Statistical Geometry Processing
Winter Semester 2011/2012

Machine Learning

Arzi?  UNIVERSITAT
‘"Tgi-.;L:u::'jii DES l l I I
- SAARLANDES max planck institut

informatik



Topics

Topics
e Machine Learning Intro

= Learning is density estimation
= The curse of dimensionality

e Bayesian inference and estimation
= Bayes rule in action
= Discriminative and generative learning

e Markov random fields (MRFs) and graphical models
e Learning Theory

= Bias and Variance / No free lunch
= Significance



Machine Learning
& Bayesian Statistics




Statistics

How does machine learning work?
e Learning: learn a probability distribution
e Classification: assign probabilities to data

We will look only at classification problems:
e Distinguish two classes of objects
e From ambiguous data



Application

Application Scenario:
e Automatic scales at supermarket

camera

e Detect type of fruit using a camera




Learning Probabilities

Toy Example:

e We want to distinguish pictures
of oranges and bananas

e We have 100 training pictures
for each fruit category

e From this, we want to derive a
rule to distinguish the pictures
automatically




Learning Probabilities

Very simple algorithm:
e Compute average color
e Learn distribution
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Learning Probabilities




Simple Learning

Simple Learning Algorithms:

o . red
e Fitting Gaussians / /

 We will see more \




Learning Probabilities




Learning Probabilities

,7 banana-orange

decision
boundary
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Machine Learning

Very simple idea:
e Collect data
e Estimate probability distribution
e Use learned probabilities for classification (etc.)

 We always decide for the most likely case
(largest probability)

Easy to see:

e If the probability distributions are known exactly,
this decision is optimal (in expectation)

e “Minimal Bayesian risk classifier”
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What is the problem?

Why is machine learning difficult?
e We need to learn the probabilities
e Typical problem: High dimensional input data
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High Dimensional Spaces

color: image: 100 x 100 pixel
3D (RGB) 30000 dimensions
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High Dimensional Spaces

average color full image
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High Dimensional Spaces

High dimensional probability spaces:
e Too much space to fill
e We can never get a sufficient number of examples

e Learning is almost impossible

What can we do?
e We need additional assumptions
e Simplify probability space
» Model statistical dependencies

This makes machine learning a hard problem.
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Learn From High Dimensional Input

Learning Strategies:

e Features to reduce the dimension
= Average color
= Boundary shape
= Other heuristics

Usually chosen manually. (black magic?)

e High-dimensional learning techniques
= Neural networks (old school)
= Support vector machines (current “standard” technique)
= Ada-boost, decision trees, ... (many other techniques)

e Usually used in combination
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Basic Idea: Neural Networks

Classic Solution:
Neural Networks
e Non-linear functions

= Features as input

= Combine basic functions
with weights

e Optimize to yield

= (1,0) on bananas
= (0,1) on oranges

e Fit non-linear decision
boundary to data
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Neural Networks

Outputs



Support Vector Machines
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Kernel Support Vector Machine
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Other Learning Algorithms

Popular Learning Algorithms
e Fitting Gaussians
e Linear discriminant functions
e Ada-boost
e Decision trees

22



More Complex Learning Tasks



Learning Tasks

Examples of Machine Learning Problems
e Pattern recognition

= Single class (banana / non-banana)
= Multi class (banana, orange, apple, pear)
= Howto: Density estimation, highest density minimizes risk

* Regression

= Fit curve to sparse data

= Howto: Curve with parameters, density estimation for
parameters

e Latent variable regression
= Regression between observables and hidden variables
= Howto: Parametrize, density estimation
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Supervision

Supervised learning
e Training set is labeled

Semi-supervised
e Part of the training set is labeled

Unsupervised

e No labels, find structure on your own (“Clustering”)

Reinforcement learning

e Learn from experience (losses/gains; robotics)
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Principle

training set

X1yX2, ey X

Model

hypothesis
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Two Types of Learning

Estimation:
e Output most likely parameters

= Maximum density
— “Maximum likelihood”
— “Maximum a posteriori”
= Mean of the distribution

Inference:
e Output probability density

= Distribution for parameters
= More information

e Marginalize to reduce dimension

Ap(x)

maximum
N\ distribution

maximum
mean i distribution
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Bayesian Models

