
Geometric Modeling 
Summer Semester 2012 

Linear Algebra & Function Spaces 

(Recap) 



Announcement 

Room change: 
• On Thursday, April 26th, room 024 is occupied. 

• The lecture will be moved to room 021, E1 4 
(the Tuesday’s lecture room). 

• Only on this date. 



Today... 

Topics: 

• Introduction: Geometric Modeling 

 Motivation 

 Overview: Topics 

 Basic modeling techniques 

• Mathematical Background 

 Function Spaces 

 Differential Geometry 

• Interpolation and approximation 

• Spline curves 



Vector Spaces 



Vectors 

vectors are arrows in space 
classically: 2 or 3 dim. Euclidian space 



Vector Operations 

v 

w 

v + w 

“Adding” Vectors: 
Concatenation 



Vector Operations 

v 

Scalar Multiplication: 
Scaling vectors (incl. mirroring) 

1.5·v 

2.0·v 

-1.0·v 



You can combine it... 
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Linear Combinations: 
This is basically all you can do. 
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Vector Spaces 

Vector space: 

• Set of vectors V 

• Based on field F (we use only F = ) 

• Two operations: 

 Adding vectors u = v + w (u, v, w  V) 

 Scaling vectors w = v (u  V,   F) 

• Vector space axioms: 



Additional Tools 

More concepts: 
• Subspaces, linear spans, bases 

• Scalar product 
 Angle, length, orthogonality 

 Gram-Schmidt orthogonalization 

• Cross product (ℝ3) 

• Linear maps 
 Matrices 

• Eigenvalues & eigenvectors 

• Quadratic forms 

(Check your old math books) 

 

 



Structure 

Vector spaces 

• Any finite-dim., real vector space is isomorphic to ℝ𝑛  

 Arrays of numbers 

 Behave like arrows in a flat (Euclidean) geometry 

• Proof: 

 Construct basis 

 Represent as span of basis vectors 

Infinite-dimensional spaces 

• Require more numbers 

 Same principle 

 Approximate with finite basis 



Example Spaces 

Function spaces: 

• Space of all functions f:    

• Space of all smooth Ck functions f:    

• Space of all functions f: [0..1]5  8 

• etc... 

0 1 0 1 0 1 

+ = 



Function Spaces 

Intuition: 

• Start with a finite dimensional vector 

• Increase sampling density towards infinity 

• Real numbers: uncountable amount of dimensions 

0 1 0 1 0 1 
d = 9 d = 18 d =  

 [f1,f2,...,f9]T [f1,f2,...,f18]T f(x) 



Dot Product on Function Spaces 

Scalar products 

• For square-integrable functions f, g:   n  , 
standard scalar product defined as: 

 

 

• Measures abstract length and “angle” 
(not in a geometric sense) 

Orthogonal functions: 

• No mutual influence in linear combinations 

• Adding one to the other does not change the value in the 
other ones direction. 
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Approximation of Function Spaces 

Finite dimensional subspaces: 

• Function spaces with infinite dimension are hard to 
represented on a computer 

• For numerical purpose, finite-dimensional subspaces are 
used to approximate the larger space 

• Two basic approaches 

 



Approximation of Function Spaces 

Task: 

• Given: Infinite-dimensional function space V. 

• Task: Find f  V with a certain property. 

Recipe: “Finite Differences” 

• Sample function f on discrete grid 

• Approximate property discretely 

 Derivatives => finite differences 

 Integrals => Finite sums 

• Optimization: Find best discrete function 



Approximation of Function Spaces 

Recipe: “Finite Elements” 

• Choose basis functions b1, ..., bd  V 

• Find 𝑓 =  𝜆𝑖𝑏𝑖
𝑑
𝑖=1  that matches the property best 

• 𝑓  is described by (1,...,d) 

actual solution function space basis approximate solution 



Examples 
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“Best Match” 

Linear combination matches best 

• Solution 1: Least squares minimization 

 𝑓 𝑥 −  𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 → 𝑚𝑖𝑛

ℝ

 

