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Variational Modeling 
Introduction 



 Motivation 

Surface modeling techniques we have seen so far: 

• Bivariate polynomial spline patches 

 Quad (tensor product) patches 

 Triangular patches 

• Subdivision surfaces 

• Implicit functions 



 Motivation 

Problems: 

• Bivariate polynomial spline patches 

 General topologies are hard to handle 

 Need to adapt base mesh to user constraints 

– control points, boundaries, etc. 

• Subdivision surfaces 

 More flexible than spline patches 

 Problems: 

– Continuity at extraordinary vertices 

– Still need to build a base mesh 

• Implicit functions 

 Nice tool – but how do we construct actual surfaces? 



Variational Modeling 

Variational Modeling: 

• Different approach: 

 Formulate smoothness in terms of a penalty function 

 Set additional constraints (handle points, normals, etc) 

 Then solve for the “optimal function” 

• No direct manipulation of control points... 

 No direct user interaction 

– Use e.g. B-Splines or implicit functions 
as numerical representation 

– Control points moved “automatically” 

– “Meta tool”: compute control points automatically 

 Instead: Sparse control points/handles with more semantics 



Two Views: 

In this lecture: 

• Narrow view: 

 Use variational techniques for modeling shapes 

• General view: 

 Short introduction / overview to variational calculus and 
practical techniques. 

 Application examples in geometry processing. 

Applications beyond geometric modeling: 

• Variational approaches ubiquitous 

 in computer graphics 

 in computer vision (in particular) 



Variational Modeling 
Basic Techniques 



Calculus of Variation 

Basic Idea: 

• We look at a set of functions f: S  D 

• Define “energy functional” E: (S  D)   

 Functional: assigns real numbers to functions 

 Each function gets a “score” 

 “Energy” means: the smaller the better 

• Add additional requirements (“constraints”) on f. 

 Soft constraints  violation increases energy. 

 Hard constraints  violation not allowed. 

• Compute function(s) f that minimize E. 



Calculus of Variation 

Very general framework: 

• Many problems directly formulated this way 

• Example 1: 

 Looking for a curve. 

 As smooth as possible (energy = non-smoothness). 

 It should go through a number of points (hard constraints). 

E large 
E small 

constraints 



Calculus of Variation 

Another example: 

• Problem: We want to go to the moon. 

• Given: 

 Orbits of moons, planets and star(s). 

 Flight conditions (athmosphere, gravitation of stellar bodies) 

• Unknowns: 

 Throttle (magnitude, direction) from rocket motors (vector 
function) 

• Energy function: 

 Usage of rocket fuel (the fewer the better) 

 Perhaps: Overall travel time (maybe not longer than a week) 



Calculus of Variation 

To the moon: 

• Constraints: 

 We want to start in Cape Canaveral (upright trajectory) and end 
up on the moon. 

 We do not want to hit moons or planets on our way. 

 We want to approach the moon at no more than 20 km/h 
relative speed upon touchdown. 

 The rocket motor has a limited range of forces it can create (not 
more than a certain thrust, no backward thrust) 

So flying to the moon is just minimizing a functional. 
(ok, this is slightly simplified) 



A Simple Example 

Simple example: variational splines 

• Energy: 

 We want smooth curves 

 Smooth translates to minimum curvature 

 Quadratic penalty: 
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A Simple Example 

Simple example: variational splines 

• Energy: 

 Problem: curvature is non-linear 

 Easier to minimize: second derivatives 

 Equivalent in case of a unit-speed parametrization 
(which is tricky to enforce) 
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A Simple Example 

Simple example: variational splines 

• Constraints: 

 Hard constraints: we are given parameter values t1, ..., tn 

at which we should meet control points p1, ..., pn. 

 

 

 

 We already know the solution to this problem: Piecewise cubic 
interpolating spline. 

 














nt

tt

dtt
dt

d
fE

1

2

2

2

)()( f



A Simple Example 

Simple example: variational splines 

• More interesting: soft constraints 

 We are given parameter values t1,...,tn at which we should 
approximately meet control points p1, ..., pn. 

 

 

 

  controls the smoothness of the result. Large values reduce 
smoothness to meet the control points more precisely. 
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A Simple Example 

Simple example: variational splines 

• Soft constraints 

 We are given parameter values t1,...,tn at which we should 
approximately meet control points p1, ..., pn, up to a specific 
accuracy for each point. 

