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Multi-Dimensional
Derivatives



Derivative of a Function

Reminder: The derivative of a function is defined as

flt+n)—-f(t)
h

d .
- f()=lim
If limit exists: function is called differentiable.

Other notation:

d B \ g dk
a/ W= W=/ — f(6)= )
frovrirciglr)llteext Vagi{anbeles dt

repeated differentiation
(higher order derivatives)



Taylor Approximation

Smooth functions can be approximated locally:

o f(x)= f(x,)
2 fO)x-x,)
1 d* 2
+5Wf(xo)(x—xo) +
1 d”

ot de—kf(xo)(x - x, ) +0(x"")

e Convergence: holomorphic functions
e Local approximation for smooth functions



Rule of Thumb

Derivatives and Polynomials
3

e Polynomial: f(x) = ¢y + cyx + cpx% + c3x3 ...
Oth-order derivative: f(0) = ¢,

1st-order derivative: f'(0) = ¢,

2nd-order derivative: f''(0) = 2c,

3rd-order derivative: f'"'(0) = 6¢;3

Rule of Thumb:

e Derivatives correspond to polynomial coefficients
e Estimate derivatives <> polynomial fitting



Partial Derivative

Multivariate functions:

e Notation changes:

—use curly-d
0

—— (X o XXy X s oo Xy ) =
OX,,

lim f(X e X 10X F X e X, )= (X o X 10X X g 5o X))
h—0 h

e Alternative notation:

0 Fx)=0,f(%)= £, (x)

OX,,



Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functions f: R — R" (“curves”)
e Functions f: R" — R™ (general case)



Special Cases

Derivatives for:
e Functions f: R" > R (“height field”)
e Functions f: R — R" (“curves”)
e Functions f: R" — R™ (general case)

fx, ¥

height field



Gradient

Gradient:
e Given a function f: R” = R (“heightfield”)
e The vector of all partial derivatives of fis called the

gradient:
0 0
%, af (X)
Vi(x)= a f(x)= as
o oS




Gradient

Gradient:
f(xo)"'Yf(Xo)'(X_xo)

] M Ly

X, X1

X X,
e gradient: vector pointing in direction of steepest ascent.
e Local linear approximation (Taylor):

fX)= f(x0)+Vf(X0)-(x—X,)



Higher Order Derivatives

Higher order Derivatives:

e Can do all combinations: 0 0 g f
ox;, Ox, 0O,

Ik

e Order does not matter for f € C*



Hessian Matrix

Higher order Derivatives:

e Important special case: Second order derivative

n

0° 0 O 0 O
ox,.  0x, Ox, Ox, Ox,
0 O 0° 0 O
ox, 0x,  Ox,’ ox, ox, |f(X)="H(x)
0 O 0 O 0°
Ox, 0x, Ox, OX, ox .’

e “Hessian” matrix (symmetric for f € C?)

e Orthogonal Eigenbasis, full Eigenspectrum



Taylor Approximation

f(x) ¢

2nd order approximation
(schematic)

Second order Taylor approximation:
e Fit a paraboloid to a general function

f(x)~f(xo)+Vf(xo)-(x—xo)+%(x—xof-Hf(xo)-(x—xo)



Special Cases

Derivatives for:

.+ Functions f: R" - R (“heightfield”)  |* ]
f (“heig ) §Z§7/
X:

e Functions f: R —» R" (“curves” N
e Functions f: R" — R™ (general case)

curves



Derivatives of Curves

Derivatives of vector valued functions:

e Given a function f: R > R" (“curve”

f1(t)
fe)=| :
falt)
e We can compute derivatives for every output dimension:
210
d dt . :
—f)=] + |=f()=f(t)
dt i )
™ fal




Geometric Meaning

Tangent Vector: Jto

e f’: tangent vector

e Motion of physical particle:f= velocity.

e Higher order derivatives: Again vector functions
e Second derivative j"= acceleration



Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”) f
e Functions f: R — R" (“curves”) L4

|

e Functions f: R” — R™ (general case)

general mapping



You can combine it...