 

• Solution 2: Galerkin method 

∀𝑖 = 1. . 𝑛: 𝑓 −  𝜆𝑖𝑏𝑖

𝑛

𝑖=1

,  𝑏𝑖 = 0 

• Both are equivalent 



Optimality Criterion 

Given: 

• Subspace W ⊆ V 

• An element 𝐯 ∈ V 

Then we get: 

• 𝐰 ∈ W minimizes the quadratic error w − 𝐯 2 

(i.e. the Euclidean distance) if and only if: 

• the residual w − 𝐯  is orthogonal to W 

Least squares = minimal Euclidean distance 

W 

V 
𝐯 

𝐰 



Formal Derivation 

Least-squares 

E 𝑓 =  𝑓 𝑥 −  𝜆𝑖𝑏𝑖 𝑥

𝑛

𝑖=1

2

𝑑𝑥 

ℝ

 

          =  𝑓2 𝑥 − 2  𝜆𝑖𝑓 𝑥 𝑏𝑖 𝑥 +   𝜆𝑖

𝑛

𝑖=1

𝜆𝑗𝑏𝑖 𝑥 𝑏𝑗 𝑥

𝑛

𝑖=1
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Setting derivatives to zero: 
 

𝛻E 𝑓 = −2
𝜆1 𝑓, 𝑏1

⋮
𝜆𝑛 𝑓, 𝑏𝑛

+ 𝜆1, … , 𝜆𝑛

⋱ ⋮ ⋰
⋯ 𝑏𝑖 𝑥 , 𝑏𝑗 𝑥 ⋯

⋰ ⋮ ⋱

 

Result: 

∀𝑗 = 1. . 𝑛:   𝑓 −  𝜆𝑖𝑏𝑖

𝑛

𝑖=1

, 𝑏𝑗 = 0 

 



Linear Maps 



Linear Maps 

A Function 

•  f: V  W between vector spaces V, W 

is linear if and only if: 

• v1,v2V: f (v1+v2) = f (v1) + f (v2) 

• vV, F: f (v) = f (v) 

Constructing linear mappings: 

A linear map is uniquely determined if we specify a mapping 
value for each basis vector of V. 

 



Matrix Representation 

Finite dimensional spaces 

• Linear maps can be represented as matrices 

• For each basis  vector vi of V, we specify the mapped 
vector wi. 

• Then, the map f is given by: 
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Matrix Representation 

This can be written as matrix-vector product: 

 

 

The columns are the images of the basis vectors (for which the 
coordinates of v are given) 
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Affine Maps 

Intuition 

• Linear maps do not permit translations 

• Affine map = linear map + translation 

Representation 

• 𝑓: ℝ𝑛 → ℝ𝑚 

• 𝑓 𝐱 = 𝐌𝐱 + 𝐭 

• Matrix 𝐌 ∈ ℝ𝑛×𝑚, vector 𝐭 ∈ ℝ𝑚 



Affine Maps 

Formal characterization 

𝑓 is affine if and only if: 
 

Given weights 𝛼𝑖 with 

 𝛼𝑖

𝑛

𝑘=1

= 1 

we always have: 

𝑓 𝑥1, … ,  𝛼𝑖𝑥𝑖
𝑘

, … , 𝑥𝑚

𝑛

𝑘=1

=  𝛼𝑖𝑓 𝑥1, … , 𝑥𝑖
𝑘

, … , 𝑥𝑚

𝑛

𝑘=1

 



Geometric Intuition 

Weighted averages of points are preserved: 
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Geometric Intuition 

Weighted averages of points are preserved: 



Linear Systems of Equations 

Problem: Invert an affine map 

• Given: Mx = b 

• We know M, b 

• Looking for x 

Solution 

• Set of solutions: always an affine subspace of n, 
or the empty set. 

 Point, line, plane, hyperplane... 

