
Geometric Modeling 
Summer Semester 2012 

Differential Geometry 

(and a bit of Topology) 



Multi-Dimensional 
Derivatives 



Derivative of a Function 

Reminder: The derivative of a function is defined as 

 

If limit exists: function is called differentiable. 
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Taylor Approximation 

Smooth functions can be approximated locally: 

•   

 

 

 

• Convergence: holomorphic functions 

• Local approximation for smooth functions  
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Rule of Thumb 

Derivatives and Polynomials 

• Polynomial:  𝑓 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3… 

 0th-order derivative: 𝑓 0 = 𝑐0 

 1st-order derivative: 𝑓′ 0 = 𝑐1 

 2nd-order derivative: 𝑓′′ 0 = 2𝑐2 

 3rd-order derivative: 𝑓′′′ 0 = 6𝑐3 

 ... 

Rule of Thumb: 

• Derivatives correspond to polynomial coefficients 

• Estimate derivatives  polynomial fitting 

 

 



Partial Derivative 

Multivariate functions: 

• Notation changes: 

 

 

 

 

• Alternative notation: 
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Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 

 



Special Cases 

Derivatives for: 

• Functions f: n   (“height field”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 

 
height field 

x1 

f(x, y) 

x2 



Gradient 

Gradient: 

• Given a function f: n   (“heightfield”) 

• The vector of all partial derivatives of f is called the 
gradient: 
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Gradient 

Gradient: 

 

 

 

 

• gradient: vector pointing in direction of steepest ascent. 

• Local linear approximation (Taylor): 
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Higher Order Derivatives 

Higher order Derivatives: 

• Can do all combinations: 

 

• Order does not matter for f  Ck 
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Hessian Matrix 

Higher order Derivatives: 

• Important special case: Second order derivative 

 

 

 

 

 

 

 

• “Hessian” matrix (symmetric for f  C2) 

• Orthogonal Eigenbasis, full Eigenspectrum 
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Taylor Approximation 

Second order Taylor approximation: 

• Fit a paraboloid to a general function 
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Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 
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Derivatives of Curves 

Derivatives of vector valued functions: 

• Given a function f:   n (“curve”) 

 

 

 

• We can compute derivatives for every output dimension: 
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Geometric Meaning 

Tangent Vector: 

• f ’: tangent vector 

• Motion of physical particle: f = velocity. 

• Higher order derivatives: Again vector functions 

• Second derivative f = acceleration 

f ’(t0) 

f(t) 

t0 
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.. 



Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 
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You can combine it... 

General case: 

• Given a function f: n  m (“space warp”) 

 

 

 

• Maps points in space to other points in space 

• First derivative: Derivatives of all output components of f 
w.r.t. all input directions. 

• “Jacobian matrix”: denoted by f or Jf 
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Jacobian Matrix 

Jacobian Matrix: 

 

 

Use in a first-order Taylor approximation: 
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Special Cases 

Derivatives for: 

• Functions f: n   (“heightfield”) 

• Functions f:   n (“curves”) 

• Functions f: n  m (general case) 

 

height field 

x1 

f(x, y) 

x2 

t 

curves 

x 

y 

z 

general mapping 

u 
v 

y 

z 

w 

x 



Coordinate Systems 

Problem: 

• What happens, if the coordinate system changes? 

• Partial derivatives go into different directions then. 

• Do we get the same result? 



Total Derivative 

First order Taylor approx.: 

•   

• Converges for C1 functions 
f: n  m 

  
 
 
(“totally differentiable”) 
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Partial Derivatives 

Consequences: 

• A linear function: fully determined by image of a basis 

• Hence: Directions of partial derivatives do not matter – 
this is just a basis transform. 

 We can use any linear independent set of directions T 

 Transform to standard basis by multiplying with T-1 

• Similar argument for higher order derivatives 



Directional Derivative 

The directional derivative is defined as: 

• Given  f: n  m and  v  n, ||v|| = 1. 

• Directional derivative: 

 

 

• Compute from Jacobian matrix 
 
 

 
(requires total differentiability) 
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Multi-Dimensional Integrals 



Integral 

Integral of a function 

• Function f:    

• Integral                measures signed area under curve: 
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Integral 

Numerical Approximation 

• Sum up a series of approximate shapes 

 

 

 

 

 

• (Riemannian) Definition: limit for baseline  zero 



Multi-Dimensional Integral 

Integration in higher dimensions 

• Functions f: n   

• Tessellate domain and sum up volume of cuboids 
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Integral Transformations 

Integration by substitution: 

 
 

Need to compensate for speed of 
movement that shrinks the measured 
area. 
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Multi-Dimensional Substitution 

Transformation of Integrals: 

