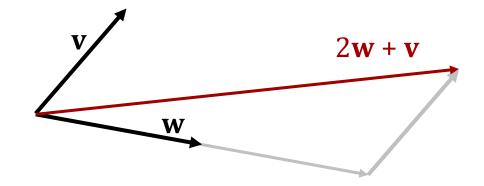
"Adding" Vectors: Concatenation

Vector Operations



Scalar Multiplication: Scaling vectors (incl. mirroring)

You can combine it...



Linear Combinations: This is basically all you can do.

$$\mathbf{r} = \sum_{i=1}^n \lambda_i \mathbf{v}_i$$

Vector Spaces

Vector space:

- Set of vectors V
- Based on field F (we use only $F = \mathbb{R}$)
- Two operations:
 - Adding vectors $\mathbf{u} = \mathbf{v} + \mathbf{w} (\mathbf{u}, \mathbf{v}, \mathbf{w} \in V)$
 - Scaling vectors $w = \lambda v$ ($u \in V, \lambda \in F$)
- Vector space *axioms*:

(a1)
$$\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}: (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (s1) $\forall \mathbf{v} \in \mathbf{V}, \lambda, \mu \in \mathbf{F}: \lambda(\mu \mathbf{v}) = (\lambda \mu)\mathbf{v}$

- (a2) $\forall u, v \in V: u + v = v + u$
- (a3) $\exists \mathbf{0}_{V} \in V : \forall \mathbf{v} \in V : \mathbf{v} + \mathbf{0}_{V} = \mathbf{v}$

(a4) $\forall \mathbf{v} \in V : \exists \mathbf{w} \in V : \mathbf{v} + \mathbf{w} = \mathbf{0}_{v}$

(s2) for
$$\mathbf{1}_{\mathrm{F}} \in \mathrm{F} : \forall \mathbf{v} \in \mathrm{V} : \mathbf{1}_{\mathrm{F}} \mathbf{v} = \mathbf{v}$$

(s3)
$$\forall \lambda \in \mathbf{F} : \forall \mathbf{v}, \mathbf{w} \in \mathbf{V} : \lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$$

(s4)
$$\forall \lambda, \mu \in \mathbf{F}, \mathbf{v} \in \mathbf{V} : (\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$$

Additional Tools

More concepts:

- Subspaces, linear spans, bases
- Scalar product
 - Angle, length, orthogonality
 - Gram-Schmidt orthogonalization
- Cross product (\mathbb{R}^3)
- Linear maps
 - Matrices
- Eigenvalues & eigenvectors
- Quadratic forms

(Check your old math books)

Structure

Vector spaces

- Any finite-dim., real vector space is isomorphic to \mathbb{R}^n
 - Arrays of numbers
 - Behave like arrows in a flat (Euclidean) geometry
- Proof:
 - Construct basis
 - Represent as span of basis vectors

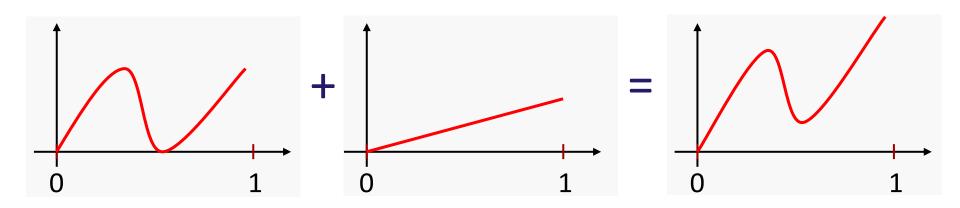
Infinite-dimensional spaces

- Require more numbers
 - Same principle
 - Approximate with finite basis

Example Spaces

Function spaces:

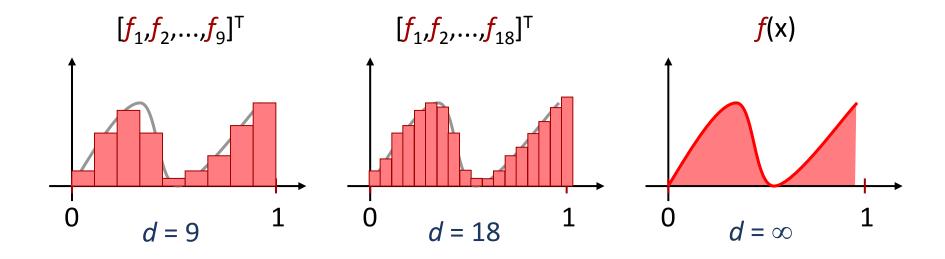
- Space of all functions $f: \mathbb{R} \to \mathbb{R}$
- Space of all smooth C^k functions $f: \mathbb{R} \to \mathbb{R}$
- Space of all functions $f: [0..1]^5 \rightarrow \mathbb{R}^8$
- etc...



Function Spaces

Intuition:

- Start with a finite dimensional vector
- Increase sampling density towards infinity
- Real numbers: uncountable amount of dimensions



Dot Product on Function Spaces

Scalar products

• For square-integrable functions $f, g: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, standard scalar product defined as:

$$f \cdot g \coloneqq \int_{\Omega} f(x)g(x)dx$$

 Measures abstract length and "angle" (not in a geometric sense)

Orthogonal functions:

- No mutual influence in linear combinations
- Adding one to the other does not change the value in the other ones direction.

Approximation of Function Spaces

Finite dimensional subspaces:

- Function spaces with infinite dimension are hard to represented on a computer
- For numerical purpose, finite-dimensional subspaces are used to approximate the larger space
- Two basic approaches

Approximation of Function Spaces

Task:

- **Given:** Infinite-dimensional function space V.
- **Task:** Find $f \in V$ with a certain property.

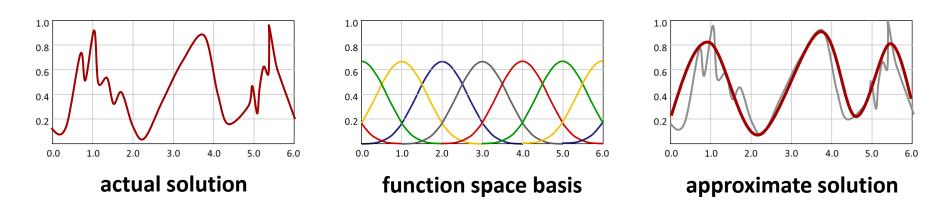
Recipe: "Finite Differences"

- Sample function f on discrete grid
- Approximate property discretely
 - Derivatives => finite differences
 - Integrals => Finite sums



• Optimization: Find best discrete function

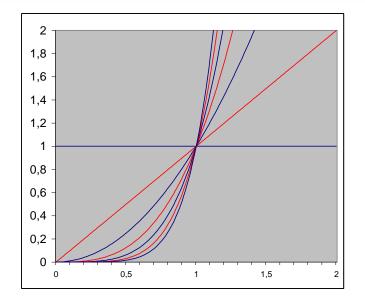
Approximation of Function Spaces

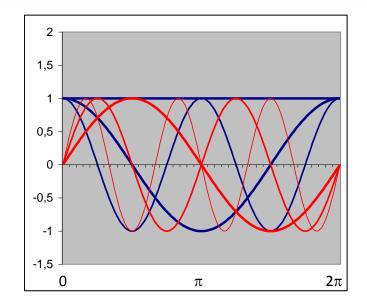


Recipe: "Finite Elements"