• Innumerous algorithms for solving linear systems 



Solvers for Linear Systems 

Algorithms for solving linear systems of equations: 

• Gaussian elimination: O(n3) operations for n  n matrices 

• We can do better, in particular for special cases: 

 Band matrices: 
constant bandwidth 
 

 Sparse matrices: 
constant number of non-zero 
entries per row 

– Store only non-zero entries 

– Instead of (3.5, 0, 0, 0, 7, 0, 0), 
store [(1:3.5), (5:7)] 



Solvers for Linear Systems 

Algorithms for solving linear systems of n equations: 

• Band matrices, O(1) bandwidth: 
 Modified O(n) elimination algorithm. 

• Iterative Gauss-Seidel solver 
 Converges for diagonally dominant matrices 
 Typically: O(n) iterations, each costs O(n) for a sparse matrix. 

• Conjugate Gradient solver 
 Only symmetric, positive definite matrices 
 Guaranteed: O(n) iterations 
 Typically good solution after O(  n) iterations. 

More details on iterative solvers: J. R. Shewchuk: An Introduction to the 
Conjugate Gradient Method Without the Agonizing Pain, 1994. 



Eigenvectors & Eigenvalues 

Definition: 

• Linear map M, non-zero vector x with 

  Mx = x 

•  an is eigenvalue of M  

• x is the corresponding eigenvector. 



Example 

Intuition: 

• In the direction of an eigenvector, the linear map acts like 
a scaling 

 

 

 

 

• Example: two eigenvalues (0.5 and 2) 

• Two eigenvectors 

• Standard basis contains no eigenvectors 

 



Eigenvectors & Eigenvalues 

Diagonalization: 

In case an n  n matrix M has n linear independent 
eigenvectors, we can diagonalize M by transforming to this 
coordinate system: M = TDT-1. 



Spectral Theorem 

Spectral Theorem: 

Given: symmetric n  n matrix M of real numbers (M = MT) 

It follows: There exists an orthogonal set of n eigenvectors. 

This implies: 

Every (real) symmetric matrix can be diagonalized: 

M = TDTT with an orthogonal matrix T, diagonal matrix D. 



Computation 

Simple algorithm 

• “Power iteration” for symmetric matrices 

• Computes largest eigenvalue even for large matrices 

• Algorithm: 

 Start with a random vector (maybe multiple tries) 

 Repeatedly multiply with matrix 

 Normalize vector after each step 

 Repeat until ration before / after normalization converges 
(this is the eigenvalue) 

• Intuition: 

 Largest eigenvalue = “dominant” component/direction 



Powers of Matrices 

What happens: 

• A symmetric matrix can be written as: 

 

 

 

• Taking it to the k-th power yields: 

 

 

 

• Bottom line: Eigenvalue analysis key to understanding 
powers of matrices. 
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Improvements 

Improvements to the power method: 

• Find smallest?  – use inverse matrix. 

• Find all (for a symmetric matrix)? – run repeatedly, 
orthogonalize current estimate to already known 
eigenvectors in each iteration (Gram Schmidt) 

• How long does it take? – ratio to next smaller eigenvalue, 
gap increases exponentially. 

There are more sophisticated algorithms based on 
this idea. 



Generalization: SVD 

Singular value decomposition: 

• Let M be an arbitrary real matrix (may be rectangular) 

• Then M can be written as: 

 M = U D VT  

 The matrices U, V are orthogonal 

 D is a diagonal matrix (might contain zeros) 

 The diagonal entries are called singular values. 