General case:
e Given a function f: R" — R™ (“space warp”)

fi(x{mmX,)
F(x)= F((xy o X,))= :

fn(Xp e X,)
e Maps points in space to other points in space

e First derivative: Derivatives of all output components of f
w.r.t. all input directions.

e “Jacobian matrix”: denoted by Vfor],



Jacobian Matrix

Jacobian Matrix:
VI(x)=]:(x)=Vf(x;,m X,)
V(Xm0 X, )T

VI (X X,)

Oy, 1(X) -

O, fn(X) -+

0y, /1(%)

Oy, fm(X)

Use in a first-order Taylor approximation:

f(x)zf(xo)uf(xo)T(x—xo

matrix / vector
product

)




Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functions f: R — R" (“curves”)
e Functions f: R" — R™ (general case)

X1

f(X, y)“ “t y“
X2 5 \ §Z§>/
1 X;

height field curves

"

general mapping



Coordinate Systems

Problem:
 What happens, if the coordinate system changes?
e Partial derivatives go into different directions then.
e Do we get the same result?



Total Derivative

First order Taylor approx.: %)+ V() (X—x.)
o FOX) V) (X=X )R, ()
e Converges for C! functions Q‘%
fiR"— R™ X1 ‘
R,, (x) &

—0,
x—xﬂ

lim

X—)XO

(“totally differentiable”)



Partial Derivatives

Conseqguences:
e Alinear function: fully determined by image of a basis

e Hence: Directions of partial derivatives do not matter —
this is just a basis transform.
= We can use any linear independent set of directions T

= Transform to standard basis by multiplying with T

e Similar argument for higher order derivatives



Directional Derivative

The directional derivative is defined as:
e Given ,R"—>R"and ve R, ||v]]| =1.
e Directional derivative:

v, fx)=2 T ()= if(x+tv)

e Compute from Jacobian matrix
Vv f(x)=Vf (X)” ”

(requires total differentiability)



Multi-Dimensional Integrals



Integral

Integral of a function
e Functionf:R > R

b
* Integral If(t)dt measures signed area under curve:
a

+
+ 4+
\/+}‘



Integral

Numerical Approximation

e Sum up a series of approximate shapes

/
\Wa

e (Riemannian) Definition: limit for baseline — zero




Multi-Dimensional Integral

Integration in higher dimensions
e Functions f: R" > R
e Tessellate domain and sum up volume of cuboids




Integral Transformations

Integration by substitution:

(b
j f(x)dx = j flg(t)g'(t)dt

g (a)

Need to compensate for speed of
movement that shrinks the measured
area.

g(x)




Multi-Dimensional Substitution

Transformation of Integrals: 0,8(x)

j f(x)dx = j fg(y))|det(Vg(y))|dy ~ *2 {

()

e g € C!, invertible

e Jacobian approximates
local behavior of g()

e Determinant: local area/volume change

e In particular: |det(Vg(y))|=1 means g() is area/volume
conserving.



Topology

- a very short primer -




A Few Concepts from Topology

Homeomorphism:
e XY
e [ is bijective

*—_>
4_—-7

e [ is continuous

« f~1 exists and is continuous
e Basically, a continuous deformation

Topological equivalence

e Objects are topologically equivalence if there exists a
homeomorphism that maps between them

e “Can be deformed into each other”



Surfaces

Boundaries of volumes in 3D

e Topological Equivalence classes
= Sphere
= Torus
= n-fold Torus

e Genus = number of tunnels




Manifold

homeomorphism

Definition: Manifold ]

e A d-manifold M:
At every x € M there exists an e-environment
homeomorphic to a d-dimensional disc

o With boundary: disc or half-disc



Further concepts

Connected Set

e There exists a continuous
curve within the set
between all pairs of points

Simply Connected

e Every closed loop can be
continuously shrunken
until it disappears




Differential Geometry
of Curves & Surfaces



Part I: Curves




Parametric Curves

Parametric Curves: bt C=f((a, b))

e A differentiable function

f:(a, b) > R"

describes a parametric curve
C=f((a, b)), Cc R".
e The parametrization is called regular if f’(t) # O for all t.

o If ||f'(t)]|=1forallt, fis called a unit-speed
parametrization of the curve C.