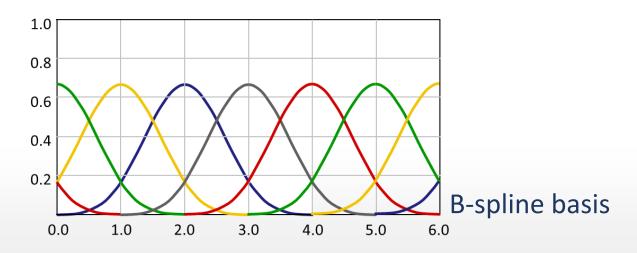
- Choose basis functions b_1 , ..., $b_d \in V$
- Find $\tilde{f} = \sum_{i=1}^{d} \lambda_i b_i$ that matches the property best
- \tilde{f} is described by $(\lambda_1, ..., \lambda_d)$

Examples





Monomial basis



"Best Match"

Linear combination matches best

• Solution 1: Least squares minimization

$$\int_{\mathbb{R}} \left(f(x) - \sum_{i=1}^{n} \lambda_{i} b_{i}(x) \right)^{2} dx \to \min$$

• Solution 2: Galerkin method

$$\forall i = 1..n: \left(f - \sum_{i=1}^{n} \lambda_i b_i, b_i \right) = 0$$

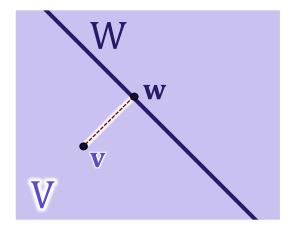
• Both are equivalent

Optimality Criterion

Given:

- Subspace $W \subseteq V$
- An element $\mathbf{v} \in V$

Then we get:



- w ∈ W minimizes the quadratic error (w − v)²
 (i.e. the Euclidean distance) if and only if:
- the residual $(\mathbf{w} \mathbf{v})$ is orthogonal to W

Least squares = minimal Euclidean distance

Formal Derivation

Least-squares

$$E(f) = \int_{\mathbb{R}} \left(f(x) - \sum_{i=1}^{n} \lambda_i b_i(x) \right)^2 dx$$
$$= \int_{\mathbb{R}} \left(f^2(x) - 2\sum_{i=1}^{n} \lambda_i f(x) b_i(x) + \sum_{i=1}^{n} \sum_{i=1}^{n} \lambda_i \lambda_j b_i(x) b_j(x) \right) dx$$

Setting derivatives to zero:

$$\nabla \mathbf{E}(f) = -2 \begin{pmatrix} \lambda_1 \langle f, b_1 \rangle \\ \vdots \\ \lambda_n \langle f, b_n \rangle \end{pmatrix} + \begin{bmatrix} \lambda_1, \dots, \lambda_n \end{bmatrix} \begin{pmatrix} \ddots & \vdots & \ddots \\ \cdots & \langle b_i(x), b_j(x) \rangle & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Result:

$$\forall j = 1..n: \left\langle \left(f - \sum_{i=1}^n \lambda_i b_i \right), b_j \right\rangle = 0$$

Linear Maps

Linear Maps

A Function

f: V → W between vector spaces V, W

is linear if and only if:

- $\forall \mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V}$: $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$
- $\forall v \in V, \lambda \in F: f(\lambda v) = \lambda f(v)$

Constructing linear mappings:

A linear map is uniquely determined if we specify a mapping value for each basis vector of V.

Matrix Representation

Finite dimensional spaces

- Linear maps can be represented as matrices
- For each basis vector v_i of V, we specify the mapped vector w_i.
- Then, the map *f* is given by:

$$f(\mathbf{v}) = f\left(\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \right) = v_1 \mathbf{w}_1 + \dots + v_n \mathbf{w}_n$$

Matrix Representation

This can be written as matrix-vector product:

$$f(\mathbf{v}) = \begin{pmatrix} | & | \\ \mathbf{w}_1 & \cdots & \mathbf{w}_n \\ | & | \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{pmatrix}$$

The columns are the images of the basis vectors (for which the coordinates of **v** are given)

Affine Maps

Intuition

- Linear maps do not permit translations
- Affine map = linear map + translation

Representation

- $f: \mathbb{R}^n \to \mathbb{R}^m$
- $f(\mathbf{x}) = \mathbf{M}\mathbf{x} + \mathbf{t}$
- Matrix $\mathbf{M} \in \mathbb{R}^{n imes m}$, vector $\mathbf{t} \in \mathbb{R}^m$

Affine Maps

Formal characterization

f is affine if and only if:

Given weights α_i with

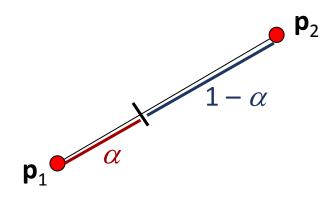
$$\sum_{k=1}^{n} \alpha_i = 1$$

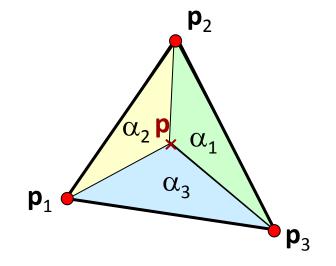
we always have:

$$f\left(x_1,\ldots,\sum_{k=1}^n\alpha_i x_i^{(k)},\ldots,x_m\right) = \sum_{k=1}^n\alpha_i f\left(x_1,\ldots,x_i^{(k)},\ldots,x_m\right)$$

Geometric Intuition

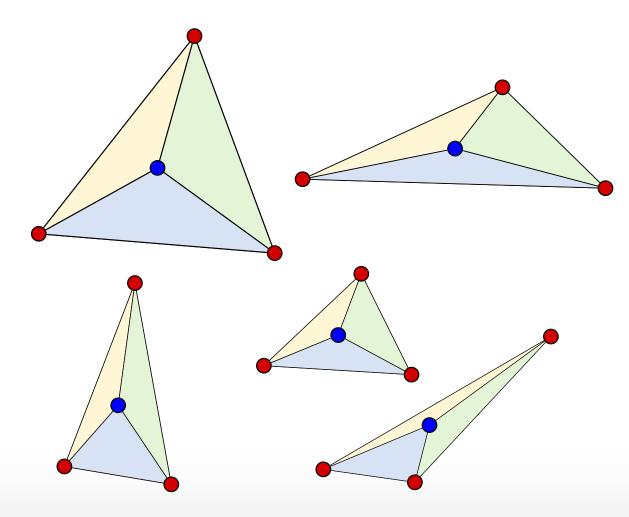
Weighted averages of points are preserved:





Geometric Intuition

Weighted averages of points are preserved:



Linear Systems of Equations

Problem: Invert an affine map

- Given: **Mx** = **b**
- We know M, b
- Looking for **x**

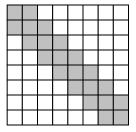
Solution

- Set of solutions: always an *affine subspace* of ℝⁿ, or the empty set.
 - Point, line, plane, hyperplane...
- Innumerous algorithms for solving linear systems

Solvers for Linear Systems

Algorithms for solving linear systems of equations:

- Gaussian elimination: $O(n^3)$ operations for $n \times n$ matrices
- We can do better, in particular for special cases:
 - Band matrices: constant bandwidth
 - Sparse matrices:
 - constant number of non-zero entries per row
 - Store only non-zero entries
 - Instead of (3.5, 0, 0, 0, 7, 0, 0), store [(1:3.5), (5:7)]



Solvers for Linear Systems

Algorithms for solving linear systems of *n* equations:

- Band matrices, O(1) bandwidth:
 - Modified O(n) elimination algorithm.
- Iterative Gauss-Seidel solver
 - Converges for diagonally dominant matrices
 - Typically: O(n) iterations, each costs O(n) for a sparse matrix.
- Conjugate Gradient solver
 - Only symmetric, positive definite matrices
 - Guaranteed: O(n) iterations
 - Typically good solution after $O(\sqrt{n})$ iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, 1994.