 We can specify the accuracy by error quadrics Q1, ..., Qn. 
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Rank-Deficient Quadrics 

The rank deficient error quadric trick: 

• A rank-1 matrix constraints the curve in one direction only 

• Useful for point-to-surface constraints (minimize normal 
direction deviation, tangential motion is free) 
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Numerical Treatment 

Numerical computation: 

• No closed form solution 

• Instead: 

 Discretize (finite dimensional function space) 

 Solve for coefficients (coordinate vector in this function space) 



Finite Differences 

FD solution: 

• Represent curve as array of k values: 

 

 

 

• Unknowns are the curve points y1, ..., yk 

t 0 0.1 0.2 ... 7.4 7.5 

y y0 y1 y2 ... Y74 y75 

y1 

y2 

yk 



Discretized Energy Function 

Discretized Energy Function: 

• Energy is a squared linear expression  quadratic 
discrete objective function 

• Constraints are quadratic by construction 

• Yields quadratic energy function  

 solved by a linear system 
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(neglected here: handling boundary values) 



Summary 

Summary: 

• Variational approaches look like this: 

 

 

 

 

• Connection to statistics: 

 Bayesian maximum a posteriori estimation 

 E(data) is the data likelihood (log space) 

 E(regularizer) is a prior distribution (log space) 
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Variational Toolbox: 
Data Fitting, Regularizer 

Functionals, Discretizations 



Toolbox 

In the following: 

• We will discuss... 

 ...useful standard functionals. 

 ...how to model soft constraints. 

 ...how to model hard constraints. 

 ...how to discretize the model. 

• Then snap & click your favorite custom variational 
modeling scheme. 

• (Click & snap means: add together to a composite energy) 



Functionals 



Functionals 

Standard Functional #1: Function norm 

• Given a function f: m     n 

• Minimize: 

 
 

• Means: the function values should not become too large 

• Often useful to avoid numerical problems: 

 Assume an SPD quadratic functional 

 Add E(zero)  

– smallest eigenvalue cannot become smaller than  
( condition number) 

– system is always solvable 
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Functionals 

Standard Functional #2: Harmonic energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Objective: minimize differences to neighboring points 

• Appears all the time in physics & engineering. 

 not really what we want for smooth curves... 
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Harmonic Energy 

Example: Heat equation 

• Given a metal plate 

• Hard constraints: 

 A heat source 

 A heat sink 

• What is the final heat distribution? 

 Heat flow tends to equalize temperature. 

– Stronger heat flow for larger temperature gradients. 

 Gradients become as small as possible. 

heat sink heat source 



Harmonic Energy 

Example: Harmonic energy 

• Curves that minimize the harmonic energy: 

 Shortest path, a.k.a. polygons 

 

 

• Two-dimensional parametric surface: 

 

 

 

• Useful in parametrization (conformal mappings are 
harmonic) 



Functionals 

Standard Functional #3: Thin plate spline energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Objective: minimize integral second derivatives 

 approximately: minimize curvature 

• More common in geometric modeling/processing 

 yields smooth curves & surfaces 

 A true curvature based energy is rarely used (non-quadratic). 


   

















 xxff d

xx
E

m

i

m

j ji

TSS

1 1

2
2

)( )()(



Energies for Vector Fields 

Vector fields: 

• The following energies are useful for mappings from 
n  n (e.g.: space deformations). 

• Think of an object moving (over time). 

• f(x) describes its deformation. 

• f(x,t) describes its motion over time. 

  n f()  n 

f: n  n 



Functionals 

Standard Functional #4: Green’s deformation tensor 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize metric distortion 
 Metric distortion =  non-identity first fundamental form 

• Basis for physically-based deformation modeling: 
 Energy is invariant under rigid transformations. 

 Bending, scaling, shearing is penalized. 

 Energy is non-quadratic (non-linear optimization required). 

 Matrix M encodes material properties (often M = I). 

– Important: read M·[...] as Matrix-Vector product 
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How to Detect Deformations? 

Model 

• Map volume to volume 

• Function 𝑓: 𝑉 → ℝ3 

S1 

V1 
f 

S2 

f 

f (V1) 



How to Detect Deformations? 