Length of a Curve

The length of a curve:
e The length of a regular curve Cis defined as:

length, = [ f'(t) dt

a

e Independent of the parametrization
(integral transformation theorem).

e Alternative: length.= |b—a| for a unit-speed
parametrization



Reparametrization

Enforcing unit-speed parametrization:
e Assume:||f’(t)||# O for all t.

* We have:
length,.(x) =jf'(t)dt (invertible, because f’(t) > 0)

e Concatenating feclength™ vyields a unit-speed
parametrization of the curve

% length(t)
@ length(t)




Tangents

Unit Tangents:

e The unit tangent vector at x € (a, b) is given by:

f(¢)

tangent(t)=——

Q|

e For curves Cc R?, the unit normal vector of the curve is
defined as:

normal(t) :((1) —01) f(t)

aQ




Curvature

Curvature:
e First derivatives: curve direction / speed.
e Curvature encoded in 2nd order information.
e Why not just use f’?
e Problem: Depends on parametrization

= Different velocity yields different results

= Need to distinguish between acceleration
in tangential and non-tangential directions.



Curvature & 2nd Derivatives

C=f((a, b)) normal(t)

(t)  tangent(t)

Definition of curvature
 We want only the non-tangential component of f”.

e Accelerating/slowing down does not matter for curvature
of the traced out curve C.

e Need to normalize speed.



Curvature

Curvature of a Curve C € R2:

" 0 —-1)
<f (t),(l Ojf (t)>
Gl

e Normalization factor:

K2(t)=

= Divide by ||f’|| to obtain unit tangent vector
= Divide again twice to normalize f”
— Taylor expansion / chain rule:

FQO= 6+ A T )(E—t)+ 2 1 (), + O

— Second derivative scales quadratically with speed



Unit-speed parametrization

Unit-speed parametrization:
e Assume a unit-speed parametrization, i.e. | f] =1
e Then, k2 simplifies to:

k2(t)=|f"(¢)|



Radius of Curvature

Easy to see:
e Curvature of a circle is constant, k2= + 1/r (r = radius).

e Accordingly: Define radius of curvature as 1/x2.

e Osculating circle:

= Radius: 1/k2 )
= Center: f(t)+—normal(t)
K2



Theorems

Definition:
e Rigid motion: x —» Ax+b with orthogonal A

= Orientation preserving (no mirroring) if det(A) = +1
= Mirroring leads to det(A) = -1

Theorems for plane curves:

e Curvature is invariant under rigid motion
= Absolute value is invariant
= Signed value is invariant for orientation preserving rigid motion

e Two unit speed parameterized curves with identical

signed curvature function differ only in a orientation
preserving rigid motion.



Space Curves

General case: Curvature of a Curve Cc R”
e Given a unit-speed parametrization f of C
e The curvature of C at parameter value t is defined as:

k(6)=|f"(t)

e For a general, regular curve C c R?
(any regular parametrization):

THGEYRG|
TG ——

 General curvature is unsighed o) f()

K(t)=



Torsion

Characteristics of Space Curves in R3:

e Curvature not sufficient

e Curve may “bend” in space

e Curvature is a 2nd order property
e 2nd order curves are always flat

= Quadratic curves are specified by 3 points in space,
which always lie in a plane

= Cannot capture out-of-plane bends

Missing property: Torsion



Torsion

Definition:

o Let fbe a regular parametrization of a curve Cc R3 with
non-zero curvature

e The torsion of f at t is defined as

L Ox O£ _ det(£(0), £(0), £ ()
THGEIAG THGEIAG

T(t)



lllustration

- detF O£, (1)

T( >
f,,,(t)\ £ £




Theorem

Fundamental Theorem of Space Curves

e Two unit speed parameterized curves C — R3 with
identical, positive curvature and identical torsion are
identical up to a rigid motion.



Part Il: Surfaces




Parametric Patches

Parametric Surface Patches:

A smoothly differentiable function
fi RPoQ—>R"
describes a parametric surface patch

P=f(Q2), PcR".