Scenario
e Customer picks banana ) (X=0) ororange @ (X=1)
e Object X creates image D

Modeling
e Given image D (observed), what was X (latent)?
P(D|(X)P(X
p(x1p) < PP
P(D)

P(X|D) ~P(D|X)P(X)
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Bayesian Models

Model for Estimating X

P(X|D) ~ P(D|X) P(X)

posterior data term, prior
likelihood
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Generative vs. Discriminative

Generative Model: learn learn

P(X|D) ~ P(D|X) P(X)

/ fruit | img

compute

Properties

e Comprehensive model:
Full description of how data is created

e Might be complex (how to create images of fruit?)

30



Generative vs. Discriminative

Discriminative Model: / ignore / ignore

P(X|D)| ~ |P(D|X)|| P(X)

fruit > img freq.
learn of fruits
directly

Properties

e Easier:
= Learn mapping from phenomenon to explanation
= Not trying to explain / understand the whole phenomenon

e Often easier, but less powerful



Statistical Dependencies

Markov Random Fields and Graphical Models



Problem

Estimation Problem:

P(X|D) ~ P(D|X) P(X)

posterior data term, prior
likelihood

X = 3D mesh (10K vertices)
e D = noisy scan (or the like)

)
)

Assume P(D|X) is known
But: Model P(X) cannot be build

|

= Not even enough training data

= |n this part of the universe :-) = -
30000 dimensions



Reducing dependencies

Problem:
e p(X1,X5,...,X10000) IS to high-dimensional
e k States, n variables: O(k") density entries
e General dependencies kill the model

Idea

e Hand-craft decencies /

e We might know or guess what

actually depends on each other

and what not

e This is the art of machine learning
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Graphical Models

. (2)
Factorize Models pi(l) (x;) 2% (i, x7)

e Pairwise models:

€1,2 €23

p(Xy, o) Xn)

ﬂza“(xa]_[pf,?(xi,x,-)? ? ? ?
i j€E

e Model complexity: Q_M_@

= O(nk?) parameters

e Higher order models:
= Triplets, quadruples as factors
= Local neighborhoods
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Graphical Models

Markov Random fields

e Factorize density in local
“cliques”

Graphical model

e Connect variables that are
directly dependent

e Formal model:
Conditional independence
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Graphical Models

. (2)
Conditional Independence iV (%) p;7 (% %))

e A node is conditionally
independent of all others
given the values of its
direct neighbors

e |.e. set these values to
constants, X, is
independent of all others

Theorem (Hammersley—Clifford):

e Given conditional independence as graph, a (positive)
probability density factors over cliques in the graph
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Example: Texture Synthesis
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Texture Synthesis

Idea
e One or more images as examples
e Learn image statistics
e Use knowledge:

= Specify boundary conditions
= Fill in texture

Example
Data

Boundary
Conditions
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The Basic Idea

Markov Random Field Model

e Image statistics

e How pixels are colored depends
on local neighborhood only
(Markov Random Field)

e Predict color from neighborhood

Pixel

Neighborhood
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A Little Bit of Theory...

Image statistics:
e Animage of nxm pixels
e Random variable: x = [x;4,...,x,,] € [0, 1, ..., 255]™™
e Probability distribution:

p(x) = p(Xlll ey );nm)

256 choices

256 choices

256" ™ probability values

It is impossible to learn full images from examples!
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Simplification

Problem:
e Statistical dependencies

e Simple modell can express dependencies on all kinds of
combinations

Markov Random Field:

e Each pixel is conditionally independent of the rest of the
image given a small neighborhood

e In English: likelihood only depends on neighborhood, not
rest of the image
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Markov Random Field

Example:

e Red pixel depends on
light red region

e Not on black region

e If region is known, probability
is fixed and independent
of the rest

However:
e Regions overlap
e Indirect global dependency

Pixel

Neighborhood
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Texture Synthesis

Use for Texture Synthesis

p(x) = %ﬁ ﬁ pi,i(Nij)

i=1 j=1
p. i =p,;(N:})
= Di,j (xi—k,j—k ---»xi+k,j+k)

—dist(Ni,j, dai:a)2
~EEP 207




Inference

Inference Problem

e Computing p(x) is trivial for known x.

e Finding the x that maximizes p(x) is very complicated.
e In general: NP-hard

e No efficient solution known (not even for the image case)

In practice

e Different approximation strategies
("heuristics", strict approximation is also NP-hard)
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Simple Practical Algorithm

Here is the short story:

e Unknown pixels:
consider known neighborhood

e Match to all of the known data

e Copy the pixel with the best
matching neighborhood

e Region growing, outside in

Approximation only

e Can run into bad local minima
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Learning Theory

There is no such thing as a free lunch...