Detect deformation 

• Look at “deformation gradients” 

• Jacobian matrix 𝛻𝑓 

• Function 𝛻𝑓: 𝑉 → ℝ3 

 

 
 

Criterion 

• No deformation: 𝛻𝑓 orthogonal 

• Deformation: 𝛻𝑓 non-orthogonal 

f 
𝛻𝑓 



Elastic Volume Model 

Extrinsic Volumetric “As-Rigid-As Possible” 

• Measure orthogonality 

• Integrate over deviation from orthogonality 

S1 

V1 
f 

S2 

f 

f (V1) 

𝐸 𝑓 =  𝛻𝑓 𝐱 𝛻𝑓 𝐱 T − 𝐈
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Functionals 

Standard Functional #5: Volume preservation 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize local volume changes 

• This energy tries to preserve the volume at any point. 

 Physics: Incompressible materials (for example fluids) 

 The energy is invariant under rigid transformations. 

 This energy is non-quadratic (non-linear optimization required). 

 Often used in conjunction with deformation models. 
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Detect local change of volume 

• Look at “deformation gradients” 

• Jacobian matrix 𝛻𝑓 

• Function 𝛻𝑓: 𝑉 → ℝ3 

 

 
 

Criterion 

• Same volume: 𝛻𝑓 maintains volume (= determinant) 

• Volume change: det 𝛻𝑓 changes 

Volume Preservation 

𝛻𝑓 f 



Functionals 

Standard Functional #6: Infinitesimal volume preservation 

• Given a function v: n     n, 𝐯 𝐱, 𝑡 =
𝑑

𝑑𝑡
𝐟(𝐱, 𝑡) 

• Minimize: 

 

 

• Minimize local volume changes in a velocity field 

• Difference to the previous case: 
 The vectors are instantaneous motions (v(x) = d/dt f(x,t)) 

 A divergence free (time dependent) vector field will not 
introduce volume changes 

 This functional is linear, but does not work for large (rotational) 
displacements. 
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Functionals 

Standard Functionals #7 & #8: Velocity & acceleration 
• Given a function v: (n  )      n 

• Minimize: 

 

 

• Objective: minimize velocity / acceleration 

• Models air resistance, inertia. 
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Soft Constraints 



Soft Constraints 

Penalty functions 
• Uniform 
• General quadrics 
• Differential constraints 

Types of soft constraints 
• Point-wise constraints 
• Line / area constraints 

Constraint functions 
• Least-squares 
• M-estimators 



Uniform Soft Constraints 

Uniform, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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Uniform Soft Constraints 

General quadratic, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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constraint weights (general quadratic form, non-negative) 

prescribed values (x,y)i 



Uniform Soft Constraints 

Differential constraints: 
• Given a function f: n     n 

• Minimize: 
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Differential operator: 
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This is still a quadratic constraints ( linear system). 



Examples 

Examples of differential constraints: 

• Prescribe normal orientation of a surface 

 

 

• Prescribe rotation of a deformation field 

 

• Prescribe velocity or acceleration of a particle trajectory 
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Line / Area Soft Constraints 

Line and area constraints: 
• Given a function f: n     n 

• Minimize: 

 

 

 

 

 

• A.k.a: “Transfinite Constraints” 

 

   



A

constrE )()()()()()(
T)( xyxfxQxyxff

quadric error weights (may be position dependent) 

prescribed values y(x) (function of position x) 

area A   on which the constraint is placed (line, area, volume...) 



Constraint Functions 

Constraint Functions: 
• Typically, we use quadratic constraints 

 E(x) = f (x)2 

 Easy to optimize (linear system) 

 Well-defined critical point (gradient vanishes) 

 Sensitive to outliers 

• Constraints come from measured data 
 E.g.: 3D scanner data 

 Quadratic constraints may case trouble 



Constraint Functions 

Constraint Functions: 
• Alternatives: 

 L1-norm constraints: 

– E(x) = |f (x)| 

– more robust and still convex, i.e. can be optimized 

 Non-convex, truncated constraints: 

– E(x) = min(|f (x)|, C), C>0 

– yet more robust 

– finding a global optimum can be problematic 

– c.f. least-squares chapter 



Discretization 



Finite Element Discretization 

Finite-element discretization: 

• Step 1: Choose a finite dimensional  function space  

 Spanned by basis functions 

• Step 2: Compute optimum in that space only 

• Finite differences (FD) is a special case 

 grid of piecewise constant basis functions 

• General approach: 
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Finite Element Discretization 

Derive a discrete equation: 
• Just plug in the discrete f. 

• Then minimize the it over the . 