 
 

• g  C1, invertible 

• Jacobian approximates 
local behavior of g() 

• Determinant: local area/volume change 

• In particular:                            means g() is area/volume 
conserving. 
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Topology 
- a very short primer - 



A Few Concepts from Topology 

Homeomorphism:  

• 𝑓: 𝑋 → 𝑌 

• 𝑓 is bijective 

• 𝑓 is continuous 

• 𝑓−1 exists and is continuous 

• Basically, a continuous deformation 

Topological equivalence 

• Objects are topologically equivalence if there exists a 
homeomorphism that maps between them 

• “Can be deformed into each other” 

 



Surfaces 

Boundaries of volumes in 3D 

• Topological Equivalence classes 

 Sphere 

 Torus 

 n-fold Torus 

• Genus = number of tunnels 

 

g = 0 g = 1 g = 2 

... 



Manifold 

Definition: Manifold 

• A d-manifold M:  
At every 𝑥 ∈ 𝑀 there exists an 𝜖-environment 
homeomorphic to a d-dimensional disc 

• With boundary: disc or half-disc 

𝑥1 

homeomorphism 

𝑥2 



Further concepts 

Connected Set 

• There exists a continuous 
curve within the set 
between all pairs of points 

 

Simply Connected 

• Every closed loop can be 
continuously shrunken 
until it disappears 



Differential Geometry 
of Curves & Surfaces 



Part I: Curves 



f 

Parametric Curves 

Parametric Curves: 

• A differentiable function 

      f: (a, b)  n 

 describes a parametric curve 

C = f ((a, b)), C  n. 

• The parametrization is called regular if f ’(t)  0 for all t. 

• If | f ’(t)|  1 for all t, f is called a unit-speed 
parametrization of the curve C. 

a 

b C = f ((a, b)) 
f 

|         | 



Length of a Curve 

The length of a curve: 

• The length of a regular curve C is defined as: 

 

• Independent of the parametrization 

(integral transformation theorem). 

• Alternative: lengthC = |b – a| for a unit-speed 

parametrization 
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Reparametrization 

Enforcing unit-speed parametrization: 

• Assume:| f ’(t)|  0 for all t. 

• We have: 

 
 

• Concatenating                       yields a unit-speed 
parametrization of the curve 

length(t) 

length-1(t) 

(invertible, because f ’(t) > 0) 
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Tangents 

Unit Tangents: 

• The unit tangent vector at x  (a, b) is given by: 

 

 

• For curves C    2, the unit normal vector of the curve is 
defined as: 
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Curvature 

Curvature: 

• First derivatives: curve direction / speed. 

• Curvature encoded in 2nd order information. 

• Why not just use f ’’? 

• Problem: Depends on parametrization 

 Different velocity yields different results 

 Need to distinguish between acceleration 
in tangential and non-tangential directions. 

 



Curvature & 2nd Derivatives 

Definition of curvature 

• We want only the non-tangential component of f ’’. 

• Accelerating/slowing down does not matter for curvature 
of the traced out curve C. 

• Need to normalize speed. 

C = f ((a, b)) 

tangent(t) 

normal(t) 

f’’(t) 



Curvature 

Curvature of a Curve C  2: 

 

 

• Normalization factor: 

 Divide by  |f ’|  to obtain unit tangent vector 

 Divide again twice to normalize f ’’ 

– Taylor expansion / chain rule: 

 

– Second derivative scales quadratically with speed 
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Unit-speed parametrization 

Unit-speed parametrization: 

• Assume a unit-speed parametrization, i.e.            . 

• Then, 2 simplifies to: 
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Radius of Curvature 

Easy to see: 

• Curvature of a circle is constant,2   1/r  (r = radius). 

• Accordingly: Define radius of curvature as 1/2. 

• Osculating circle: 

 Radius: 

 Center: 

κ2/1
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Theorems 

Definition: 

• Rigid motion: x  Ax+b with orthogonal A 
 Orientation preserving (no mirroring) if det(A) = +1 

 Mirroring leads to det(A) = -1 

Theorems for plane curves: 

• Curvature is invariant under rigid motion 

 Absolute value is invariant 

 Signed value is invariant for orientation preserving rigid motion 

• Two unit speed parameterized curves with identical 
signed curvature function differ only in a orientation 
preserving rigid motion. 