• U and V are usually different 

• Diagonalizable matrices: 

 U = V 

 Singular values = eigenvalues 



M U D 

VT 

Singular Value Decomposition 

Singular value decomposition 

1 

2 

3 

4 

0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 

0 0 

0 0 0 

= 


orthogonal 



orthogonal 



Singular Value Decomposition 

Singular value decomposition 

• Can be used to solve linear systems of equations 

• For full rank, square M: 

  M = U D VT  

  M-1 = (U D VT)-1 = (VT)-1 D-1 (U-1) = V D-1 UT  

• Good numerical properties (numerically stable) 

• More expensive than iterative solvers 

• The OpenCV library provides a very good implementation 
of the SVD 



Example: 
Linear Inverse Problems 



Inverse Problems 

Settings 

• A (physical) process f takes place 

• It transforms the original input x into an output b 

• Task: recover x from b 

Examples: 

• 3D structure from photographs 

• Tomography: values from line integrals 

• 3D geometry from a noisy 3D scan 



Linear Inverse Problems 

Assumption: f is linear and finite dimensional 

f (x) = b    Mf x = b 

Inversion of f is said to be an ill-posed problem, if one 
of the following three conditions hold: 

• There is no solution 

• There is more than one solution 

• There is exactly one solution, but the SVD contains very 
small singular values. 



Ill posed Problems 

Ratio: Small singular values amplify errors 

• Assume inexact input  

 Measurement noise 

 Numerical noise 

• Reminder: M-1 = V D-1 UT 

 

 

 

• Orthogonal transforms preserve norm of x, 
so V and U do not cause problems 

does not hurt 
(orthogonal) 

does not hurt 
(orthogonal) 

this one is decisive 



Ill posed Problems 

Ratio: Small singular values amplify errors 

• Reminder: x = M-1b = (V D-1 UT)b 

• Say D looks like that: 

 

 

• Any input noise in b in the direction of the fourth right 
singular vector will be amplified by 109. 

• If our measurement precision is less than that, the result 
will be unusable. 

• Does not depend on how we invert the matrix. 

• Condition number: max /min 
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Ill Posed Problems 

Two problems: 

(1) Mapping destroys information 

 goes below noise level 

 cannot be recovered by any means 

(2) Inverse mapping amplifies noise 

 yields garbage solution 

 even remaining information not recovered 

 extremely large random solutions are obtained 

We can do something about problem #2 
 

 

















000000001.0000

09.000

001.10

0005.2

:D



Regularization 

Regularization 
• Avoiding destructive noise caused by inversion 

 Various techniques 

 Goal: ignore the misleading information 

Approaches 
• Subspace inversion: Ignore subspace with small singular values 

 Needs an SVD, risk of “ringing” 

• Additional assumptions:  
 smoothness (or something similar) 

 make compound problem (f 
-1 + assumptions) well posed 



Illustration of the Problem 

original function smoothed function 

f g f ⊗ g forward 
problem 



Illustration of the Problem 

f’ f ⊗ g inverse 
problem 

smoothed function reconstructed function 



Illustration of the Problem 

f’ f ⊗ g inverse 
problem 

regularized 
reconstructed function 

smoothed function 



Quadratic Forms 



Multivariate Polynomials 

A multi-variate polynomial of total degree d: 

• A function f: n  ,   x  f(x) 

• f is a polynomial in the components of x 

• Any 1D direction f(s + tr) is a polynomial of  
maximum degree d in t. 

Examples: 

• f(x, y) := x + xy + y  is of total degree 2. In diagonal 
direction, we obtain f(t[1/  2, 1/  2]T) = t2. 

• f(x, y) := c20x2 + c02y2 + c11xy + c10x + c01y + c00 is a 
quadratic polynomial in two variables 



Quadratic Polynomials 

In general, any quadratic polynomial in n variables 
can be written as: 

• xTA x  +  bTx  + c 

• A is an n  n matrix, b is an n-dim. vector, c is a number 

• Matrix A can always be chosen to be symmetric 

• If it isn’t, we can substitute by 0.5·(A + AT), not changing 
the polynomial 



Example 

Example: 
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Quadratic Polynomials 

Specifying quadratic polynomials: 

• xTA x  +  bTx  + c 

• b shifts the function in space (if A has full rank): 

 

 

 

 

• c is an additive constant 
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Some Properties 

Important properties 

• Multivariate polynomials form a vector space 

• We can add them component-wise: 