Eigenvectors & Eigenvalues

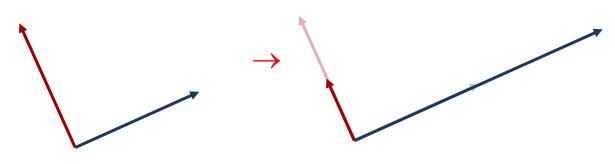
Definition:

- Linear map M, non-zero vector x with $Mx = \lambda x$
- λ an is *eigenvalue* of **M**
- **x** is the corresponding *eigenvector*.

Example

Intuition:

 In the direction of an eigenvector, the linear map acts like a scaling



- Example: two eigenvalues (0.5 and 2)
- Two eigenvectors
- Standard basis contains no eigenvectors

Eigenvectors & Eigenvalues

Diagonalization:

In case an $n \times n$ matrix **M** has *n* linear independent eigenvectors, we can *diagonalize* **M** by transforming to this coordinate system: **M** = **TDT**⁻¹.

Spectral Theorem:

Given: symmetric $n \times n$ matrix **M** of real numbers (**M** = **M**^T)

It follows: There exists an *orthogonal* set of *n* eigenvectors.

This implies:

Every (real) symmetric matrix can be *diagonalized*: $M = TDT^{T}$ with an orthogonal matrix T, diagonal matrix D.

Computation

Simple algorithm

- "Power iteration" for symmetric matrices
- Computes largest eigenvalue even for large matrices
- Algorithm:
 - Start with a random vector (maybe multiple tries)
 - Repeatedly multiply with matrix
 - Normalize vector after each step
 - Repeat until ration before / after normalization converges (this is the eigenvalue)
- Intuition:
 - Largest eigenvalue = "dominant" component/direction

Powers of Matrices

What happens:

• A symmetric matrix can be written as:

$$\mathbf{M} = \mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}} = \mathbf{T} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} \mathbf{T}^{\mathrm{T}}$$

• Taking it to the *k*-th power yields:

$$\mathbf{M}^{k} = \mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}}\mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}} \dots \mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}} = \mathbf{T}\mathbf{D}^{k}\mathbf{T}^{\mathrm{T}} = \mathbf{T}\begin{pmatrix}\lambda_{1}^{k} & & \\ & \ddots & \\ & & \ddots & \\ & & & \lambda_{n}^{k}\end{pmatrix}\mathbf{T}^{\mathrm{T}}$$

• Bottom line: Eigenvalue analysis key to understanding powers of matrices.

Improvements to the power method:

- Find smallest? use inverse matrix.
- Find all (for a symmetric matrix)? run repeatedly, orthogonalize current estimate to already known eigenvectors in each iteration (Gram Schmidt)
- How long does it take? ratio to next smaller eigenvalue, gap increases exponentially.

There are more sophisticated algorithms based on this idea.

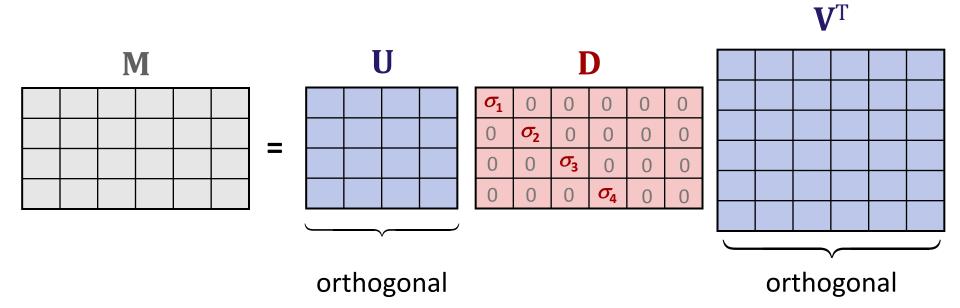
Generalization: SVD

Singular value decomposition:

- Let **M** be an arbitrary real matrix (may be rectangular)
- Then **M** can be written as:
 - M = U D V^T
 - The matrices U, V are orthogonal
 - D is a diagonal matrix (might contain zeros)
 - The diagonal entries are called *singular values*.
- U and V are usually different
- Diagonalizable matrices:
 - U = V
 - Singular values = eigenvalues

Singular Value Decomposition

Singular value decomposition



Singular Value Decomposition

Singular value decomposition

- Can be used to solve linear systems of equations
- For full rank, square M:

 $\mathbf{M} = \mathbf{U} \ \mathbf{D} \ \mathbf{V}^{\mathsf{T}}$

 $\implies \mathbf{M}^{-1} = (\mathbf{U} \ \mathbf{D} \ \mathbf{V}^{\mathsf{T}})^{-1} = (\mathbf{V}^{\mathsf{T}})^{-1} \ \mathbf{D}^{-1} \ (\mathbf{U}^{-1}) = \mathbf{V} \ \mathbf{D}^{-1} \ \mathbf{U}^{\mathsf{T}}$

- Good numerical properties (numerically stable)
- More expensive than iterative solvers
- The OpenCV library provides a very good implementation of the SVD

Example: Linear Inverse Problems

Inverse Problems

Settings

- A (physical) process *f* takes place
- It transforms the original input x into an output b
- Task: recover **x** from **b**

Examples:

- 3D structure from photographs
- Tomography: values from line integrals
- 3D geometry from a noisy 3D scan

Linear Inverse Problems

Assumption: f is linear and finite dimensional $f(\mathbf{x}) = \mathbf{b} \implies \mathbf{M}_{f}\mathbf{x} = \mathbf{b}$

Inversion of *f* is said to be an ill-posed problem, if one of the following three conditions hold:

- There is no solution
- There is more than one solution
- There is exactly one solution, but the SVD contains very small singular values.