Overfitting

Problem: Overfitting
e Two steps:

= Learn model on training data
= Use model on more data (“test data”)

e Overfitting

= High accuracy in training is no guarantee for later performance

49



Learning Probabilities

O QO ) _+” possible
Q) O _-” N\ banana-orange
® O ‘42> decision

boundaries
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Learning Probabilities
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Learning Probabilities

possible

- banana-orange

decision

boundaries
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Regression Example

Housing Prices in Springfield

/

600 K —
500 K
400 K —
300 K
200 K
100 K —

\

v

1960 1970 1980 1990 2000 2010

disclaimer: numbers are made up

this is not an investment advice
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Regression Example

Housing Prices in Springfield

/
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this is not an investment advice
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Regression Example

Housing Prices in Springfield

/
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Regression Example

Housing Prices in Springfield
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Regression Example

Housing Prices in Springfield

II-XN
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Bias — Variance Tradeoff

There is a trade off:

Bias:

e Coarse prior assumptions to regularize model

Variance:

e Bad generalization performance

58



Model Selection

How to choose the right model?

For example
e Linear
e Quadratic
e Higher order

Standard heuristic: Cross validation
e Partition data in two parts (halfs, leave-one-out,...)
e Train on part 1, test on part 2
e Choose according to performance on part 2
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Cross Validation

Housing Prices in Springfield
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Cross Validation

Housing Prices in Springfield
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Cross Validation

Housing Prices in Springfield
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No Free Lunch Theorem

Given
e Labeling problem (holds in general as well)

= Data x; € () (for example: images of fruit)
= Labels [; €{1,...,k} (for example: fruit type)

e Trainingdata D = {(x1= 14), ..., X, = [;,)}

Looking for

e Hypothesis h that works everywhere on ()
= 1 MPixel photos: 2561900000 data items
= Cannot cover everything with examples

o Off training error: Predictions on (Q\D
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No Free Lunch Theorem

Unknown:
e True labeling function L: O — {1, ..., k}

Assumption
e No prior information
e All true labeling functions are equally likely

Theorem (“no free lunch”)

e Under these assumptions, all learning algorithms have the
same expected performance (i.e.: averaged over all
potential true L)
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Consequences

Without prior knowledge:

e The expected off-training error of the following
algorithms is the same
= Fancy Multi-Class Support Vector machine
= Qutput random numbers
= Qutput always 0
= Learning with cross validation

There is no “ultimate learning algorithm”

e Learning from data needs further knowledge (structure
assumptions)

e No truly “fully automatic” machine learning
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Example: Regression

Housing Prices in Springfield
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Example: Regression

Housing Prices in Springfield
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Example: Regression

Housing Prices in Springfield
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Example: Density Estimation

Relativity of Orange-Banana Spaces

—_—

o © VS. o0 ©°

“smooth densities”
In this case: Gaussians
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Significance and Capacity

Scenario
e We have a two hypothesis h,, h,
e One is correct

Solution
e Choose the one with higher likelihood

Significance test
e For example: Does new drug help?
e h,:Just random outcome
e Show that P(h,) is small
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Machine Learning: Capacity

We have:

e Complex models

Example
e Polynomial fitting
e d continuous parameters a;

d-1

p(x) = Z a;x"

=0

e “Capacity” grows with d
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Significance?

Simple criterion

Model must be able to predict training data

Order d — 1 polynomial can always fit d points perfectly
= Credit card numbers: 16 digits, 15-th order polynomial?