 2x2 + 3y2 + 4xy + 2x + 2y + 4 

+ 3x2 + 2y2 + 1xy + 5x + 5y + 5 

= 5x2 + 5y2 + 5xy + 7x + 7y + 9 

• In vector notation: 

       xTA1 x  +  b1
Tx  + c1 

 + (xTA2x  +  b2
Tx  + c2) 

 = xT(A1 + A2)x  +  (b1 + b2)Tx  + (c1 + c2) 



Quadratic Polynomials 

Quadrics 

• Zero level set of a quadratic polynomial: “quadric” 

• Shape depends on eigenvalues of A 

• b shifts the object in space 

• c sets the level 



Shapes of Quadrics 

Shape analysis: 

• A is symmetric 

• A can be diagonalized with orthogonal eigenvectors 

 

 

 

 

• Q contains the principal axis of the quadric 

• The eigenvalues determine the quadratic growth 
(up, down, speed of growth) 
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Shapes of Quadratic Polynomials 

1 = 1, 2 = 1  1 = 1, 2 = -1  1 = 1, 2 = 0  



The Iso-Lines: Quadrics 

1 > 0, 2 > 0  1 < 0, 2 > 0  

elliptic hyperbolic 

1 = 0, 2  0  

degenerate case 



Quadratic Optimization 

Quadratic Optimization 

• Minimize quadratic objective function 

xTA x  +  bTx  + c 

• Required: A > 0 (only positive eigenvalues) 

 It’s a paraboloid with a unique minimum 

 The vertex (critical point) can be determined 
by simply solving a linear system 

• Necessary and sufficient condition 

2A x  = –b 

 



Condition Number 

How stable is the solution? 

• Depends on Matrix A 

 

good bad 



Regularization 

Regularization 

• Sums of positive semi-definite matrices are  
positive semi-definite 

• Add regularizing quadric 

 “Fill in the valleys” 

 Bias in the solution 

Example 

• Original: xTA x  +  bTx  + c 

• Regularized: xT(A + I )x  +  bTx  + c 

 

A   + I 



Rayleigh Quotient 

Relation to eigenvalues: 

• Min/max eigenvalues of a symmetric A expressed as 
constraint quadratic optimization: 

 

 

 

• The other way round – eigenvalues solve a certain type of 
constrained, (non-convex) optimization problem. 
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Coordinate Transformations 

One more interesting property: 

• Given a positive definite symmetric (“SPD”) matrix M 
(all eigenvalues positive) 

• Such a matrix can always be written as square of another 
matrix: 
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SPD Quadrics 

Interpretation: 

• Start with a unit positive quadric xTx. 

• Scale the main axis (diagonal of D) 

• Rotate to a different coordinate system (columns of T) 

• Recovering main axis from M: Compute eigensystem 
(“principal component analysis”) 

 2
T DTTDTMI Identity

main axis 

xxT MxxT



Why should I care? 

What are quadrics good for? 

• log-probability of Gaussian models 

• Estimation in Gaussian probabilistic 
models...  

 ...is quadratic optimization. 

 ...is solving of linear systems of equations. 

• Quadratic optimization 

 easy to use & solve 

 feasible :-) 

• Approximate more complex models locally 

Gaussian normal distribution 
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Constructing Bases 



How to construct a basis? 

Goal (of much of this whole lecture): 

• Build a good basis for a problem 

Ingredients: 

• Basis functions 

• Placement in space 

• Semantics 



Basis Function 

 

 

 
Shape of individual functions: 

• Smoothness 

• Symmetry 

• Support 



Ensembles of Functions 

 

 

 
Basis function sets: 

• Stationary 

 Same function repeating? (dilations) 

 Varying shapes 



Ensembles of Functions 

Basis function sets: 

• Orthogonality? 

 Basis functions span independent directions? 

