Geometric Modeling
Summer Semester 2012

Rational Spline Curves
Projective Geometry · Rational Bezier Curves · NURBS
Overview...

Topics:

• Polynomial Spline Curves
• Blossoming and Polars

• Rational Spline Curves
 • Some projective geometry
 • Conics and quadrics
 • Rational Bezier Curves
 • Rational B-Splines: NURBS

• Spline Surfaces
Some Projective Geometry
A very short overview of projective geometry

- The computer graphics perspective
- Formal definition
Homogeneous Coordinates

Problem:

• Linear maps (matrix multiplication in \mathbb{R}^d) can represent...
 ▪ Rotations
 ▪ Scaling
 ▪ Sheering
 ▪ Orthogonal projections

• ...but not:
 ▪ Translations
 ▪ Perspective projections

• This is a problem in computer graphics:
 ▪ We would like to represent compound operations in a single, closed representation
"Quick Hack" #1: Translations

• Linear maps cannot represent translations:
 ▪ Every linear map maps the zero vector to zero \(\mathbf{M}\mathbf{0} = \mathbf{0} \)
 ▪ Thus, non-trivial translations are non-linear

• Solution:
 ▪ Add one dimension to each vector
 ▪ Fill in a one
 ▪ Now we can do translations by adding multiples of the one:

\[
\mathbf{M}\mathbf{x} = \begin{pmatrix} r_{11} & r_{21} & t_x \\ r_{12} & r_{22} & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}
\]
Normalization

Problem: What if the last entry is not 1?

- It’s not a bug, it’s a feature...
- If the last component is not 1, divide everything by it before using the result

Cartesian coordinates (Euclidian space) → homogenous coordinates (projective space)

$x \rightarrow \begin{pmatrix} \omega x \\ \omega \end{pmatrix}$

$\frac{1}{\omega} x \leftarrow \begin{pmatrix} x \\ \omega \end{pmatrix}$
Notation:

- The extra component is called the *homogenous component* of the vector.
- It is usually denoted by ω:
 - 2D case:
 $$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \omega x \\ \omega y \\ \omega \end{pmatrix}$$
 - 3D case:
 $$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} \omega x \\ \omega y \\ \omega z \\ \omega \end{pmatrix}$$
- General case:
 $$x \rightarrow \begin{pmatrix} \omega x \\ \omega \end{pmatrix}$$
New Feature: Perspective projections

- Very useful for 3D computer graphics
- Perspective projection (central projection)
 - involves divisions
 - can be packaged into homogeneous component
Perspective Projection

Physical camera:

Virtual camera:
Perspective projection:

\[x' = d \frac{x}{z}, \quad y' = d \frac{y}{z} \]
Homogenous Transformation

Projection as linear transformation in homogenous coordinates:

- Trick: Put the denominator into the ω component.

\[
\begin{align*}
 x' &= d \frac{x}{z}, \\
 y' &= d \frac{y}{z}
\end{align*}
\]

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 \omega'
\end{pmatrix} =
\begin{pmatrix}
 d & 0 & 0 & 0 \\
 0 & d & 0 & 0 \\
 0 & 0 & d & 0 \\
 0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 \omega
\end{pmatrix}
\]

- Camera placement: move scene in opposite direction
Graphics Pipeline

Graphics pipeline:

3d object (polygon)

vertices \(x_i \)

object movement

\[x \rightarrow M_m \cdot x \]

camera placement

\[x \rightarrow M_c \cdot x \]

projection

\[x \rightarrow M_p \cdot x \]

perspective divide

\[x \rightarrow x / x \cdot \omega \]

2d image

rasterization

bitmap image

Homogenous coordinates
OpenGL Graphics Pipeline

Example: OpenGL Pipeline

- Polygon primitives (triangles)
- Vertices specified by homogenous coordinates (4 floats)
- Transformation pipeline:
 - Corresponds to a 4x4 matrix transformation
 - (more or less; clipping etc. separate)
- Hardware accelerated
 - Special purpose hardware
 - Supports rapid 4D vector operations ("vertex shader")
Formal Definition

Projective Space \mathbb{P}^d:

- Embed Euclidian space \mathbb{E}^d
 - into $d+1$ dimensional Euclidian space at $\omega = 1$
 - Additional dimension usually named ω

- Identify all points on lines through the origin
 - representing the same Euclidian point

$$p' \rightarrow \left\{ \begin{pmatrix} \omega p \\ \omega \end{pmatrix}, \omega \in \mathbb{R}^0 \right\}$$
Properties

Properties:

- Points represented by lines through the origin
- Consequence:
 - scaling by common factor does not change the point
 - \(\text{Euclidian}(\lambda \mathbf{x}) = \text{Euclidian}(\mathbf{x}), \lambda \neq 0 \)
 - We can scale the points arbitrarily
- Hence:
 - When multiple projective operations are performed on the projective points.
 - Division by \(\omega \) can be done at any time
- “Projective transformation”:
 - Map lines through the origin to lines through the origin
Properties

Projective Maps:

• Represented by linear maps in the higher dimensional space

• Scale at any time:

\[y = Mx \hat{=} \frac{Mx}{y.\omega} \hat{=} M \frac{x}{x.\omega} \quad \text{(for } \omega \neq 0) \]

Important: We have \(x \hat{=} \alpha x \), but in general: \(x + y \neq x + \alpha y \)
Problem: What if $\omega = 0$?

