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Topics 

Topics 

• Machine Learning Intro 

 Learning is density estimation 

 The curse of dimensionality 

• Bayesian inference and estimation 

 Bayes rule in action 

 Discriminative and generative learning 

• Markov random fields (MRFs) and graphical models 

• Learning Theory 

 Bias and Variance / No free lunch 

 Significance 



Machine Learning 
& Bayesian Statistics 
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Statistics 

How does machine learning work? 

• Learning: learn a probability distribution 

• Classification: assign probabilities to data 

We will look only at classification problems: 

• Distinguish two classes of objects 

• From ambiguous data 
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Banana 1.25kg 

Total 13.15 € 

Application 

Application Scenario: 

• Automatic scales at supermarket 

• Detect type of fruit using a camera 
camera 
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Learning Probabilities 

Toy Example: 

• We want to distinguish pictures 
of oranges and bananas 

• We have 100 training pictures 
for each fruit category 

• From this, we want to derive a 
rule to distinguish the pictures 
automatically 
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Learning Probabilities 

Very simple algorithm: 

• Compute average color 

• Learn distribution 

red 

green 
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Learning Probabilities 

red 

green 
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Simple Learning 

Simple Learning Algorithms: 

• Histograms 

• Fitting Gaussians 

• We will see more 

red 

green 
dim() = 2..3 



 10 

Learning Probabilities 

red 

green 
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Learning Probabilities 

red 

green 

banana-orange 
decision  
boundary 

? 

? 

? 

“banana” 
(p=51%) 

“banana” 
(p=90%) 

“orange” 
(p=95%) 



 12 

Machine Learning 

Very simple idea: 

• Collect data 

• Estimate probability distribution 

• Use learned probabilities for classification (etc.) 

• We always decide for the most likely case 
(largest probability) 

Easy to see: 

• If the probability distributions are known exactly, 
this decision is optimal (in expectation) 

• “Minimal Bayesian risk classifier” 
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What is the problem? 

Why is machine learning difficult? 

• We need to learn the probabilities 

• Typical problem: High dimensional input data 
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High Dimensional Spaces 

color: 
3D (RGB) 

image: 100 x 100 pixel 
30 000 dimensions 
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High Dimensional Spaces 

red 

green dim() = 2..3 30 000 dimensions 

? 

average color 
learning 

full image 
learning 
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High Dimensional Spaces 

High dimensional probability spaces: 

• Too much space to fill 

• We can never get a sufficient number of examples 

• Learning is almost impossible 

What can we do? 

• We need additional assumptions 

• Simplify probability space 

• Model statistical dependencies 

This makes machine learning a hard problem. 



 17 

Learn From High Dimensional Input 

Learning Strategies: 

• Features to reduce the dimension 

 Average color 

 Boundary shape 

 Other heuristics 

 Usually chosen manually. (black magic?) 

• High-dimensional learning techniques 

 Neural networks (old school) 

 Support vector machines (current “standard” technique) 

 Ada-boost, decision trees, ... (many other techniques) 

• Usually used in combination 
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Basic Idea: Neural Networks 

Classic Solution: 
Neural Networks 

• Non-linear functions 

 Features as input 

 Combine basic functions 
with weights 

• Optimize to yield 

 (1,0) on bananas 

 (0,1) on oranges 

• Fit non-linear decision 
boundary to data 

w1 w2 ... 

Inputs 

Outputs 
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Neural Networks 

l1 l2 ... 

Inputs 

Outputs 

bottleneck  
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Support Vector Machines 

best separating  
hyperplane 

training set 
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Kernel Support Vector Machine 

Example Mapping: 

    22 ,,, yxyxyx 

  

original space “feature space” 
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Other Learning Algorithms 

Popular Learning Algorithms 

• Fitting Gaussians 

• Linear discriminant functions 

• Ada-boost 

• Decision trees 

• ... 