Space Curves 

General case: Curvature of a Curve C  n 

• Given a unit-speed parametrization f of C 

• The curvature of C at parameter value t is defined as: 

 
 

• For a general, regular curve C  3 

(any regular parametrization): 

 

 

• General curvature is unsigned 
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Torsion 

Characteristics of Space Curves in 3: 

• Curvature not sufficient 

• Curve may “bend” in space 

• Curvature is a 2nd order property 

• 2nd order curves are always flat 

 Quadratic curves are specified by 3 points in space, 
which always lie in a plane 

 Cannot capture out-of-plane bends 

• Missing property: Torsion 



Torsion 

Definition: 

• Let f be a regular parametrization of a curve C  3 with 
non-zero curvature 

• The torsion of f at t is defined as 
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Illustration 
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Theorem 

Fundamental Theorem of Space Curves 

• Two unit speed parameterized curves C  3 with 
identical, positive curvature and identical torsion are 
identical up to a rigid motion. 



Part II: Surfaces 



Parametric Patches 

Parametric Surface Patches: 

A smoothly differentiable function 

   f:  2   n 

describes a parametric surface patch 

  P = f (), P  n. 



Parametric Patches 

Function f 𝐱 =  𝑓 𝑢, 𝑣 → ℝ3 

• Tangents: 
𝑑

𝑑𝑡
𝑓 𝐱0 + 𝑡𝐫 = 𝛻𝐫𝑓(𝐱0) 

• Canonical tangents:  

• Normal: 𝐧 𝐱0 =
𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓(𝑢,𝑣)

𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓(𝑢,𝑣)
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Illustration 

u 

v 

(u, v) 

f (u, v) f 

  2 P  3 

v f (u, v) 

u f (u, v) 

normal (u, v) 



Surface Area 

Surface Area: 

• Patch 𝑃: 𝑓: Ω → ℝ3 

• Computation is simple 

• Integrate over constant function f  1 over surface 

• Then apply integral transformation theorem: 
 

area 𝑃 =  𝜕𝑢𝑓 𝐱 × 𝜕𝑣𝑓(𝐱) 𝑑𝐱
Ω

 

 



Fundamental Forms 

Fundamental Forms: 

• Describe the local parametrized surface 

• Measure... 

 ...distortion of length (first fundamental form) 

 ...surface curvature (second fundamental form) 

• Parametrization independent surface curvature 
measures will be derived from this 



First Fundamental Form 

First Fundamental Form 

• Also known as metric tensor. 

• Given a regular parametric patch f:  2   3. 

• f will distort angles and distances 

• We will look at a local first order Taylor approximation to 
measure the effect: 

 
 

• Length changes become visible 
in the scalar product... 
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First Fundamental Form 

First Fundamental Form 

• First order Taylor approximation: 

 

• Scalar product of vectors a, b  2: 
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First Fundamental Form 

First Fundamental Form 

• The first fundamental form can be written as a 
2  2 matrix: 

 

 

• The matrix is symmetric and positive definite 

(regular parametrization, semi-definite otherwise) 

• Defines a generalized scalar product that measures 

lengths and angles on the surface. 
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Second Fundamental Form 

Problems: 

• The first fundamental form measures length changes only. 

• A cylinder looks like a flat sheet in this view. 

• We need a tool to measure curvature of a surface as well. 

• This requires second order information. 

 Any first order approximation is inherently “flat”. 



Second Fundamental Form 

Definition: 

• Given: regular parametric patch f:  2   3. 

• Second fundamental form:  
(a.k.a. shape operator, curvature tensor) 

 

 

 
• Notation: 
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Second Fundamental Form 

Basic Idea: 

• Compute second derivative vectors 

• Project in normal direction (remove tangential 
acceleration) 



Alternative Computation 

Alternative Formulation (Gauss): 

• Local height field parameterization f(x,y) = z 

• Orthonormal x,y coordinates tangential to surface, 
z in normal direction, origin at zero 

• 2nd order Taylor representation: 

 

 
 

• Second fundamental form: Matrix of second derivatives 

  
0

T )0()('

222

)(''
2

1
)( ff

gyfxyex

ff 



 xxxxxx





























gf

fe

ff

ff

yyxy

xyxx
:

x 
y 

z 



Basic Idea 

In other words: 

• First fundamental form: I 
Linear part (squared) of local 
Taylor approximation. 

• Second fundamental form: II 
Quadratic part of heightfield 
approximation 

• Both matrices are symmetric. 

 Next: eigenanalysis, of course... 



i > 0 0 > 0, 1 < 0 0 = 0, 1 > 0 

Principal Curvature 

Eigenanalysis: 

• Eigenvalues of second fundamental form 
for an orthonormal tangent basis are called 
principal curvatures 1, 2. 

• Corresponding orthogonal eigenvectors are called 
principal directions of curvature. 

0 = 0, 1 = 0 

... 



Normal Curvature 

Definition: 

• The normal curvature k(r) in direction r for a unit length 
direction vector r at parameter position x0 is given by: 

 

Relation to Curvature of Plane Curves: 

• Intersect the surface locally with plane 
spanned by normal and r through point x0. 