Parametric Patches

Function f(x) = f(u,v) - R?

e Tangents: %f(xo +tr) = V.f(Xq)
e Canonical tangents: 0, f(u,v), 0, f(u,v)

Ouf (Wv)x0yf (u,v)

e Normal: n(xo) = 100 f (w,v) X0y, f (W)l



lllustration

(&, )




Surface Area

Surface Area:
e Patch P: f:Q —» R?
e Computation is simple
e Integrate over constant function f =1 over surface
e Then apply integral transformation theorem:

area(P) = f 100 f () X 3, f (%)l dx
Q



Fundamental Forms

Fundamental Forms:
e Describe the local parametrized surface
e Measure...

= ...distortion of length (first fundamental form)

= ...surface curvature (second fundamental form)

e Parametrization independent surface curvature
measures will be derived from this



First Fundamental Form

First Fundamental Form
e Also known as metric tensor.
e Given a regular parametric patch f: R?> Q — R3.
e fwill distort angles and distances

e We will look at a local first order Taylor approximation to
measure the effect:

F)~ f(%0)+ V(%)X X, ) y 0, (%)
e Length changes become visible ‘ O\ g

in the scalar product... Xo U f(x,) of (%)



First Fundamental Form

First Fundamental Form

e First order Taylor approximation: 0ud (o)
FX)~ F(%,)+ VS (%)%~ %,) /\ Z
0, f (%)

e Scalar product of vectors a, b € R?: %o

(T (%o +a) = T(X,), f (X, +b)—(x,)) = (Vf(x,)a,Vf (Xo)b>
=a"(Vf (x,)"VF (x,))b

firstfunda\nQental form

. fla+x,)
WL

%o U fx,)




First Fundamental Form

First Fundamental Form

e The first fundamental form can be written as a
2 X 2 matrix:

o\ (OO OO\ _(E F o
o ):[@ufavf 5vf@vfj::£F G] ()= 57757}y

e The matrix is symmetric and positive definite
(regular parametrization, semi-definite otherwise)

e Defines a generalized scalar product that measures
lengths and angles on the surface.



Second Fundamental Form

Problems:
e The first fundamental form measures length changes only.
e Acylinder looks like a flat sheet in this view.
 We need a tool to measure curvature of a surface as well.
e This requires second order information.

= Any first order approximation is inherently “flat”.



Second Fundamental Form

Definition:
e Given: regular parametric patch f: R?2o> Q — R3.

e Second fundamental form:
(a.k.a. shape operator, curvature tensor)

S . auuf(XO)'n 8uvf(XO)°n
S Sl 2, fx)n

e Notation:

I(x,y)= XT[ﬁuuf(Xo)-n 8uvf(x0).nj

dufXo) M Oy flx)m)



Second Fundamental Form

Basic ldea:
e Compute second derivative vectors

 Project in normal direction (remove tangential
acceleration)



Alternative Computation

Alternative Formulation (Gauss):
e Local height field parameterization f(x,y) = z

e Orthonormal x,y coordinates tangential to surface,

. . . . . y4
z in normal direction, origin at zero

e 2nd order Taylor representation:

f(X) = % x"fU'(x)x + f'(X)x+ f(0)
2, 2 0
=ex~ + 2fxy + gy

e Second fundamental form: Matrix of second derivatives

0,0 f %f)__[e fj
a)Q’f a)’yf h f g

y



Basic Idea

In other words:

e First fundamental form: 1
Linear part (squared) of local
Taylor approximation.

e Second fundamental form: 1l
Quadratic part of heightfield
approximation

e Both matrices are symmetric.

= Next: eigenanalysis, of course...




Principal Curvature

Eigenanalysis:

e Eigenvalues of second fundamental form
for an orthonormal tangent basis are called
principal curvatures K, K,.

e Corresponding orthogonal eigenvectors are called
principal directions of curvature.




Normal Curvature

Definition:

e The normal curvature k(r) in direction r for a unit length
direction vector r at parameter position x, is given by:

k., (1)=1II_(r,r)=r"S(x,)r

Relation to Curvature of Plane Curves:

e Intersect the surface locally with plane
spanned by normal and r through point x,,.

e |dentical curvatures (up to sign).