• For a differentiable energy function, we compute the 
critical point(s): 

 

 

 
• For quadratic functionals, this leads to a linear system. 

• For non-linear functionals, we can apply 
 Newton-optimization 
 Gradient descent 
 etc. 
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Example 

(Abstract) example: 

• Minimize square integral of a differential operator 

• Quadratic differential soft constraints 

• We obtain a quadratic optimization problem 

 The unknowns are the coefficients 
(coordinates in function basis) 



Example 

(Abstract) example (cont): 
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Numerical Aspects 



How to solve the problems? 

Solving the discretized variational problem: 

• Quadratic energy and quadratic constraints: 

 The discretization is a quadratic function as well. 

 The gradient is a linear expression. 

 The matrix in this expression is symmetric. 

 Well-defined problem => matrix is semi-positive definite 

 Usually very sparse matrix 

– coefficients of basis functions only interact with neighbors 

– depends on overlap of support 

 We can use iterative sparse system solvers: 

– frequently used: conjugate gradients (needs SPD matrix). 
CG is available in GeoX. 



How to solve the problems? 

Solving the discretized variational problem: 

• Non linear energy functions: 

 If the function is convex, we can get to a critical point that is the 
global minimum. 

 In general, we can only find a local optimum (or critical point). 

 Frequently used techniques are: 

– Newton optimization: 
- Iteratively compute 2nd order Taylor expansions 

(Hessian matrix, gradient) and solve linear problems. 

- Typically, Hessian matrices are sparse. 
Use conjugate gradients to solve for critical points. 

- Variants – Quasi Newton: Gauss-Newton, (L)BFGS 

– Non-linear conjugate gradients with line search. 

– In any case, we need a good initialization. 



Hard Constraints 



Hard Constraints 

Hard Constraints: 

• Sometimes, we want some properties of the solution to 
be met exactly rather than approximately. 

 Interpolation vs. approximation 

 Includes complex constraints (area constraints, differential 
properties etc.) 

• Three options to implement hard constraints: 

 Strong soft constraints (easy, but not exact) 

 Variable elimination (exact, but limited) 

 Lagrange multipliers (most complex method) 



Hard Soft Constraints 

Simplest Implementation: 

• Use soft constraints with a large weight 

 

• This is simple to implement. 

• A few serious problems: 

 The technique is not exact 

– For some applications this might be not acceptable. 

 The stronger the constraints, the larger the weight: 

– The condition number of the quadric matrix (condition of 
the Hessian in the non-linear case) becomes worse. 

– At some point, no solution is possible anymore. 

– Iterative solvers are slowed down (e.g. conjugate gradients) 
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Variable Elimination 

Idea: Variable elimination 

• We just replace variables by fixed numbers. 

• Then solve the remaining system. 

Example: 

4.0 

2.5 

4.5 

y1 
y2 

y3 
y4 y5 y6 

y7 
y8 

y9 

f ’(x0) = h-1(y1 – 4.0) 

f ’(x3) = h-1(y4 – y3) 



Variable Elimination 

Advantages: 
• Exact constraints 

• Conceptually simple 

Problems: 
• Only works for simple constraints (variable = value) 

• Need to augment system (not so easy to implement 
generically) 

• Does not work for FE methods (general basis functions) 
 Values at any point are a sum of scaled basis functions 

• Does not work for complex constraints (area/integral 
constraints, differential constraints etc.) 



Lagrange Multipliers 

Most general technique: Lagrange multipliers 

• This method works for complex, composite constraints 

• No problems with general basis functions 

 Not restricted to finite difference discretizations 

• The technique is exact. 



Lagrange Multipliers 

Here is the idea: 

• Assume we want to optimize E(x1, ..., xn) subject to an 
implicitly formulated constraint g(x1, ..., xn) = 0. 

• This looks like this: 
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Lagrange Multipliers 

Formally: 

• Optimize E(x1, ..., xn) subject to g(x1, ..., xn) = 0. 

• Formally, we want: 

 

• We get a local optimum for: 

 

 

 

• A critical point of this equation 
satisfies both 
and               . 
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Example 

Example: Optimizing a quadric subject to a linear  
 equality constraint 

• We want to optimize: 

• Subject to: 

We obtain: 

•   

 

 
 

• Linear system: 

bxAxxx  T)(E

0)(  ng mxx

 nxELG  mxbxAxxgxx  T)()()(

 
  nLG

LG





mxx

mbAxxx

)(

2)(



































n

b



x

m

mA

0

2
T



Multiple Constraints 

Multiple Constraints: 

• Similar idea 

• Introduce multiple “Lagrange multipliers” . 
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Lagrangian objective function: 



Multiple Constraints 

Example: Linear subspace constraints 

•                                 subject to 

•   

 

• Linear system: 
 

• Remark: M must have full rank for this to work. 
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What can we do with this? 