• Identical curvatures (up to sign). 
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Principal Curvatures 

Relation to principal curvature: 

• The maximum principal cuvature 1 is the maximum of 
the normal curvature 

• The minimum principal cuvature 2 is the minimum of the 
normal curvature 



Gaussian & Mean Curvature  

More Definitions: 

• The Gaussian curvature K is the product of the principal 
curvatures: K = 12 

• The mean curvature H is the average: H = 0.5·(1 + 2) 

Theorems: 

•   

•   
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Global Properties 

Definition: 

• Isometry: mapping between surfaces that preserves 
distances on the surface (geodesics) 

• Developable surface: Gaussian curvature zero everywhere 
(i.e. no curvature in at least one direction) 

 Examples: Cylinder, Cone, Plane 

• A developable surface can be locally mapped to a plane 
isometrically (flattening out, unroll). 



Theorema Egregium 

Theorema egregium (Gauss): 

• Any isometric mapping preservers Gaussian curvature, i.e. 
Gaussian curvature is invariant under isometric maps 
(“intrinsic surface property”) 

• Consequence: The earth ( sphere) cannot be mapped to 
a plane in an exactly length preserving way. 



Gauss Bonnet Theorem 

Gauss Bonnet Theorem: 

For a compact, orientable surface without boundary in 3, the 
area integral of the Gauss curvature is related to the genus g 
of the surface: 

 gdxxK
S

 1π4)(

g = 0 g = 1 g = 2 

... 



Fundamental Theorem of Surfaces 

Theorem: 

• Given two parametric patches in 3 defined on the same 
domain . 

• Assume that the first and second fundamental form are 
identical. 

• Then there exists a rigid motion that maps on surface to 
the other. 



Summary 

Objects are the same up to a rigid motion, if...: 

• Curves   2: Same speed, same curvature 

• Curves   3: Same speed, same curvature, torsion 

• Surfaces 2  3: Same first & second fundamental form 

• Volumetric Objects 3  3: Same first fundamental form 

plane curve space curve surface space warp 

= = = = 



Deformation Models 

What if this does not hold? 

• Deviation in fundamental forms is a measure of 
deformation 

• Example: Surfaces 

 Diagonals of I1 - I2: scaling (stretching) 

 Off-diagonals of I1 - I2: sheering  

 Elements of II1 - II2: bending 

• This is the basis of deformation models. 

Reference: D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically 
Deformable Models. In: Siggraph '87 Conference Proceedings (Computer 
Graphics 21(4)), 1987. 



Part III: Intrinsic Geometry 
and Intrinsic Mappings 



Scenario 

Mapping between Surfaces 

• Intrinsic view – only metric tensor 

• Ignore isometric deformations 

• Applications: 

 Deformable shape matching 

 Texture mapping (flat  3D) 
“parametrization” 

f 
S1 

S2 



Riemannian Manifolds 

Concept: 

• Abstract surface 

• “User defined” metric 

standard 
metric 

non-standard 
(pos-def. quadric  

at each point) 



Riemannian Manifolds 

Riemannian Manifold 

• Manifold topology, d-dimensional  

 We mostly focus on 2-manifolds, embedded in ℝ3 

• Local parametrization: tangent space 

 We have a tangent space for each point 

• Intrinsic metric 

 For every point, we know 
the metric tensor 
(i.e., a scalar product) 

 In tangent space 
coordinates 

standard 
metric 

non-standard 
(pos-def. quadric  

at each point) 



Types of Mappings 

Given: Riemannian Manifolds M1, M2 

Consider: Functions f: M1  M2 

Important types of mappings: 

• Isometric: preserves distances & angles 
 Jacobian: 𝛻𝑓 = 𝐑, 𝐑 orthogonal 

 Metric tensor: I 

• Conformal: preserves (only) angles 
 Jacobian: 𝛻𝑓 = 𝜆𝐑, 𝜆 > 0, 𝐑 orthogonal 

 Metric tensor: 𝜆𝐈, 𝜆 > 0 

• Equi-areal (incompressible): preserves area 
 Jacobian: |det 𝛻𝑓 | = 1 

 Metric tensor: det 𝐌 = 1 

 

  

Metric tensors 



Theorems 

Isometric mappings 

• Isometries preserve Gaussian curvature (Gauss) 

Conformal mappings 

• Uniformization theorem:  

 For any simply connected Riemann surface (2-manifold) 

 There exists a conformal, bijective mapping to either: 

– the open unit disk 

– the whole 2D plane 

– Unit sphere 

• Any discs, spheres, planes can be mapped to objects of 
the same topology using a conformal map 