More Complex Learning Tasks 
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Learning Tasks 

Examples of Machine Learning Problems 

• Pattern recognition 

 Single class (banana / non-banana) 

 Multi class (banana, orange, apple, pear) 

 Howto: Density estimation, highest density minimizes risk 

• Regression 

 Fit curve to sparse data 

 Howto: Curve with parameters, density estimation for 
parameters 

• Latent variable regression 

 Regression between observables and hidden variables 

 Howto: Parametrize, density estimation 
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Supervision 

Supervised learning 

• Training set is labeled 

Semi-supervised 

• Part of the training set is labeled 

Unsupervised 

• No labels, find structure on your own (“Clustering”) 

Reinforcement learning 

• Learn from experience (losses/gains; robotics) 
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Principle 

training set Model 

Parameters 
𝑥1, 𝑥2, … , 𝑥𝑘  

hypothesis 
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Two Types of Learning 

Estimation: 

• Output most likely parameters 

 Maximum density 

– “Maximum likelihood” 

– “Maximum a posteriori” 

 Mean of the distribution 

Inference: 

• Output probability density 

 Distribution for parameters 

 More information 

• Marginalize to reduce dimension 

p(x) 

x 

maximum 

mean 
distribution 

p(x) 

x 

maximum 
mean distribution 
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Bayesian Models 

Scenario 

• Customer picks banana       (X = 0)   or orange      (X = 1) 

• Object X creates image D 

Modeling 

• Given image D (observed), what was X (latent)? 
 

𝑃 𝑋 𝐷 =
𝑃 𝐷 𝑋 𝑃(𝑋)

𝑃 𝐷
 

 

𝑃 𝑋 𝐷  ~𝑃 𝐷 𝑋 𝑃(𝑋) 
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Bayesian Models 

Model for Estimating X 

𝑃 𝑋 𝐷    ~   𝑃 𝐷 𝑋    𝑃(𝑋) 

 
posterior data term, 

likelihood 
prior 
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Generative vs. Discriminative 

Generative Model: 

 

 
 

Properties 

• Comprehensive model: 
Full description of how data is created 

• Might be complex (how to create images of fruit?) 

 

𝑃 𝑋 𝐷    ~   𝑃 𝐷 𝑋    𝑃(𝑋) 

 
fruit | img fruit  img freq. 

of fruits 

learn learn 

compute 
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Generative vs. Discriminative 

Discriminative Model: 

 

 
 

Properties 

• Easier: 

 Learn mapping from phenomenon to explanation 

 Not trying to explain / understand the whole phenomenon 

• Often easier, but less powerful 

 

𝑃 𝑋 𝐷    ~   𝑃 𝐷 𝑋    𝑃(𝑋) 

 

ignore ignore 

learn 
directly 

fruit | img fruit  img freq. 
of fruits 



Statistical Dependencies 

Markov Random Fields and Graphical Models 
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Problem 

Estimation Problem: 

 

 

• X = 3D mesh (10K vertices) 

• D = noisy scan (or the like) 

• Assume P(D|X) is known 

• But: Model P(X) cannot be build 

 Not even enough training data 

 In this part of the universe :-) 

𝑃 𝑋 𝐷    ~   𝑃 𝐷 𝑋    𝑃(𝑋) 

 
posterior data term, 

likelihood 
prior 

30 000 dimensions 

? 
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Reducing dependencies 

Problem: 

• 𝑝(𝑥1, 𝑥2, … , 𝑥10000) is to high-dimensional 

• k States, n variables: O(kn) density entries 

• General dependencies kill the model 

Idea 

• Hand-craft decencies 

• We might know or guess what 
actually depends on each other 
and what not 

• This is the art of machine learning 
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Graphical Models 

Factorize Models 

• Pairwise models: 
 

𝑝 𝑥1, … , 𝑥𝑛

=
1

𝑍
 𝑝𝑖

1
𝑥𝑖

𝑛

𝑖=1

 𝑝𝑖,𝑗
2

𝑥𝑖 , 𝑥𝑗
𝑖,𝑗∈𝐸

 

• Model complexity: 

 O(nk2) parameters 

• Higher order models: 

 Triplets, quadruples as factors 

 Local neighborhoods 

𝑥1 𝑥2 𝑥3 𝑥4 

𝑥5 𝑥6 𝑥7 𝑥8 

𝑥9 𝑥10 𝑥11 𝑥12 

𝑒1,2 𝑒2,3 

𝑝𝑖
1

𝑥𝑖  𝑝𝑖,𝑗
2

𝑥𝑖 , 𝑥𝑗  
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Graphical Models 

Markov Random fields 

• Factorize density in local 
“cliques” 