- Again – it’s not a bug, it’s a feature
- Projective points with $\omega = 0$ do not correspond to Euclidian points
- They represent directions, or points at infinity.
- This gives a natural distinction:
 - Euclidian points: $\omega \neq 0$ in homogenous coordinates.
 - Euclidian vectors: $\omega = 0$ in homogenous coordinates.
- The difference of points yields a vector.
 - Vectors can be added to points
 - But not (not really) points to points.
Quadrics and Conics
Modeling Wish List

We want to model:

- Circles (Surfaces: Spheres)
- Ellipses (Surfaces: Ellipsoids)
- And segments of those
- Surfaces: Objects with circular cross section
 - Cylinders
 - Cones
 - Surfaces of revolution (lathing)

These objects cannot be represented exactly (only approximated) by piecewise polynomials
Conical Sections

Classic description of such objects:

• Conical sections (conics)
• Intersections of a cone and a plane
• Resulting objects:
 ▪ Circles
 ▪ Ellipses
 ▪ Hyperbolas
 ▪ Parabolas
 ▪ Points
 ▪ Lines
Conic Sections

Circle, Ellipse
Hyperbola
Parabola
Line (degenerate case)
Point (degenerate case)
Implicit Form

Implicit quadrics:

- Conic sections can be expressed as zero set of a quadratic function:
 \[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]

\[\Leftrightarrow x^T \begin{pmatrix} a & 1/2 \cdot b \\ 1/2 \cdot b & c \end{pmatrix} x + [d \quad e] x + f = 0 \]

- Easy to see why:
 Implicit eq. for a cone: \(Ax^2 + By^2 = z^2 \)
 Explicit eq. for a plane: \(z = Dx + Ey + F \)
 Conical Section: \(Ax^2 + By^2 = (Dx + Ey + F)^2 \)
Quadrics & Conics

Quadrics:

- Zero sets of quadratic functions (any dimension) are called *quadrics*:

\[\{ x \in \mathbb{R}^d \mid x^T M x + b^T x + c = 0 \} \]

- *Conics* are the special case for \(d = 2 \).
Shapes of Quadratic Polynomials

\(\lambda_1 = 1, \ \lambda_2 = 1 \)

\(\lambda_1 = 1, \ \lambda_2 = -1 \)

\(\lambda_1 = 1, \ \lambda_2 = 0 \)
The Iso-Lines: Quadrics

- **Elliptic:** $\lambda_1 > 0, \lambda_2 > 0$
- **Hyperbolic:** $\lambda_1 < 0, \lambda_2 > 0$
- **Degenerate case:** $\lambda_1 = 0, \lambda_2 \neq 0$
Determining the type of Conic from the implicit form:

- Implicit function: quadratic polynomial

\[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]

\[\iff \mathbf{x}^T \begin{pmatrix} a & 1/2 \cdot b \\ 1/2 \cdot b & c \end{pmatrix} \mathbf{x} + \begin{bmatrix} d & e \end{bmatrix} \mathbf{x} + f = 0 \]

- Eigenvalues of \(M \):

\[\lambda_{1,2} = \frac{a + c}{2} \pm \frac{1}{2} \sqrt{(a - c)^2 + b^2} \]
Cases

We obtain the following cases:

- **Ellipse:** \(b^2 < 4ac \)
 - Circle: \(b = 0, a = c \)
 - Otherwise: general ellipse
- **Hyperbola:** \(b^2 > 4ac \)
- **Parabola:** \(b^2 = 4ac \) (border case)

Implicit function:

\[
ax^2 + bxy + cy^2 + dx + ey + f = 0
\]
Cases

Explanation:

\[b^2 = 4ac \Rightarrow \lambda_{1,2} = \frac{a + c}{2} \pm \frac{1}{2} \sqrt{(a - c)^2 + 4ac} \]

\[= \frac{a + c}{2} \pm \sqrt{a^2 - 2ac + c^2 + 4ac} \]

\[= \frac{a + c}{2} \pm \frac{1}{2} \sqrt{a^2 + 2ac + c^2} \]

\[= \frac{a + c}{2} \pm \frac{1}{2} \sqrt{(a + c)^2} \]

\[= \frac{a + c}{2} \pm \frac{a + c}{2} \]

\[= \{0, a + c\} \]

Implicit function:

\[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]
We want to represent conics with parametric curves:
- How can we represent (pieces) of conics as parametric curves?
- How can we generalize our framework of piecewise polynomial curves to include conical sections?