Ill posed Problems

Ratio: Small singular values amplify errors

- Assume inexact input
 - Measurement noise
 - Numerical noise
- Reminder: M⁻¹ = V D⁻¹ U^T

does not hurt (orthogonal) (orthogonal) this one is decisive

 Orthogonal transforms preserve norm of x, so V and U do not cause problems

Ill posed Problems

Ratio: Small singular values amplify errors

- Reminder: $\mathbf{x} = \mathbf{M}^{-1}\mathbf{b} = (\mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{\mathsf{T}})\mathbf{b}$
- Say **D** looks like that:

$$\mathbf{D} \coloneqq \begin{pmatrix} 2.5 & 0 & 0 & 0 \\ 0 & 1.1 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0 & 0 & 0.00000001 \end{pmatrix}$$

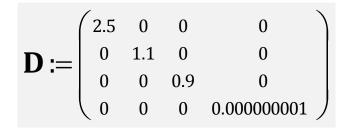
- Any input noise in b in the direction of the fourth right singular vector will be amplified by 10⁹.
- If our measurement precision is less than that, the result will be unusable.
- Does *not* depend on *how* we invert the matrix.
- Condition number: $\sigma_{\rm max}/\sigma_{\rm min}$

Ill Posed Problems

Two problems:

- (1) Mapping destroys information
 - goes below noise level
 - cannot be recovered by any means
- (2) Inverse mapping amplifies noise
 - yields garbage solution
 - even remaining information not recovered
 - extremely large random solutions are obtained

We can do something about problem #2



Regularization

Regularization

- Avoiding destructive noise caused by inversion
 - Various techniques
 - Goal: ignore the misleading information

Approaches

- Subspace inversion: Ignore subspace with small singular values
 - Needs an SVD, risk of "ringing"
- Additional assumptions:
 - smoothness (or something similar)
 - make compound problem (f⁻¹ + assumptions) well posed

Illustration of the Problem

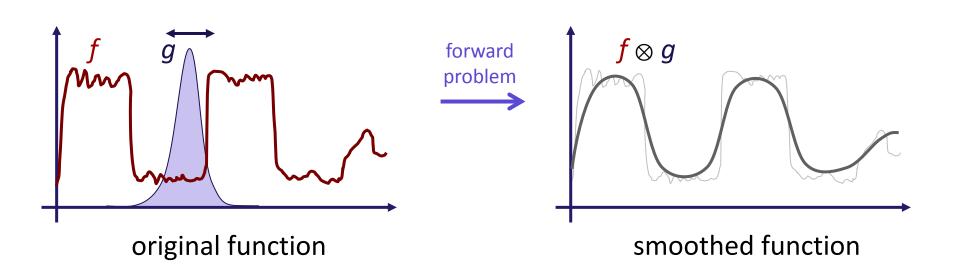


Illustration of the Problem

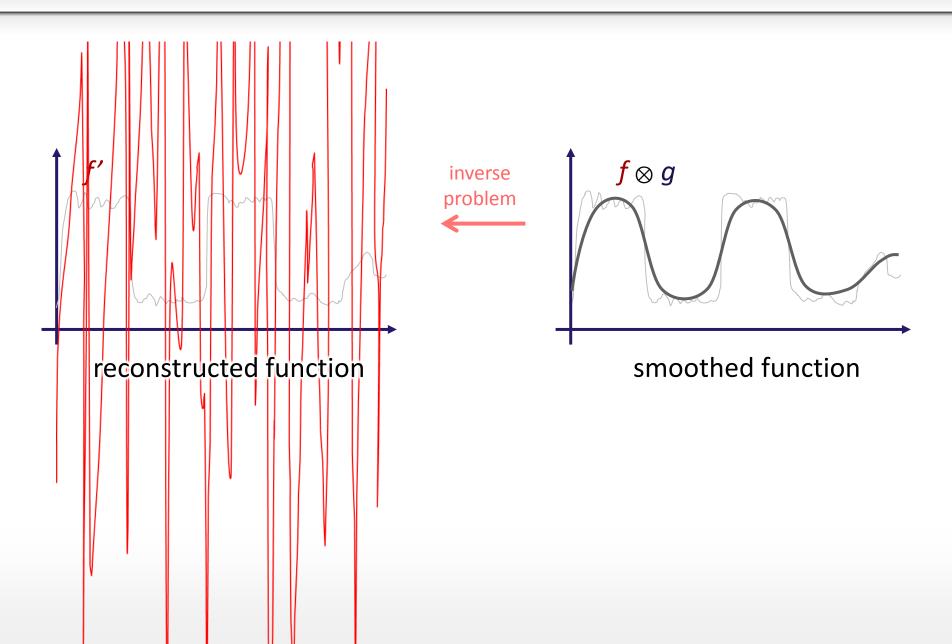
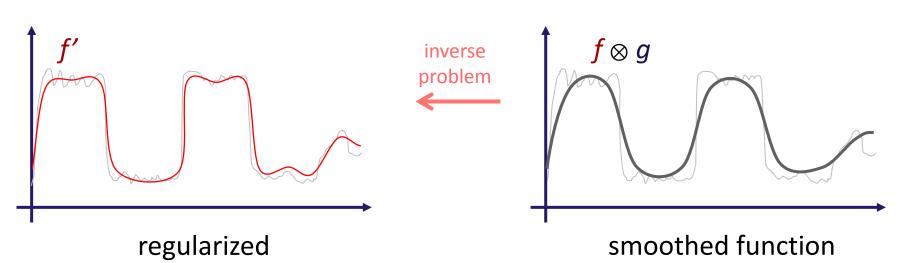


Illustration of the Problem



reconstructed function

Quadratic Forms

Multivariate Polynomials

A *multi-variate* polynomial of total degree *d*:

- A function $f: \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \to f(\mathbf{x})$
- *f* is a polynomial in the components of x
- Any 1D direction *f*(s + *t*r) is a polynomial of maximum degree *d* in *t*.

Examples:

- f(x, y) := x + xy + y is of total degree 2. In diagonal direction, we obtain $f(t[1/\sqrt{2}, 1/\sqrt{2}]^T) = t^2$.
- $f(x, y) := c_{20}x^2 + c_{02}y^2 + c_{11}xy + c_{10}x + c_{01}y + c_{00}$ is a quadratic polynomial in two variables

Quadratic Polynomials

In general, any quadratic polynomial in *n* variables can be written as:

- $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x} + \mathbf{c}$
- A is an *n*×*n* matrix, **b** is an *n*-dim. vector, **c** is a number
- Matrix **A** can always be chosen to be symmetric
- If it isn't, we can substitute by 0.5 · (A + A^T), not changing the polynomial

Example

Example:

$$f\left(\begin{pmatrix}x\\y\end{pmatrix}\right) = f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \begin{pmatrix}1 & 2\\ 3 & 4\end{pmatrix} \mathbf{x}$$

= $[x \ y] \begin{pmatrix}1 & 2\\ 3 & 4\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix} = [x \ y] \begin{pmatrix}1x & 2y\\ 3x & 4y\end{pmatrix}$
= $x1x + x2y + y3x + y4y$
= $1x^{2} + (2+3)xy + 4y^{2}$
= $1x^{2} + (2.5 + 2.5)xy + 4y^{2}$
= $\mathbf{x}^{\mathrm{T}} \frac{1}{2} \begin{bmatrix}\begin{pmatrix}1 & 2\\ 3 & 4\end{pmatrix} + \begin{pmatrix}1 & 3\\ 2 & 4\end{bmatrix} \mathbf{x} = \mathbf{x}^{\mathrm{T}} \begin{pmatrix}1 & 2.5\\ 2.5 & 4\end{pmatrix} \mathbf{x}$

Quadratic Polynomials

Specifying quadratic polynomials:

- $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x} + \mathbf{c}$
- **b** shifts the function in space (if **A** has full rank):

$$(x - \mu)^{\mathrm{T}} \mathbf{A} (x - \mu) + c$$

$$= x^{\mathrm{T}} \mathbf{A} x - \mu^{\mathrm{T}} \mathbf{A} x - x^{\mathrm{T}} \mathbf{A} \mu + \mu \cdot \mu + c$$
(A sym.)
$$= x^{\mathrm{T}} \mathbf{A} x - (2\mathbf{A}\mu)\mathbf{x} + \mu \cdot \mu + c$$

$$= \mathbf{b}$$
c is an additive constant

c is an additive constant

Some Properties

Important properties

- Multivariate polynomials form a vector space
- We can add them component-wise:

 $2x^2 + 3y^2 + 4xy + 2x + 2y + 4$

$$+ 3x^{2} + 2y^{2} + 1xy + 5x + 5y + 5$$

 $= 5x^2 + 5y^2 + 5xy + 7x + 7y + 9$

• In vector notation:

 $\mathbf{x}^{\mathrm{T}}\mathbf{A}_{1}\mathbf{x} + \mathbf{b}_{1}^{\mathrm{T}}\mathbf{x} + c_{1}$ + $\lambda(\mathbf{x}^{\mathrm{T}}\mathbf{A}_{2}\mathbf{x} + \mathbf{b}_{2}^{\mathrm{T}}\mathbf{x} + c_{2})$ = $\mathbf{x}^{\mathrm{T}}(\mathbf{A}_{1} + \lambda\mathbf{A}_{2})\mathbf{x} + (\mathbf{b}_{1} + \lambda\mathbf{b}_{2})^{\mathrm{T}}\mathbf{x} + (c_{1} + \lambda c_{2})$

Quadratic Polynomials

Quadrics

- Zero level set of a quadratic polynomial: "quadric"
- Shape depends on eigenvalues of **A**
- **b** shifts the object in space
- c sets the level

Shapes of Quadrics

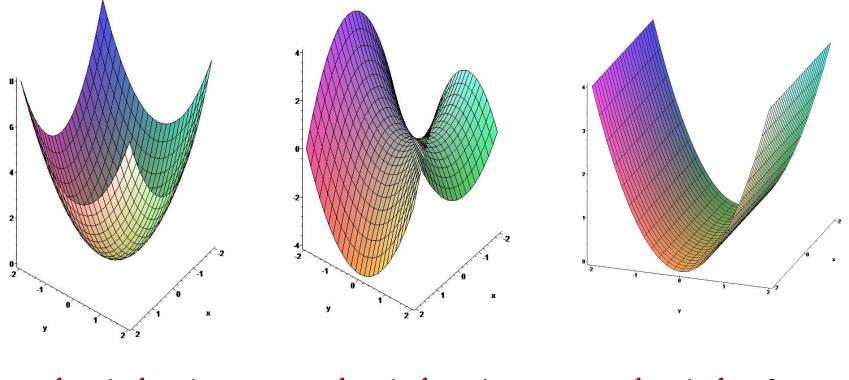
Shape analysis:

- A is symmetric
- A can be *diagonalized* with orthogonal *eigenvectors*

$$\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = x^{\mathrm{T}} \begin{bmatrix} \mathbf{Q}^{\mathrm{T}} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} \mathbf{Q} \end{bmatrix} x$$
$$= (\mathbf{Q} x)^{\mathrm{T}} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} (\mathbf{Q} x)$$

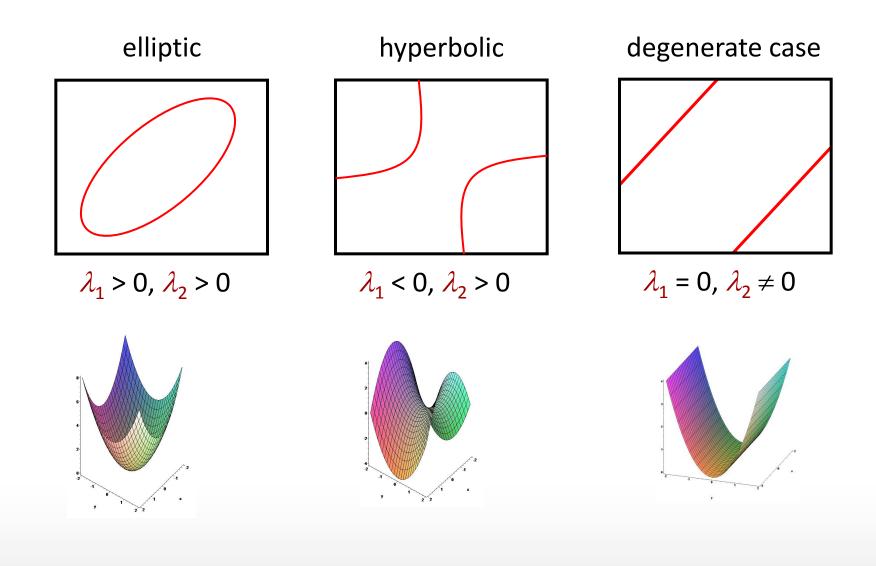
- **Q** contains the principal axis of the quadric
- The eigenvalues determine the quadratic growth (up, down, speed of growth)

Shapes of Quadratic Polynomials



 $\lambda_1 = 1, \lambda_2 = 1$ $\lambda_1 = 1, \lambda_2 = -1$ $\lambda_1 = 1, \lambda_2 = 0$

The Iso-Lines: Quadrics



Quadratic Optimization

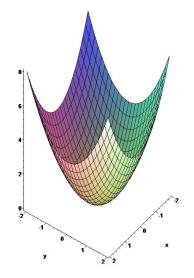
Quadratic Optimization

• Minimize quadratic objective function

 $\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X} + \mathbf{b}^{\mathrm{T}}\mathbf{X} + \mathbf{c}$

- Required: A > 0 (only positive eigenvalues)
 - It's a paraboloid with a unique minimum
 - The vertex (critical point) can be determined by simply solving a linear system
- Necessary and sufficient condition

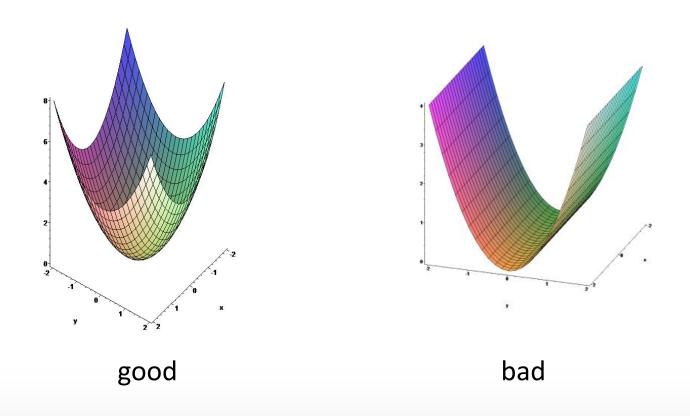
 $2\mathbf{A}\mathbf{x} = -\mathbf{b}$



Condition Number

How stable is the solution?

• Depends on Matrix A



Regularization

Regularization

- Sums of positive semi-definite matrices are positive semi-definite
- Add regularizing quadric
 - "Fill in the valleys"
 - Bias in the solution

Example

- Original: $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathrm{T}}\mathbf{x} + c$
- Regularized: $\mathbf{x}^{\mathrm{T}}(\mathbf{A} + \lambda \mathbf{I})\mathbf{x} + \mathbf{b}^{\mathrm{T}}\mathbf{x} + c$



Rayleigh Quotient

Relation to eigenvalues:

• Min/max eigenvalues of a symmetric **A** expressed as constraint quadratic optimization:

$$\lambda_{\min} = \min \frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} = \min_{\|x\|=1} \left(\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \right) \qquad \lambda_{\max} = \max \frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} = \max_{\|x\|=1} \left(\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \right)$$

 The other way round – eigenvalues solve a certain type of constrained, (non-convex) optimization problem.