Graphical model 

• Connect variables that are 
directly dependent 

• Formal model: 
Conditional independence 

𝑥1 𝑥2 𝑥3 𝑥4 

𝑥5 𝑥6 𝑥7 𝑥8 

𝑥9 𝑥10 𝑥11 𝑥12 

𝑒1,2 𝑒2,3 

𝑝𝑖
1

𝑥𝑖  𝑝𝑖,𝑗
2

𝑥𝑖 , 𝑥𝑗  
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Graphical Models 

Conditional Independence 

• A node is conditionally 
independent of all others 
given the values of its 
direct neighbors 

• I.e. set these values to 
constants, x7 is 
independent of all others 

Theorem (Hammersley–Clifford): 

• Given conditional independence as graph, a (positive) 
probability density factors over cliques in the graph 

𝑥1 𝑥2 𝑥3 𝑥4 

𝑥5 𝑥6 𝑥7 𝑥8 

𝑥9 𝑥10 𝑥11 𝑥12 

𝑒1,2 𝑒2,3 

𝑝𝑖
1

𝑥𝑖  𝑝𝑖,𝑗
2

𝑥𝑖 , 𝑥𝑗  



Example: Texture Synthesis 



region selected completion 
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Texture Synthesis 

Idea 

• One or more images as examples 

• Learn image statistics 

• Use knowledge: 

 Specify boundary conditions 

 Fill in texture 

Example 
Data 

Boundary 
Conditions 
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The Basic Idea 

Markov Random Field Model 

• Image statistics 

• How pixels are colored depends 
on local neighborhood only 
(Markov Random Field) 

• Predict color from neighborhood 

Pixel 

Neighborhood 
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A Little Bit of Theory... 

Image statistics: 

• An image of n × m pixels 

• Random variable: x = [x11,...,xnm] [0, 1, ..., 255]n×m 

• Probability distribution: 
p(x) = p(x11, ..., xnm) 

 

 

 

It is impossible to learn full images from examples! 

 

256 choices 

256 choices 
... 

256n
 
×

 
m probability values 
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Simplification 

Problem: 

• Statistical dependencies 

• Simple modell can express dependencies on all kinds of 
combinations 

Markov Random Field: 

• Each pixel is conditionally independent of the rest of the 
image given a small neighborhood 

• In English: likelihood only depends on neighborhood, not 
rest of the image 
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Markov Random Field 

Example: 

• Red pixel depends on  
light red region 

• Not on black region 

• If region is known, probability 
is fixed and independent 
of the rest 

However: 

• Regions overlap 

• Indirect global dependency 

Pixel 

Neighborhood 
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Texture Synthesis 

Use for Texture Synthesis 

𝑝𝑖,𝑗 = 𝑝𝑖,𝑗 𝑁𝑖,𝑗  
= 

= 𝑝𝑖,𝑗 𝑥𝑖−𝑘,𝑗−𝑘 … , 𝑥𝑖+𝑘,𝑗+𝑘  
 

       ~ exp 
−𝑑𝑖𝑠𝑡 𝑁𝑖,𝑗 , 𝑑𝑎𝑡𝑎

2

2𝜎2  

𝑝(𝐱) =
1

𝑍
  𝑝𝑖,𝑗 𝑁𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 

i, j 

Ni, j 
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Inference 

Inference Problem 

• Computing p(x) is trivial for known x. 

• Finding the x that maximizes p(x) is very complicated. 

• In general: NP-hard 

• No efficient solution known (not even for the image case) 

In practice 

• Different approximation strategies 
("heuristics", strict approximation is also NP-hard) 
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Simple Practical Algorithm 

Here is the short story: 

• Unknown pixels: 
consider known neighborhood 

• Match to all of the known data 

• Copy the pixel with the best 
matching neighborhood 

• Region growing, outside in 

Approximation only 

• Can run into bad local minima 



Learning Theory 

There is no such thing as a free lunch... 
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Overfitting 

Problem: Overfitting 

• Two steps: 

 Learn model on training data 

 Use model on more data (“test data”) 

• Overfitting 

 High accuracy in training is no guarantee for later performance 
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Learning Probabilities 

red 

green 

possible 
banana-orange 

decision  
boundaries 
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Learning Probabilities 

red 

green 

possible 
banana-orange 

decision  
boundaries 



 52 

Learning Probabilities 

red 

green 

possible 
banana-orange 

decision  
boundaries 
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Regression Example 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

disclaimer: numbers are made up 
this is not an investment advice 
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Regression Example 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

disclaimer: numbers are made up 
this is not an investment advice 
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Regression Example 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

disclaimer: numbers are made up 
this is not an investment advice 
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Regression Example 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

disclaimer: numbers are made up 
this is not an investment advice 
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Regression Example 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

Housing bubble 

great  
recession  

starts 

oil crisis 
(recession) 

up again 

disclaimer: numbers are made up 
this is not an investment advice 
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Bias – Variance Tradeoff 

There is a trade off: 

Bias: 

• Coarse prior assumptions to regularize model 

Variance: 

• Bad generalization performance 
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Model Selection 

How to choose the right model? 