Projections of Parabolas:
- We will look at a certain class of parametric functions – projections of parabolas.
- This class turns out to be general enough,
- and can be expressed easily with the tools we know.
Definition: Projection of a Parabola

• We start with a quadratic space curve.
• Interpret the z-coordinate as homogenous component ω.
• Project the curve on the plane $\omega = 1$.
Projected Parabola

Formal Definition:

- Quadratic polynomial curve in three space
- Project by dividing by third coordinate

\[
\begin{align*}
 f^{(\text{hom})}(t) &= \mathbf{p}_0 + t \mathbf{p}_1 + t^2 \mathbf{p}_2 = \\
 &= \begin{pmatrix} p_0.x \\ p_0.y \\ p_0.\omega \end{pmatrix} + t \begin{pmatrix} p_1.x \\ p_1.y \\ p_1.\omega \end{pmatrix} + t^2 \begin{pmatrix} p_2.x \\ p_2.y \\ p_2.\omega \end{pmatrix} \\

 f^{(\text{eucl})}(t) &= \frac{\begin{pmatrix} p_0.x \\ p_0.y \end{pmatrix} + t \begin{pmatrix} p_1.x \\ p_1.y \end{pmatrix} + t^2 \begin{pmatrix} p_2.x \\ p_2.y \end{pmatrix}}{\mathbf{p}_0.\omega + t \mathbf{p}_1.\omega + t^2 \mathbf{p}_2.\omega}
\end{align*}
\]
Bernstein Basis

Alternatively: Represent in Bernstein basis

- Rational quadratic Bezier curves:

\[
\mathbf{f}^{(\text{hom})}(t) = B_0^{(2)}(t) \mathbf{p}_0 + B_1^{(2)}(t) \mathbf{p}_1 + B_2^{(2)}(t) \mathbf{p}_2
\]

\[
\mathbf{f}^{(\text{eucl})}(t) = \frac{B_0^{(2)}(t) \begin{pmatrix} \mathbf{p}_0 \cdot \mathbf{x} \\ \mathbf{p}_0 \cdot \mathbf{y} \end{pmatrix} + B_1^{(2)}(t) \begin{pmatrix} \mathbf{p}_1 \cdot \mathbf{x} \\ \mathbf{p}_1 \cdot \mathbf{y} \end{pmatrix} + B_2^{(2)}(t) \begin{pmatrix} \mathbf{p}_2 \cdot \mathbf{x} \\ \mathbf{p}_2 \cdot \mathbf{y} \end{pmatrix}}{B_0^{(2)}(t) \mathbf{p}_0 \cdot \omega + B_1^{(2)}(t) \mathbf{p}_1 \cdot \omega + B_2^{(2)}(t) \mathbf{p}_2 \cdot \omega}
\]
Properties

Projective invariance:

- Quadratic Bezier curves are invariant under projective maps
- The following operations yield the same result
 - Applying a projective map to the control points, then evaluate the curve
 - Applying the same projective map to the curve
- Proof:
 - 3D curve is invariant under linear maps
 - Scaling does not matter for projections (divide by ω before or after applying a projection matrix does not matter)
Parametrizing Conics

Conics can be parameterized using projected parabolas:

- We show that we can represent (piecewise):
 - Points and lines (obvious ✓)
 - A unit parabola
 - A unit circle
 - A unit hyperbola
- General cases (ellipses etc.) can be obtained by affine mappings of the control points (which leads to affine maps of the curve)
Parametrizing Parabolas

Parabolas as rational parametric curves:

\[
f^{(eucl)}(t) = \frac{\begin{pmatrix} 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{1 + 0t + 0t^2} \begin{pmatrix} x(t) = t \\ y(t) = t^2 \end{pmatrix}
\]

(pretty obvious as well)
Circle

Let’s try to find a rational parametrization of a (piece of a) unit circle:

\[\mathbf{f}^{(eucl)}(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \]

\[\cos \varphi = \frac{1 - \tan^2 \frac{\varphi}{2}}{1 + \tan^2 \frac{\varphi}{2}}, \quad \sin \varphi = \frac{2\tan \frac{\varphi}{2}}{1 + \tan^2 \frac{\varphi}{2}} \]

(tangent half-angle formula)

\[t := \tan \frac{\varphi}{2} \Rightarrow \mathbf{f}^{(eucl)}(\varphi) = \begin{pmatrix} 1 - t^2 \\ 1 + t^2 \\ 2t \\ 1 + t^2 \end{pmatrix} \]
Circle

Let’s try to find a rational parametrization of a (piece of a) unit circle:

\[
\mathbf{f}^{(\text{eucl})}(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} = \begin{pmatrix} \frac{1-t^2}{1+t^2} \\ \frac{2t}{1+t^2} \end{pmatrix} \text{ with } t := \tan \frac{\varphi}{2}
\]

\[
\Rightarrow \mathbf{f}^{(\text{hom})}(t) = \begin{pmatrix} 1-t^2 \\ 2t \\ 1+t^2 \end{pmatrix}
\]

parametrization for \(\varphi \in (-90^\circ..90^\circ) \)