Need O(d) training points at least

= Random sampling: Overhead
= d bins need O(d log d) random draws

Rule of thumb “10 samples per parameter”
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Simple Model

Single Hypothesis

e Hypothesis h:R% — {0,1}, maps features to decisions
Groud truth g: R% — {0,1}, correct labeling

e Stream of data, drawn i.i.d.
(x;,¥:)~D
9g(x;) =y

drawn from fixed distribution D.

e Expected error:

e(h) = Pp(h(X) # g()
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Simple Model

Empirical vs. True Error

Inifinte stream (x;, y;)~D, drawn i.i.d.
Finite training set {(X{, V1), ..., (X;,, ) }~D, drawn i.i.d.
Expected error:
e(h) = Pp(h(x) # g(x))
Empirical error (training error):

1 n
é(h) = EZ(h(Xi) - g(xp))

Bernoulli experiment: Chernoff bound
P(1é(h) — e(h)| > y) < 2exp(—2y°n)
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Simple Model

Empirical vs. True Error
e Finite training set {(x{,y41), ..., (X,,, ¥,,)}~D, drawn i.i.d.
e Training error bound:

P(lé(h) —e(h)| > y) < 2exp(—2y“n)

Result

e Reliability of assessment of hypothesis quality grows
quickly with increasing number of trials

e We can bound generalization error
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Machine Learning

We have multiple hypothesis
e Multiple hypothesis H = {h4, ..., hy}

e Need a bound on generalization error estimate for
all of them after n training examples

P(3h; € H:|e(h;) — é(h;))| > )
= P([h, breaks] U :-- U |h;, breaks])
< kP(|h; breaks])
= 2k exp(—2y*n)
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Machine Learning

Result

o After n training examples, we now training error up to y
uniformly for k hypothesis with probability of at least

1 — 2k exp(—2y°n)
e With probability of at least 1 — 6 sufficient to use
1 2k :
n= ﬁlog? (log in k)

training examples.
e With probability 1 — 6, error bounded by

1l 2k
2n0g5

Vh; € H:|e(hy) — é(hy)| <
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Empirical Risk Minimization

ERM Learning Algorithm
e Evaluate all hypothesis H = {h4, ..., h} } on training set

o Choose h with lowest error,
h = arg min é(h;)
i=1.k
e “Empirical Risk Minimization”
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Empirical Risk Minimization

Guarantees
e When using empirical risk minimization
e With probability = 1 — ¢, we get:

= Not far from optimum:
e(h) < e(hpest) + 2y
e Trade off:

~ 1 2k
e(h) < e(hpest) + 2 ﬁlogF

Bias

—

Variance
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Generalization

Can be generalized

e For multi-class learning, regression, etc.

Continuous set of hypothesis

e Simple: k bits encode hypothesis

e More sophisticated model:
Vapnik-Chervonenkis (VC) dimension
= ,Capacity” of classifier

= Max. number of points that can be labled differently by
hypothesis set

¥ O(VC(}[)) training examples needed
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Conclusion

Two theoretical insights

e No free lunch:
Without additional information,
no prediction possible about off-training examples

 Significance: Yes, we can...
= ...estimate expected generalization error with high probability
= ...choose a good hypothesis from a set (with h.p. / error bounds)
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Conclusion

Two theoretical insights

e There is no contradiction here
= Still, some non-training points might be misclassified all the time
= But they cannot show up frequently
= Have to choose hypothesis set
— Infinite capacity leads to unbounded error
— Thus: We do need prior knowledge
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Conclusions

Machine Learning
e |s basically density estimation

e Curse of dimensionality
= High dimensionality makes things intractable
= Model dependencies to fight the problem
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Conclusions

Machine Learning

e No free lunch
= You can only learn when you already know something
= Math won’t tell you were knowledge initially came from
e Significance
= Beware of overfitting!
= Need to adapt plasticity of model to available training data
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Recommended Further Readings

Short intro:

e Aaron Hertzman: Siggraph 2004 Course
“Introduction to Bayesian Learning”
http://www.dgp.toronto.edu/~hertzman/ibl2004/

Bayesian learning, no free lunch:
e R. Duda, P. Hart, D. Stork: Pattern Classification, 2nd edition, Wiley.

Significance of multiple hypothesis:

e Andrew Ng, Stanford University
“CS 229 — Machine Learning” Course notes (Lecture 4)
http://cs229.stanford.edu/materials.html
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