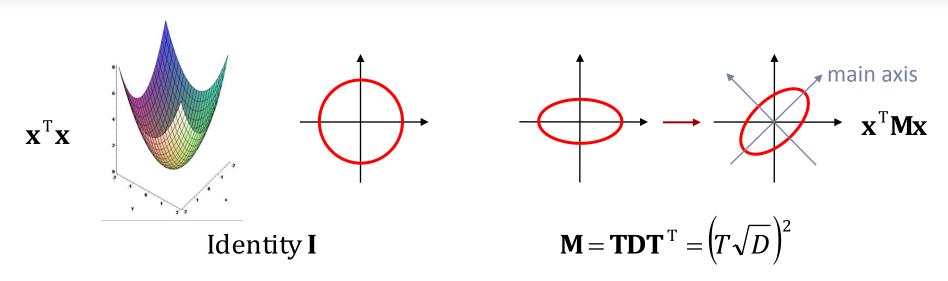
Coordinate Transformations

One more interesting property:

- Given a positive definite symmetric ("SPD") matrix M (all eigenvalues positive)
- Such a matrix can always be written as square of another matrix:

$$\mathbf{M} = \mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}} = \left(T\sqrt{D}\right)\left(\sqrt{D}^{\mathrm{T}}T^{\mathrm{T}}\right) = \left(T\sqrt{D}\right)\left(T\sqrt{D}\right)^{\mathrm{T}} = \left(T\sqrt{D}\right)^{2}$$
$$\sqrt{D} = \left(\begin{array}{c}\sqrt{\lambda_{1}} & & \\ & \ddots & \\ & & \sqrt{\lambda_{n}}\end{array}\right)$$

SPD Quadrics



Interpretation:

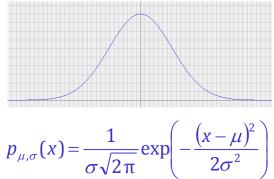
- Start with a unit positive quadric **x**^T**x**.
- Scale the main axis (diagonal of D)
- Rotate to a different coordinate system (columns of **T**)
- Recovering main axis from M: Compute eigensystem ("principal component analysis")

Why should I care?

What are quadrics good for?

- *log-probability* of Gaussian models
- Estimation in Gaussian probabilistic models...
 - ...is quadratic optimization.
 - ...is solving of linear systems of equations.
- Quadratic optimization
 - easy to use & solve
 - feasible :-)
- Approximate more complex models locally

Gaussian normal distribution



Constructing Bases

How to construct a basis?

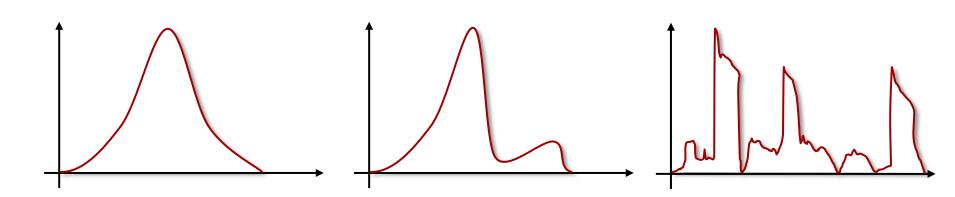
Goal (of much of this whole lecture):

• Build a good basis for a problem

Ingredients:

- Basis functions
- Placement in space
- Semantics

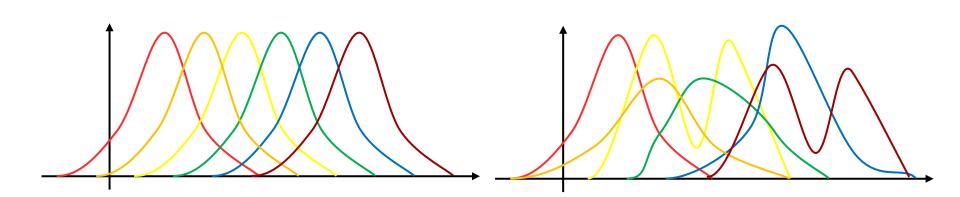
Basis Function



Shape of individual functions:

- Smoothness
- Symmetry
- Support

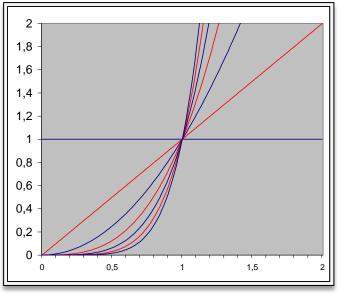
Ensembles of Functions

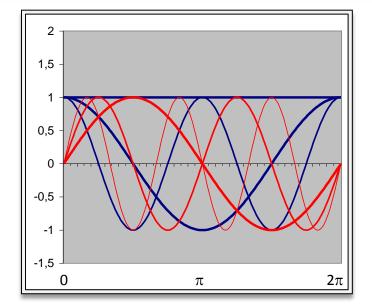


Basis function sets:

- Stationary
 - Same function repeating? (dilations)
 - Varying shapes

Ensembles of Functions





Fourier basis (orthogonal)

Basis function sets:

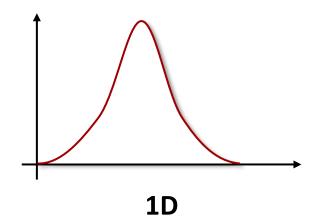
- Orthogonality?
 - Basis functions span independent directions?
 - Advantages: easier, faster, more stable computations
 - Disadvantages: strong constraint on function shape

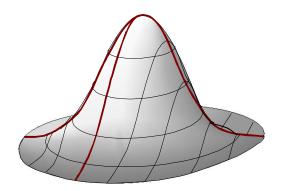
Example: Radial Basis functions

Radial basis function:

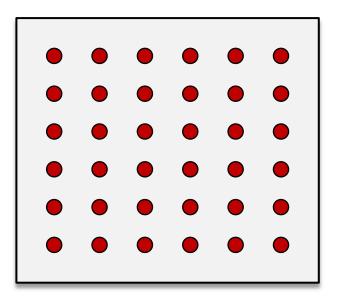
- Pick one template function
- Symmetric around "center" point

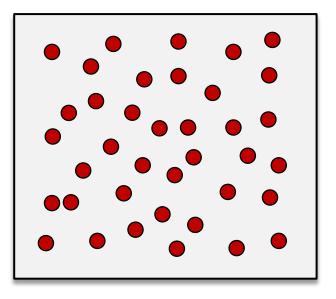
Instantiate by placing in domain





Placement

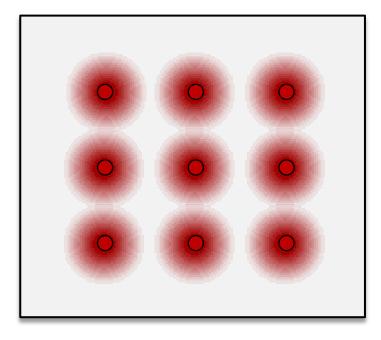


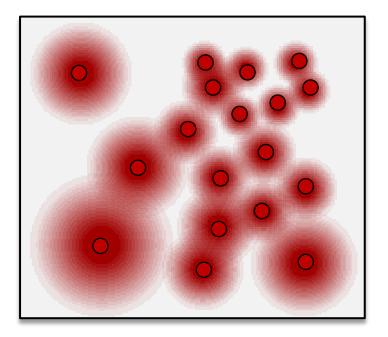


Context:

- Stationary functions, or very similar shape
- How to instantiate?