Multiple linear equality constraints: 

• We can constrain 

 multiple function values 

 differential properties 

 integral values 

• Area constraints: 

 Sample at each basis function of the discretization 

 and prescribe a value 

• Need to take care: 

 Need to make sure that constraints are linearly independent 



What can we do with this? 

Inequality constraints: 

• There are efficient quadratic programming algorithms. 

 Idea: turn on and off the constraints intelligently. 

• Examples:  

 Simplex method 

 Interior-point method 



The Euler Lagrange Equation 
(some more math) 



The Euler-Lagrange Equation 

Theoretical Result: 

• An integral energy minimization problem can be reduced 
to a differential equation. 

• We look at energy functions of a specific form: 

 

 

 

 f is the unknown function 

 F is the energy at each point x to be integrated 

 F depends (at most) on the position x, the function value f (x) and 
the first derivative f'(x). 
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The Euler-Lagrange Equation 

Now we look for a minimum: 

• Necessary condition: 

•                          (critical point) 
 

• In order to compute this: 

 Approximate f by a polygon (finite difference approximation) 

 f = ((x1, y1), ..., (xn, yn)) 

 Equally spaced: xi – xi-1 = h 
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(Can be formalized more precisely 
using functional derivatives) 



The Euler-Lagrange Equation 

Minimum condition: 
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The Euler-Lagrange Equation 

Minimum condition: 
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Letting h  0, we obtain the continuous Euler-Lagrange 
differential equation: 



The Euler-Lagrange Equation 
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Example 

Example: Harmonic Energy 
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Generalizations 

Multi-dimensional version: 

 df :

 


 dxxd dxdxffxfxxFfE
d

...)(),...,(),(,,...,)( 11 1
xx

Necessary condition for extremum: 

0
)( 1













d

i xi i
f

E

dx

d

f

E

x

)(: xf
x

f
i

xi 




This is a partial differential equation (PDE). 



Example 

Example: General Harmonic energy 
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Euler Lagrange equation: 



Summary 

Euler Lagrange Equation: 
• Converts integral minimization problem into ODE or PDE. 

• Gives a necessary, but not sufficient condition for 
extremum (critical “point”, read: function f ) 

• Application: 
 From a numerical point of view, no big difference: 

– We can directly optimize the integral expression 

– Same discrete system of equations 

 Analytical tool 

– Helps understanding the minimizer functions. 



Surface Modeling 



Applications 

Variational Surface Modeling: 

Two Examples: 

• Parametric surfaces 
[Welch & Witkin: “Variational Surface Modeling”, Siggraph 1992] 

• Implicit surfaces 
[Turk, O'Brien: “Variational Implicit Surfaces.”, TR, Georgia-Tec, 
1999] 

 



Parametric Surfaces 

Domain: 
• Parametric patch: f: [0,1]2  3. 

• Representation (discretization): 
 Grid of uniform tensor-product B-Splines 

 Refine by dilated functions (subdivision) until convergence 

• Energy: 
 Thin-plate-spline energy 

• Constraints: 
 Points (soft / hard, langrange multipliers) 

 Transfinite constraints (curves, soft constraints only) 

• Numerics: 
 Quadratic objective  solver sparse linear system 



Implicit Surface 

Domain: 
• Implicit function: f: [0,1]3  . 

• Representation (discretization): 
 Radial basis functions of 

fundamental solutions 

• Energy: 
 Thin-plate-spline energy 

• Constraints: 
 Points with normals (hard, variable elimination) 

• Numerics: 
 Radial basis functions around points and  normal 

 Solve linear system for interpolation problem 

 Energy implicitly encoded in fundamental solutions 
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Other Applications 



Variational Animation Modeling 

f (x, t) – deformation field 

t = 0 t = 1 t = 2 

x – point on urshape S 
S 

f 
f 



Variational Framework 
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[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008] 



[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008] 



[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner, 
 P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008]                    (data set courtesy of P. Phong, Stanford. U.) 