Principal Curvatures

Relation to principal curvature:

e The maximum principal cuvature k, is the maximum of
the normal curvature

e The minimum principal cuvature k, is the minimum of the
normal curvature



Gaussian & Mean Curvature

More Definitions:

e The Gaussian curvature K is the product of the principal
curvatures: K = KK,

e The mean curvature H is the average: H=0.5 - (kx, + k,)

Theorems:

o K(xo):det(S(xO)):;Z"Z'__f;2

eG-2fF +gE
2(EG - F?)

° H(xo):%tr(S(xo))z




Global Properties

Definition:
e [sometry: mapping between surfaces that preserves
distances on the surface (geodesics)

e Developable surface: Gaussian curvature zero everywhere
(i.e. no curvature in at least one direction)
= Examples: Cylinder, Cone, Plane

e A developable surface can be locally mapped to a plane
isometrically (flattening out, unroll).



Theorema Egregium

Theorema egregium (Gauss):

e Any isometric mapping preservers Gaussian curvature, i.e.
Gaussian curvature is invariant under isometric maps
(“intrinsic surface property”)

e Consequence: The earth (= sphere) cannot be mapped to
a plane in an exactly length preserving way.



Gauss Bonnet Theorem

Gauss Bonnet Theorem:

For a compact, orientable surface without boundary in R3, the
area integral of the Gauss curvature is related to the genus g
of the surface:

| K(x)dx =4n(1-g)




Fundamental Theorem of Surfaces

Theorem:

e Given two parametric patches in R3 defined on the same
domain Q.

e Assume that the first and second fundamental form are
identical.

e Then there exists a rigid motion that maps on surface to
the other.



Summary

Objects are the same up to a rigid motion, if...:
e Curves R — R?: Same speed, same curvature
e Curves R — R3: Same speed, same curvature, torsion
e Surfaces R? — R3: Same first & second fundamental form
e Volumetric Objects R®* — R3: Same first fundamental form

Ay
475\\/ Sl
e

plane curve space curve surface space warp

1 —

/

. .\\

|
|~




Deformation Models

What if this does not hold?

e Deviation in fundamental forms is a measure of
deformation

e Example: Surfaces t L
= Diagonals of I, - I,: scaling (stretching) —
= Off-diagonals of I, - I,: sheering . - L.

= Elements of II, - II,: bending

e This is the basis of deformation models.

Reference: D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically
Deformable Models. In: Siggraph '87 Conference Proceedings (Computer
Graphics 21(4)), 1987.



Part lll: Intrinsic Geometry
and Intrinsic Mappings



Scenario

/\

Mapping between Surfaces
e Intrinsic view — only metric tensor
e lgnore isometric deformations

e Applications:
= Deformable shape matching

= Texture mapping (flat - 3D)
“parametrization”




Riemannian Manifolds

Concept:
e Abstract surface
e “User defined” metric

standard non-standard
metric (pos-def. quadric
at each point)



Riemannian Manifolds

Riemannian Manifold

e Manifold topology, d-dimensional
= We mostly focus on 2-manifolds, embedded in R3

e Local parametrization: tangent space

= We have a tangent space for each point

e |ntrinsic metric

= For every point, we know
the metric tensor
(i.e., a scalar product)

= |n tangent space
coordinates

standard non-standard
metric (pos-def. quadric
at each point)



Types of Mappings

Given: Riemannian Manifolds M, M,
Consider: Functions f: M; = M,

Important types of mappings:

e Isometric: preserves distances & angles Metric tensors

= Jacobian: /'f = R, R orthogonal @

= Metric tensor: I

e Conformal: preserves (only) angles
= Jacobian: Vf = AR, 1 > 0, R orthogonal d}' @@
= Metric tensor: ALA > 0

e Equi-areal (incompressible): preserves area

= Jacobian: |det(Vf)| =1 I
= Metric tensor: det(M) = 1 O




Theorems

Isometric mappings

e [sometries preserve Gaussian curvature (Gauss)

Conformal mappings

e Uniformization theorem:
= For any simply connected Riemann surface (2-manifold)
= There exists a conformal, bijective mapping to either:
— the open unit disk
— the whole 2D plane
— Unit sphere

e Any discs, spheres, planes can be mapped to objects of
the same topology using a conformal map