Placement





Regular grids

Irregular (w/scaling)

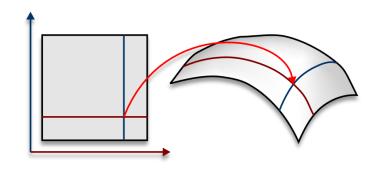
Semantics

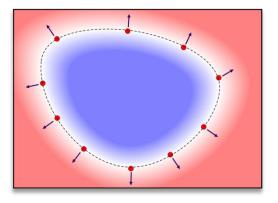
Explicit representations

- Height field
- Parametric surface
- Function value corresponds to actual geometry

Implicit representation

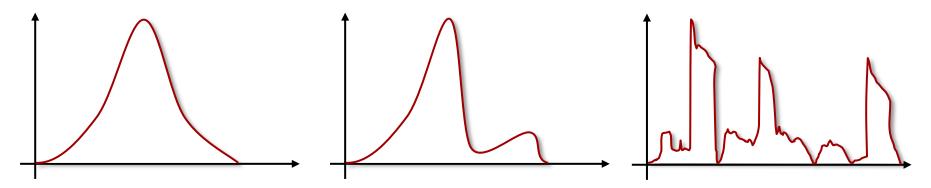
- Scalar fields
- Zero crossings correspond to actual geometry





How to shape basis functions?

Back to this problem:

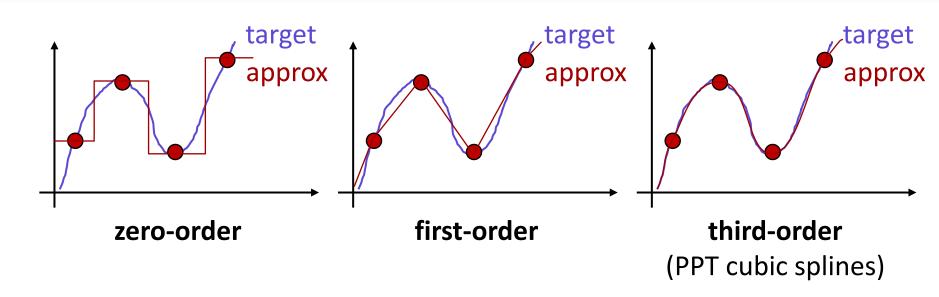


• Shape the functions of an *ensemble* (a whole basis)

Tools:

- Consistency order
- Frequency space analysis

Consistency Order

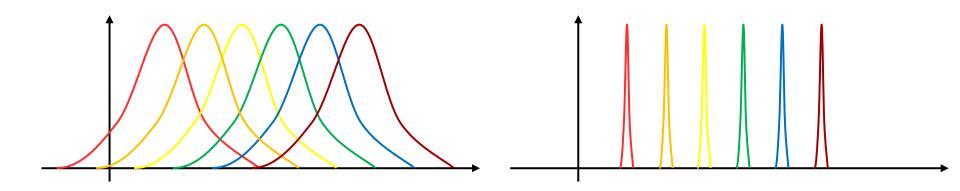


Consistency order:

- A basis of functions is of order k iff it can represent polynomials of total degree k exactly
- Better fit to smooth targets
- High consistency order: risk of oscillations (later)

Frequency Space Analysis

Which of the following two is better?



Why?

- Long story...
- We'll look at this next.

A Very Brief Overview of Sampling Theory

Topics

Topics

- Fourier transform
- Theorems
- Analysis of regularly sampled signals
- Irregular sampling

Fourier Basis

Fourier Basis

- Function space: $\{f : \mathbb{R} \to \mathbb{R}, f \text{ sufficiently smooth}\}$
 - Fourier basis can represent
 - Functions of finite variation
 - Lipchitz-smooth functions
- Basis: sine waves of different *frequency* and *phase*:
 - Real basis:

 $\{\sin 2\pi\omega x, \cos 2\pi\omega x \mid \omega \in \mathbb{R}\}\$

Complex variant:

 $\{e^{-2\pi i\omega x} \mid \omega \in \mathbb{R}\}$

(Euler's formula: $e^{ix} = \cos x + i \sin x$)

Fourier Transform

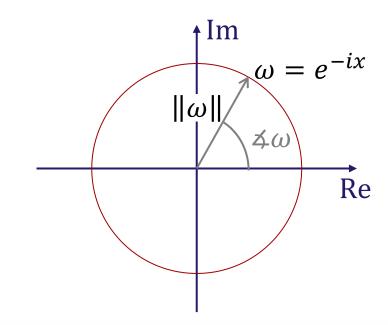
Fourier Basis properties:

- Fourier basis: $\{e^{-i2\pi\omega x} \mid \omega \in \mathbb{R}\}$
 - Orthogonal basis
 - Projection via scalar products \Rightarrow Fourier transform
- Fourier transform: $(f: \mathbb{R} \to \mathbb{C}) \to (F: \mathbb{R} \to \mathbb{C})$ $F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \omega} dx$
- Inverse Fourier transform: $(F: \mathbb{R} \to \mathbb{C}) \to (f: \mathbb{R} \to \mathbb{C})$ $f(\omega) = \int_{-\infty}^{\infty} F(x) e^{2\pi i x \omega} dx$

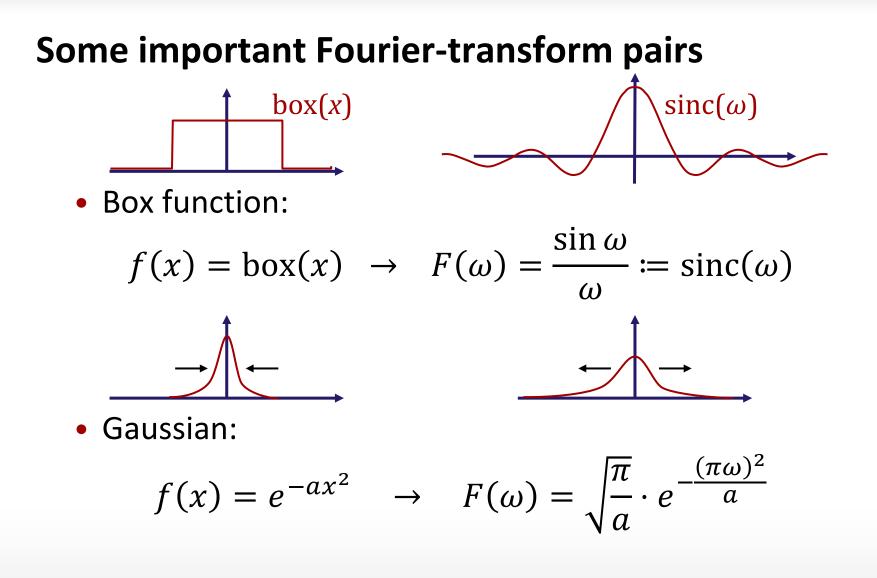
Fourier Transform

Interpreting the result:

- Transforming a real function $f: \mathbb{R} \to \mathbb{R}$
- Result: $F(\boldsymbol{\omega}): \mathbb{R} \to \mathbb{C}$
 - ω are frequencies (real)
 - Real input f: Symmetric $F(-\omega) = F(\omega)$
 - Output are complex numbers
 - Magnitude: "power spectrum" (frequency content)
 - Phase: phase spectrum (encodes shifts)