\(\Rightarrow \) we need at least three segments to parametrize a full circle
Hyperbolas

Unit Circle: \(x^2 + y^2 = 1 \)

\[\Rightarrow x(t) = \frac{1-t^2}{1+t^2}, y(t) = \frac{2t}{1+t^2} \quad (t \in \mathbb{R}) \]

Unit Hyperbola: \(x^2 - y^2 = 1 \)

\[\Rightarrow x(t) = \frac{1+t^2}{1-t^2}, y(t) = \frac{2t}{1-t^2} \quad (t \in [0..1]) \]
Rational Bezier Curves
Rational Bezier Curves

Rational Bezier curves in \mathbb{R}^n of degree d:

- Form a Bezier curve of degree d in $n+1$-dimensional space
- Interpret last coordinate as homogenous component
- Euclidian coordinates are obtained by projection.

\[
\begin{align*}
\mathbf{f}^{(\text{hom})}(t) &= \sum_{i=0}^{n} B_i^{(d)}(t)p_i, \quad p_i \in \mathbb{R}^{n+1} \\
\mathbf{f}^{(\text{eucl})}(t) &= \frac{\sum_{i=0}^{n} B_i^{(d)}(t)\begin{pmatrix} p_i^{(1)} \\ \vdots \\ p_i^{(n)} \end{pmatrix}}{\sum_{i=0}^{n} B_i^{(d)}(t)p_i^{(n+1)}}
\end{align*}
\]
More Convenient Notation

The curve can be written in “weighted points” form:

\[
\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i \left(\begin{array}{c} p_1 \\ \vdots \\ p_n \end{array} \right) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i}{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i}
\]

Interpretation:

- Points are weighted by weights \(\omega_i \)
- Normalized by interpolated weights in the denominator
- Larger weights \(\rightarrow \) more influence of that point
Properties

What about affine invariance, convex hull prop.?

\[
f^{(eucl)}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i p_i}{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i} = \sum_{i=0}^{n} q_i(t) p_i \quad \text{with} \quad \sum_{i=0}^{n} q_i(t) = 1
\]

Consequence:

- Affine invariance still holds
- For strictly positive weights:
 - Convex hull property still holds
 - This is not a big restriction (potential singularities otherwise)
- Projective invariance (projective maps, hom. coord’s)
Quadratic Bezier Curves

Quadratic curves:

- Necessary and sufficient to represent conics
- Therefore, we will examine them closer...

Quadratic rational Bezier curve:

\[
f^{(eucl)}(t) = \frac{B_{0}^{(2)}(t)\omega_{0}p_{0} + B_{1}^{(2)}(t)\omega_{1}p_{1} + B_{2}^{(2)}(t)\omega_{2}p_{2}}{B_{0}^{(2)}(t)\omega_{0} + B_{1}^{(2)}(t)\omega_{1} + B_{2}^{(2)}(t)\omega_{2}}, \quad p_{i} \in \mathbb{R}^{n}, \omega_{i} \in \mathbb{R}
\]
Standard Form

How many degrees of freedom are in the weights?

• Quadratic rational Bezier curve:

\[
f^{(eucl)}(t) = \frac{B_0^{(2)}(t)\omega_0 p_0 + B_1^{(2)}(t)\omega_1 p_1 + B_2^{(2)}(t)\omega_2 p_2}{B_0^{(2)}(t)\omega_0 + B_1^{(2)}(t)\omega_1 + B_2^{(2)}(t)\omega_2}
\]

• If one of the weights is \(\neq 0 \) (which must be the case), we can divide numerator and denominator by this weight and thus remove one degree of freedom.

• If we are only interested in the *shape of the curve*, we can remove one more degree of freedom by a *reparametrization*...
Standard Form

How many degrees of freedom are in the weights?

• Concerning the shape of the curve, the parametrization does not matter.

• We have:

\[f^{(eucl)}(t) = \frac{(1-t)^2 \omega_0 p_0 + 2t(1-t)\omega_1 p_1 + t^2 \omega_2 p_2}{(1-t)^2 \omega_0 + 2t(1-t)\omega_1 + t^2 \omega_2} \]

• We set: (with \(\alpha \) to be determined later)

\[t \leftarrow \frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}}, \ i.e., (1-t) \leftarrow \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}} \]
Remark: Why this reparametrization?