 Advantages: easier, faster, more stable computations 

 Disadvantages: strong constraint on function shape 
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Example: Radial Basis functions 

Radial basis function: 

• Pick one template function 

• Symmetric around “center” point 

Instantiate by placing in domain 1D 

2D 



Placement 

Regular grids Irregular 

Context: 

• Stationary functions, or very similar shape 

• How to instantiate? 



Placement 

Regular grids Irregular 
(w/scaling) 



Semantics 

Explicit representations 

• Height field 

• Parametric surface 

• Function value corresponds 
to actual geometry 

Implicit representation 

• Scalar fields 

• Zero crossings correspond 
to actual geometry 

 



How to shape basis functions? 

Back to this problem: 

 

 
 

• Shape the functions of an ensemble (a whole basis) 

Tools: 

• Consistency order 

• Frequency space analysis 

 



Consistency Order 

Consistency order: 

• A basis of functions is of order k iff it can represent 
polynomials of total degree k exactly 

• Better fit to smooth targets 

• High consistency order: risk of oscillations (later) 

approx 

target 

zero-order 

approx 

target 

first-order 

approx 

target 

third-order 
(PPT cubic splines) 



Frequency Space Analysis 

Which of the following two is better? 

 

 

 

Why? 

• Long story... 

• We’ll look at this next. 



A Very Brief Overview 
of Sampling Theory 



Topics 

Topics 

• Fourier transform 

• Theorems 

• Analysis of regularly sampled signals 

• Irregular sampling 



Fourier Basis 

Fourier Basis 

• Function space: {𝑓: ℝ → ℝ, 𝑓 sufficiently smooth} 

 Fourier basis can represent 

– Functions of finite variation 

– Lipchitz-smooth functions 

• Basis: sine waves of different frequency and phase: 

 Real basis:  
 

{sin 2𝜋𝜔𝑥 , cos 2𝜋𝜔𝑥  𝜔 ∈ ℝ  
 

 Complex variant:  
 

{𝑒−2𝜋𝑖𝜔𝑥  𝜔 ∈ ℝ  
 

(Euler‘s formula: 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 ) 



Fourier Transform 

Fourier Basis properties: 

• Fourier basis: {𝑒−𝑖2𝜋𝜔𝑥  𝜔 ∈ ℝ  

 Orthogonal basis 

 Projection via scalar products  Fourier transform 

• Fourier transform:  (f: ℝ → ℂ)   →   F: ℝ → ℂ  

𝐹(𝜔) =  𝑓 𝑥 𝑒−2𝜋𝑖𝑥𝜔𝑑𝑥
∞

−∞

 

• Inverse Fourier transform:  F: ℝ → ℂ → (f: ℝ → ℂ) 

𝑓(𝜔) =  𝐹 𝑥 𝑒2𝜋𝑖𝑥𝜔𝑑𝑥
∞

−∞

 

 



Fourier Transform 

Interpreting the result: 

• Transforming a real function f: ℝ → ℝ 

• Result: F 𝜔 : ℝ → ℂ 

 𝜔 are frequencies (real) 

 Real input 𝑓: 
Symmetric F −𝜔 = F 𝜔  

 Output are complex numbers 

– Magnitude: “power spectrum” 
(frequency content) 

– Phase: phase spectrum 
(encodes shifts) 

 

𝜔 = 𝑒−𝑖𝑥 

𝜔  
∡𝜔 

Im 

Re 



Important Functions 

Some important Fourier-transform pairs 

 

 

• Box function: 

𝑓 𝑥 = box 𝑥   →    𝐹 𝜔 =
sin 𝜔

𝜔
≔ sinc 𝜔  

 

 

• Gaussian: 

𝑓 𝑥 = 𝑒−𝑎𝑥2
    →     𝐹 𝜔 =

𝜋

𝑎
⋅ 𝑒−

𝜋𝜔 2

𝑎  

 

box(x) sinc(𝜔) 



Higher Dimensional FT 

Multi-dimensional Fourier Basis: 

• Functions f: ℝ𝑑 → ℂ 

• 2D Fourier basis:  