Important Functions



Higher Dimensional FT

Multi-dimensional Fourier Basis:

- Functions f: $\mathbb{R}^d \to \mathbb{C}$
- 2D Fourier basis:

 $f(x, y) \text{ represented} \\ \text{as combination of} \\ \{e^{-i2\pi\omega_x x} \cdot e^{-i2\pi\omega_y y} \mid \omega_x, \omega_y \in \mathbb{R}\}$

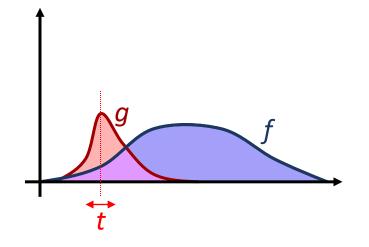
• In general: all combinations of 1D functions

Convolution

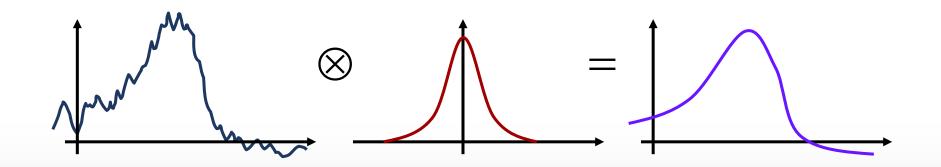
Convolution:

- Weighted average of functions
- Definition:

$$f(t) \otimes g(t) = \int_{-\infty}^{\infty} f(x)g(x-t)dx$$



Example:



Theorems

Fourier transform is an isometry:

- $\langle f, g \rangle = \langle F, G \rangle$
- In particular ||f|| = ||F||

Convolution theorem:

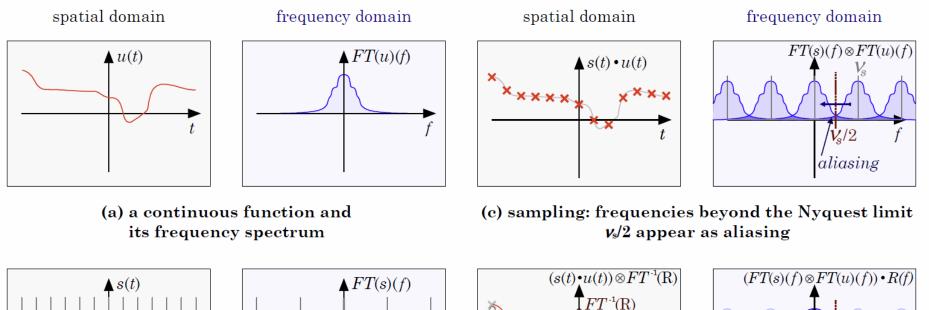
- $FT(f \otimes g) = F \cdot G$
- Fourier Transform converts convolution into multiplication
 - All other cases as well: $FT^{-1}(f \cdot g) = F \otimes G, FT(f \cdot g) = F \otimes G, FT^{-1}(F \cdot G) = F \otimes G$
 - Fourier basis diagonalizes shift-invariant linear operators

Sampling a Signal

Given:

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Store digitally:
 - Sample regularly ... f(0.3), f(0.4), f(0.5) ...
- Question: what information is lost?

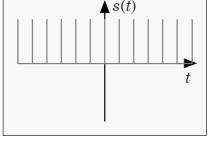
Sampling

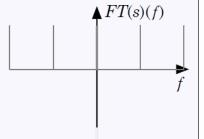


R(f)

(d) reconstruction: filtering with a low-pass filter R

to remove replicated spectra



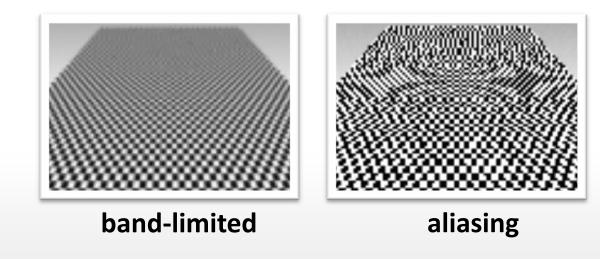


(b) a regular sampling pattern (impulse train) and its frequency spectrum

Regular Sampling

Case I: Sampling

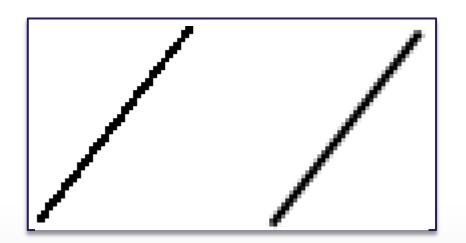
- Band-limited signals can be represented exactly
 - Sampling with frequency v_s : Highest frequency in Fourier spectrum $\leq v_s/2$
- Higher frequencies alias
 - Aliasing artifacts (low-frequency patterns)
 - Cannot be removed after sampling (loss of information)



Regular Sampling

Case II: Reconstruction

- When reconstructing from discrete samples
- Use band-limited basis functions
 - Highest frequency in Fourier spectrum $\leq v_s/2$
 - Otherwise: Reconstruction aliasing

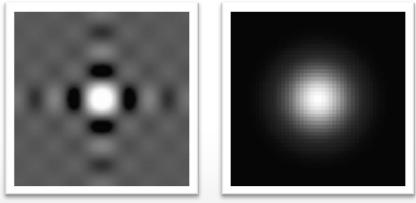


Regular Sampling

Reconstruction Filters

- Optimal filter: sinc (no frequencies discarded)
- However:
 - Ringing artifacts in spatial domain
 - Not useful for images (better for audio)
- Compromise
 - Gaussian filter (most frequently used)
 - There exist better ones, such as Mitchell-Netravalli, Lancos, etc...

Ringing by sinc reconstruction from [Mitchell & Netravali, Siggraph 1988]



2D sinc

2D Gaussian

Irregular Sampling

Irregular Sampling

- No comparable formal theory
- However: similar idea
 - Band-limited by "sampling frequency"
 - Sampling frequency = mean sample spacing
 - Not as clearly defined as in regular grids
 - May vary locally (adaptive sampling)
- Aliasing
 - Random sampling creates noise as aliasing artifacts
 - Evenly distributed sample concentrate noise in higher frequency bands in comparison to purely random sampling

Consequences for our applications

When designing bases for function spaces

- Use band-limited functions
- Typical scenario:
 - Regular grid with spacing σ
 - Grid points **g**_i

• Use functions:
$$\exp\left(-\frac{(\mathbf{x}-\mathbf{g}_i)^2}{\sigma^2}\right)$$

- Irregular sampling:
 - Same idea
 - Use estimated sample spacing instead of grid width
 - Set σ to average sample spacing to neighbors

Tutorials: Linear Algebra Software

GeoX

GeoX comes with several linear algebra libraries:

- 2D, 3D, 4D vectors and matrices: *LinearAlgebra.h*
- Large (dense) vectors and matrices: DynamicLinearAlgebra.h
- Gaussian elimination: *invertMatrix()*
- Sparse matrices: *SparseLinearAlgebra.h*
- Iterative solvers (Gauss-Seidel, conjugate gradients, power iteration): *IterativeSolvers.h*