Reparametrization:
\[t \leftarrow \frac{\tilde{t}}{\alpha(1 - \tilde{t}) + \tilde{t}} \]

Properties:
- \(0 \rightarrow 0 \), \(1 \rightarrow 1 \), and monotonic in between
- Shape determined by parameter \(\alpha \).
Standard Form

\[t \leftarrow \frac{\tilde{t}}{\alpha(1-\tilde{t})+\tilde{t}}, \ i.e., \ (1-t) \leftarrow \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t})+\tilde{t}} \]
\[t \leftarrow \frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}}, \text{i.e.,} (1-t) \leftarrow \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}} \]

\[f^{(eucl)}(t) = \frac{\left(\frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}} \right)^2 \omega_0 p_0 + 2 \left(\frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}} \right) \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}} \omega_1 p_1 + \left(\frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}} \right)^2 \omega_2 p_2}{\left(\frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}} \right)^2 \omega_0 + 2 \left(\frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}} \right) \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}} \omega_1 + \left(\frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}} \right)^2 \omega_2} \]

\[= \frac{\alpha^2(1-\tilde{t})^2 \omega_0 p_0 + 2\alpha\tilde{t}(1-\tilde{t}) \omega_1 p_1 + \tilde{t}^2 \omega_2 p_2}{\alpha^2(1-\tilde{t})^2 \omega_0 + 2\alpha\tilde{t}(1-\tilde{t}) \omega_1 + \tilde{t}^2 \omega_2} \]

\[= \frac{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 p_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 p_1 + B_2^{(2)}(\tilde{t}) \omega_2 p_2}{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 + B_2^{(2)}(\tilde{t}) \omega_2} \]
Standard Form

\[f^{(eucl)}(t) = \frac{\alpha^2 B^{(2)}_0(\tilde{t}) \omega_0 p_0 + \alpha B^{(2)}_1(\tilde{t}) \omega_1 p_1 + B^{(2)}_2(\tilde{t}) \omega_2 p_2}{\alpha^2 B^{(2)}_0(\tilde{t}) \omega_0 + \alpha B^{(2)}_1(\tilde{t}) \omega_1 + B^{(2)}_2(\tilde{t}) \omega_2} \]

let \(\alpha = \sqrt{\frac{\omega_2}{\omega_0}} \) (assume \(0 \leq \frac{\omega_2}{\omega_0} < \infty \))
Standard Form

\[f^{(eucl)}(t) = \alpha^2 B^{(2)}_0(\tilde{t}) \omega_0 \mathbf{p}_0 + \alpha B^{(2)}_1(\tilde{t}) \omega_1 \mathbf{p}_1 + B^{(2)}_2(\tilde{t}) \omega_2 \mathbf{p}_2 \]

\[\alpha = \sqrt{\frac{\omega_2}{\omega_0}} \quad \text{(assume } 0 \leq \frac{\omega_2}{\omega_0} < \infty) \]

\[f^{(eucl)}(t) = \frac{B^{(2)}_0(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_0 \mathbf{p}_0 + B^{(2)}_1(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 \mathbf{p}_1 + \omega_2 B^{(2)}_2(\tilde{t}) \mathbf{p}_2}{B^{(2)}_0(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_0 + B^{(2)}_1(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B^{(2)}_2(\tilde{t})} \]

\[= \frac{B^{(2)}_0(\tilde{t}) \omega_2 \mathbf{p}_0 + B^{(2)}_1(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 \mathbf{p}_1 + \omega_2 B^{(2)}_2(\tilde{t}) \mathbf{p}_2}{B^{(2)}_0(\tilde{t}) \omega_2 + B^{(2)}_1(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B^{(2)}_2(\tilde{t})} \]
Standard Form

\[f^{(eucl)}(t) = \frac{B_0^{(2)}(\tilde{t}) \omega_2 p_0 + B_1^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 p_1 + \omega_2 B_2^{(2)}(\tilde{t}) p_2}{B_0^{(2)}(\tilde{t}) \omega_2 + B_1^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B_2^{(2)}(\tilde{t})} \]
$$f^{(eucl)}(t) = \frac{B_0^{(2)}(\tilde{t})\omega_2 p_0 + B_1^{(2)}(\tilde{t})\sqrt{\frac{\omega_2}{\omega_0}} \omega_1 p_1 + \omega_2 B_2^{(2)}(\tilde{t}) p_2}{B_0^{(2)}(\tilde{t})\omega_2 + B_1^{(2)}(\tilde{t})\sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B_2^{(2)}(\tilde{t})}$$

$$= \frac{B_0^{(2)}(\tilde{t}) p_0 + B_1^{(2)}(\tilde{t})\sqrt{\frac{1}{\omega_0 \omega_2}} \omega_1 p_1 + B_2^{(2)}(\tilde{t}) p_2}{B_0^{(2)}(\tilde{t}) + B_1^{(2)}(\tilde{t})\sqrt{\frac{1}{\omega_0 \omega_2}} \omega + B_2^{(2)}(\tilde{t})}$$

with: $$\omega := \sqrt{\frac{1}{\omega_0 \omega_2}}$$
Standard Form

Consequence:

• It is sufficient to specify the weight of the inner point
• We can w.l.o.g. set $\omega_0 = \omega_2 = 1, \omega_1 = \omega$
• This form of a quadratic Bezier curve is called the standard form.
• Choices:
 - $\omega < 1$: ellipse segment
 - $\omega = 1$: parabola segment (non-rational curve)
 - $\omega > 1$: hyperbola segment
Changing the weight:

- $\omega < 1$: Ellipse
- $\omega = 1$: Parabola
- $\omega > 1$: Hyperbola
Conversion to Implicit Form

Convert parametric to implicit form:

- In order to show the shape conditions
- For distance computations / inside-outside tests

Express curve in barycentric coordinates:

- Curve can be expressed in barycentric coordinates (linear transform):

\[f(t) = \tau_0(t)p_0 + \tau_1(t)p_1 + \tau_2(t)p_2 \]
Conversion to Implicit Form

Comparison of coefficients yields:

\[
\begin{align*}
\tau_0(t) &= \frac{\omega_0 B_0^{(2)}(t)}{\sum_{i=0}^{2} \omega_i B_i^{(2)}(t)} = \frac{\omega_0(1-t)^2}{D(t)} \\
\tau_1(t) &= \frac{\omega_1 B_1^{(2)}(t)}{\sum_{i=0}^{2} \omega_i B_i^{(2)}(t)} = \frac{2\omega_1 t(1-t)}{D(t)} \\
\tau_2(t) &= \frac{\omega_2 B_2^{(2)}(t)}{\sum_{i=0}^{2} \omega_i B_i^{(2)}(t)} = \frac{\omega_2 t^2}{D(t)}
\end{align*}
\]

\[
f(t) = \tau_0(t)p_0 + \tau_1(t)p_1 + \tau_2(t)p_2
\]

\[
f^{(eucl)}(t) = \frac{(1-t)^2 \omega_0 p_0 + 2t(1-t)\omega_1 p_1 + t^2 \omega_2 p_2}{(1-t)^2 \omega_0 + 2t(1-t)\omega_1 + t^2 \omega_2}
\]
Conversion to Implicit Form

Solving for t, $(1-t)$:

$$
\tau_0(t) = \frac{\omega_0 (1-t)^2}{D(t)} \Rightarrow (1-t) = \sqrt{\frac{\tau_0(t)D(t)}{\omega_0}}
$$

$$
\tau_1(t) = \frac{2\omega_1 t (1-t)}{D(t)}
$$

$$
\tau_2(t) = \frac{\omega_2 t^2}{D(t)} \Rightarrow t = \sqrt{\frac{\tau_2(t)D(t)}{\omega_2}}
$$

$$
\tau_1(t) = \frac{2\omega_1 \sqrt{\frac{\tau_2(t)D(t)}{\omega_2} \frac{\tau_0(t)D(t)}{\omega_0}}}{D(t)} = 2\omega_1 \sqrt{\frac{\tau_2(t)\tau_0(t)}{\omega_0 \omega_2}}
$$

$$
\Rightarrow \frac{\tau_1(t)^2}{\tau_2(t)\tau_0(t)} = 4 \frac{\omega_1^2}{\omega_0 \omega_2}
$$
Conversion to Implicit Form

Some more algebra...:

\[
\frac{\tau_1(t)^2}{\tau_2(t)\tau_0(t)} = 4 \frac{\omega_1^2}{\omega_0\omega_2}
\]

Using \(\tau_2(t) = (1 - \tau_0(t) - \tau_1(t))\) we get:

\[
\begin{bmatrix} \omega_0 \omega_2 \end{bmatrix} \tau_1(t)^2 = \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_2(t)\tau_0(t)
= \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_0(t)(1 - \tau_0(t) - \tau_1(t))
= \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} (\tau_0(t) - \tau_0(t)^2 - \tau_1(t)\tau_0(t))
\]

\[
\Rightarrow \begin{bmatrix} \omega_0 \omega_2 \end{bmatrix} \tau_1(t)^2 + \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_1(t)\tau_0(t) + \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_0(t)^2 - \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_0(t) = 0
\]

\[
a x^2 + b xy + c y^2 + e x + 0 y + 0 = 0
\]

(transformed coordinates: \(x, y\) affine transform of std coords; does not matter for shape type)
Classification

Eigenvalue argument led to:

- Parabola requires $b^2 = 4ac$ in $ax^2 + bxy + cy^2 + dx + ey + f = 0$
- In our case:
 \[
 \left[\omega_0 \omega_2 \right] \tau_1(t)^2 + \left[4\omega_1^2 \right] \tau_1(t) \tau_0(t) + \left[4\omega_1^2 \right] \tau_0(t)^2 - \left[4\omega_1^2 \right] \tau_0(t) = 0
 \]
 i.e.:
 \[
 4 \left[\omega_0 \omega_2 \right] \left[4\omega_1^2 \right] = \left[4\omega_1^2 \right]^2
 \]
 \[
 \Leftrightarrow 16 \omega_0 \omega_2 \omega_1^2 = 16 \omega_1^4
 \]
 \[
 \Leftrightarrow \omega_0 \omega_2 = \omega_1^2
 \]
 Standard form: $\omega_0 = \omega_2 = 1$
 \[
 \Rightarrow \omega_1 = 1
 \]
Similarly, it follows that:

\[\omega_1 < 1 \rightarrow \text{Ellipse} \]

\[\omega_1 = 1 \rightarrow \text{Parabola} \quad (\omega_0 = \omega_2 = 1) \]

\[\omega_1 > 1 \rightarrow \text{Hyperbola} \]
Circle in Bezier Form

Quadratic rational polynomial:

\[f(t) = \frac{1}{1 + t^2} \left(\frac{1 - t^2}{2t} \right), \quad t = \tan \frac{\varphi}{2}, \varphi \in (-90^\circ .. 90^\circ) \]

Conversion to Bezier basis:

\[B^{(2)}_0 = (1-t)^2 = 1 - 2t + t^2 = [1 \quad -2 \quad 1]^T \]
\[B^{(2)}_1 = 2t(1-t) = 2t - 2t^2 = [0 \quad 2 \quad -2]^T \]
\[B^{(2)}_2 = t^2 = [0 \quad 0 \quad 1]^T \]

\[1 - t^2 \hat{=} [1 \quad 0 \quad -1]^T \]
\[2t \hat{=} [0 \quad 2 \quad 0]^T \]
\[1 + t^2 \hat{=} [1 \quad 0 \quad 1]^T \]
Circle in Bezier Form

Conversion to Bezier basis:

\[B_0^{(2)} = (1-t)^2 = 1 - 2t + t^2 \triangleq [1 \quad -2 \quad 1]^T \]
\[B_1^{(2)} = 2t(1-t) = 2t - 2t^2 \triangleq [0 \quad 2 \quad -2]^T \]
\[B_2^{(2)} = t^2 \triangleq [0 \quad 0 \quad 1]^T \]

Comparison yields:

\[1-t^2 = B_0^{(2)} + B_1^{(2)} \]
\[2t = B_1^{(2)} + 2B_2^{(2)} \]
\[1+t^2 = B_0^{(2)} + B_1^{(2)} + 2B_2^{(2)} \]

\[f^{(\text{hom})}(t) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} B_0^{(2)} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} B_1^{(2)} + \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} B_2^{(2)} \]
Circle in Bezier Form

Result:

\[f(t) = \frac{B_0^{(2)}(t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + B_1^{(2)}(t) \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2B_2^{(2)}(t) \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{B_0^{(2)}(t) + B_1^{(2)}(t) + 2B_2^{(2)}(t)} \]

Parameters:

\[t = \tan \frac{\varphi}{2} \Rightarrow \varphi = 2 \arctan t \]

\[t \in [0,1] \rightarrow \varphi \in [0^\circ..90^\circ] \]
Circle in Bezier Form

Standard Form:

\[
f(t) = \frac{B_0^{(2)}(\tilde{t}) p_0 + B_1^{(2)}(\tilde{t}) \omega p_1 + B_2^{(2)}(\tilde{t}) p_2}{B_0^{(2)}(\tilde{t}) + B_1^{(2)}(\tilde{t}) \omega + B_2^{(2)}(\tilde{t})}
\]

with: \(\omega := \sqrt{\frac{1}{\omega_0 \omega_2}} \)

\[
f(t) = \frac{B_0^{(2)} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{2} \sqrt{2} B_1^{(2)} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + B_2^{(2)} \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{B_0^{(2)} + \frac{1}{2} \sqrt{2} B_1^{(2)} + B_2^{(2)}}
\]
Result: Circle in Bezier Form

Final Result:

\[
\begin{align*}
\omega_0 &= 1 \\
p_0 &= \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\
\omega_1 &= \frac{1}{2}\sqrt{2} \\
p_1 &= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
p_2 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
\omega_2 &= 1
\end{align*}
\]
In general:

for $\omega_0 = \omega_2 = 1$:

$\omega_1 = \cos \alpha$

angle interval $< 180^\circ$

$\alpha = 60^\circ$

$\rightarrow \omega_1 = 0.5$
Properties, Remarks

Continuity:

- The parametrization is only C^1, but G^∞
- No arc length parametrization possible
- *Even stronger:* No rational curve other than a straight line can have an arc-length parametrization.