𝑓(𝑥, 𝑦) represented  
as combination of 

{𝑒−𝑖2𝜋𝜔𝑥𝑥 ⋅ 𝑒−𝑖2𝜋𝜔𝑦𝑦  𝜔𝑥 , 𝜔𝑦 ∈ ℝ  
 

• In general: all combinations of 1D functions 

 



Convolution 

Convolution: 

• Weighted average of functions 

• Definition: 

 
 

Example: 
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Theorems 

Fourier transform is an isometry: 

• 𝑓, 𝑔 = 𝐹, 𝐺  

• In particular 𝑓 = 𝐹  

Convolution theorem: 

• 𝐹𝑇 𝑓⨂𝑔 = 𝐹 ⋅ G 

• Fourier Transform converts convolution into 
multiplication 

 All other cases as well: 
𝐹𝑇−1 𝑓 ⋅ 𝑔 = 𝐹⨂G, 𝐹𝑇 𝑓 ⋅ 𝑔 = 𝐹⨂G, 𝐹𝑇−1 𝐹 ⋅ 𝐺 = 𝐹⨂G 

 Fourier basis diagonalizes shift-invariant linear operators 

 



Sampling a Signal 

Given: 

• Signal 𝑓: ℝ → ℝ 

• Store digitally: 

 Sample regularly … 𝑓 0.3 , 𝑓 0.4 , 𝑓 0.5 … 

• Question: what information is lost? 



Sampling 



Regular Sampling 

Case I: Sampling 

• Band-limited signals can be represented exactly 

 Sampling with frequency 𝜈𝑠: 
Highest frequency in Fourier spectrum ≤ 𝜈𝑠/2 

• Higher frequencies alias 

 Aliasing artifacts (low-frequency patterns) 

 Cannot be removed after sampling (loss of information) 

band-limited aliasing 



Regular Sampling 

Case II: Reconstruction 

• When reconstructing from discrete samples 

• Use band-limited basis functions 

 Highest frequency in Fourier spectrum ≤ 𝜈𝑠/2 

 Otherwise: Reconstruction aliasing 



Regular Sampling 

Reconstruction Filters 

• Optimal filter: sinc 
(no frequencies discarded) 

• However: 

 Ringing artifacts in spatial domain 

 Not useful for images (better for audio) 

• Compromise 

 Gaussian filter 
(most frequently used) 

 There exist better ones, 
such as Mitchell-Netravalli, 
Lancos, etc... 

 

Ringing by sinc reconstruction 
from [Mitchell & Netravali, 

Siggraph 1988] 

2D sinc 2D Gaussian 



Irregular Sampling 

Irregular Sampling 

• No comparable formal theory 

• However: similar idea 

 Band-limited by “sampling frequency” 

 Sampling frequency = mean sample spacing 

– Not as clearly defined as in regular grids 

– May vary locally (adaptive sampling) 

• Aliasing 

 Random sampling creates noise as aliasing artifacts 

 Evenly distributed sample concentrate noise in higher frequency 
bands in comparison to purely random sampling 



Consequences for our applications 

When designing bases for function spaces 

• Use band-limited functions 

• Typical scenario: 

 Regular grid with spacing 𝜎 

 Grid points 𝐠𝑖 

 Use functions: exp −
𝐱−𝐠𝑖

2

𝜎2  

• Irregular sampling: 

 Same idea 

 Use estimated sample spacing instead of grid width 

 Set 𝜎 to average sample spacing to neighbors 



Tutorials: 

Linear Algebra 
Software 



GeoX 

GeoX comes with several linear algebra libraries: 

• 2D, 3D, 4D vectors and matrices: LinearAlgebra.h 

• Large (dense) vectors and matrices: 
DynamicLinearAlgebra.h 

• Gaussian elimination: invertMatrix() 

• Sparse matrices: SparseLinearAlgebra.h 

• Iterative solvers (Gauss-Seidel, conjugate gradients, 
power iteration): IterativeSolvers.h 