Circles in in general degree Bezier splines:

- Simplest solution:
 - Form quadratic circle (segments)
 - Apply degree elevation to obtain the desired degree
Rational De Casteljau Algorithm

Evaluation with De Casteljau Algorithm

• Two Variants:
 ▪ Compute numerator and denominator separately, then divide
 ▪ Divide in each intermediate step ("rational de Casteljau")

• Non-rational de Casteljau algorithm:
 \[b_i^{(r)}(t) = (1 - t)b_i^{(r-1)}(t) + tb_{i+1}^{(r-1)}(t) \]

• Rational de Casteljau algorithm:
 \[b_i^{(r)}(t) = (1 - t)\frac{\omega_i^{(r-1)}(t)}{\omega_i^{(r)}(t)}b_i^{(r-1)}(t) + t\frac{\omega_{i+1}^{(r-1)}(t)}{\omega_i^{(r)}(t)}b_{i+1}^{(r-1)}(t) \]

with
 \[\omega_i^{(r)}(t) = (1 - t)\omega_i^{(r-1)}(t) + t\omega_{i+1}^{(r-1)}(t) \]
Rational De Casteljau Algorithm

Advantages:

• More intuitive (repeated weighted linear interpolation of points and weights)
• Numerically more stable (only convex combinations for the standard case of positive weights, $t \in [0,1]$)
Weight Points

Alternative technique to specify weights:

- Weight points
- User interface: More intuitive in interactive design

Weight Points:

\[q_0 = \frac{\omega_0 p_0 + \omega_1 p_1}{\omega_0 + \omega_1}, \quad q_1 = \frac{\omega_1 p_1 + \omega_2 p_2}{\omega_1 + \omega_2} \]

Standard Form:

\[q_0 = \frac{p_0 + \omega_1 p_1}{1 + \omega_1}, \quad q_1 = \frac{p_1 + \omega_1 p_2}{1 + \omega_1} \]
Computing derivatives of rational Bezier curves:

- Straightforward: Apply quotient rule
- A simpler expression can be derived using an algebraic trick:

\[
 f(t) = \frac{\sum_{i=0}^{d} B_i^{(d)}(t) \omega_i p_i}{\sum_{i=0}^{d} B_i^{(d)}(t) \omega_i} = \frac{p(t)}{\omega(t)}
\]

\[
 f(t) = \frac{p(t)}{\omega(t)} \Rightarrow p(t) = f(t) \omega(t) \Rightarrow p'(t) = f'(t) \omega(t) + f(t) \omega'(t)
\]

\[
 \Rightarrow f'(t) \omega(t) = p'(t) - f(t) \omega'(t) \Rightarrow f'(t) = \frac{p'(t) - f(t) \omega'(t)}{\omega(t)}
\]

Derivatives

At the endpoints:

\[
f'(t) = \frac{p'(t) - \omega'(t)f(t)}{\omega(t)}
\]

\[
f'(0) = \frac{p'(0) - \omega'(0)f(0)}{\omega(0)}
\]

\[
= \frac{d(\omega_1 p_1 - \omega_0 p_0) - d(\omega_1 - \omega_0)p_0}{\omega_0} = \frac{d}{\omega_0} (\omega_1 p_1 - \omega_0 p_0 - \omega_1 p_0 + \omega_0 p_0)
\]

\[
= d \frac{\omega_1}{\omega_0} (p_1 - p_0)
\]

\[
f'(1) = d \frac{\omega_{d-1}}{\omega_d} (p_d - p_{d-1})
\]
NURBS:
Non-Uniform Rational B-Splines
NURBS

NURBS: Rational B-Splines

- Same idea:
 - Control points in homogenous coordinates
 - Evaluate curve in \((d+1)\)-dimensional space (same as before)
 - For display, divide by \(\omega\)-component
 - (we can divide anytime)
NURBS: Rational B-Splines

- Formally: \((N_i^{(d)}): \text{B-spline basis function } i \text{ of degree } d) \)

\[
f(t) = \frac{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i p_i}{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i}
\]

- Knot sequences etc. all remain the same
- De Boor algorithm – similar to rational de Casteljau alg.
 - 1. option – apply separately to numerator, denominator
 - 2. option – normalize weights in each intermediate result
 - The second option is numerically more stable
Some Issues

Interpolation problems:

• Finding a B-Spline curve that interpolates a set of homogeneous points is easy
• Just solve a linear system
• Note: The problem is easy when the weights are given.

What if no weights are given (only Euclidian points)?

• More degrees of freedom than constraints
• If we reduce the number of points:
 - Non-linear system of equations
 - Issues: How to find a solution? Does it exist? Is it unique?
Approximation with rational curves:

- **Scenario 1**: Homogeneous data points given, with weights
 - Easy problem – linear system
- **Scenario 2**: Euclidian data points are given, but weights are fixed for each control point (e.g. manually)
 - Easy problem again – linear system
 - Weights just change the shape of the basis functions
- **Scenario 3**: Euclidian data points, want to compute weights as well
 - Non-linear optimization problem
Scenerio 3: Euclidian data points, want to compute weights as well

- Non-linear optimization problem
- Issues:
 - No direct solution possible
 - Numerical optimization might get stuck in local minima
- Constraints:
 - We have to avoid poles
 - E.g. by demanding $\omega_i > 0$
 - Constrained optimization problem (even nastier)
General Rational Data Approximation

Simple idea for a numerical approach:

- First solve non-rational problem (all weights = 1)
- Then start constrained non-linear gradient descend (or Newton) solver from there