For example 

• Linear 

• Quadratic 

• Higher order 

Standard heuristic: Cross validation 

• Partition data in two parts (halfs, leave-one-out,...) 

• Train on part 1, test on part 2 

• Choose according to performance on part 2 
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Cross Validation 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

disclaimer: numbers are made up 
this is not an investment advice 
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Cross Validation 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

disclaimer: numbers are made up 
this is not an investment advice 
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Cross Validation 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

disclaimer: numbers are made up 
this is not an investment advice 
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No Free Lunch Theorem 

Given 

• Labeling problem (holds in general as well) 

 Data 𝐱𝑖 ∈ Ω  (for example: images of fruit) 

 Labels 𝑙𝑖 ∈{1,...,k} (for example: fruit type) 

• Training data D = {(𝐱1≡ 𝑙1), … , (𝐱𝑛≡ 𝑙𝑛)} 

Looking for 

• Hypothesis h that works everywhere on Ω 

 1 MPixel photos: 256 
1 000 000 data items 

 Cannot cover everything with examples 

• Off training error: Predictions on Ω\D 
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No Free Lunch Theorem 

Unknown: 

• True labeling function 𝐿: Ω → {1,… , 𝑘} 

Assumption 

• No prior information 

• All true labeling functions are equally likely 

Theorem (“no free lunch”) 

• Under these assumptions, all learning algorithms have the 
same expected performance (i.e.: averaged over all 
potential true L) 
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Consequences 

Without prior knowledge: 

• The expected off-training error of the following 
algorithms is the same 

 Fancy Multi-Class Support Vector machine 

 Output random numbers 

 Output always 0 

 Learning with cross validation 

There is no “ultimate learning algorithm” 

• Learning from data needs further knowledge (structure 
assumptions) 

• No truly “fully automatic” machine learning 
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Example: Regression 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 
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Example: Regression 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 



 68 

Example: Regression 

Housing Prices in Springfield 

100 K 

200 K 

300 K 

400 K 

500 K 

600 K 

1960 1970 1980 1990 2000 2010 

same likelihood for  
all in-between values 
same likelihood for  

all in-between values 
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Example: Density Estimation 

Relativity of Orange-Banana Spaces 

vs. 

“smooth densities” 
In this case: Gaussians 
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Significance and Capacity 

Scenario 

• We have a two hypothesis h0, h1 

• One is correct 

Solution 

• Choose the one with higher likelihood 

Significance test 

• For example: Does new drug help? 

• h0: Just random outcome 

• Show that P(h0) is small 
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Machine Learning: Capacity 

We have: 

• Complex models 

Example 

• Polynomial fitting 

• d continuous parameters 𝑎𝑖 
 

𝑝 𝑥 =  𝑎𝑖𝑥
𝑖

𝑑−1

𝑖=0

 

 

• “Capacity” grows with d 

100 K

200 K

300 K

400 K

500 K

600 K

1960 1970 1980 1990 2000 2010
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Significance? 

Simple criterion 

• Model must be able to predict training data 

• Order d – 1 polynomial can always fit d points perfectly 

 Credit card numbers: 16 digits, 15-th order polynomial? 

• Need O(d) training points at least 

 Random sampling: Overhead 

 d bins need O(d log d) random draws 

• Rule of thumb “10 samples per parameter” 
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Simple Model 

Single Hypothesis 

• Hypothesis ℎ:ℝ𝑑 → 0,1 , maps features to decisions 
Groud truth 𝑔:ℝ𝑑 → 0,1 , correct labeling 

• Stream of data, drawn i.i.d. 
𝐱𝑖 , 𝑦𝑖 ~𝒟 

𝑔 𝐱𝑖 = 𝑦𝑖 
 

drawn from fixed distribution 𝒟. 

• Expected error: 

𝜖 ℎ = 𝑃𝒟 ℎ 𝐱 ≠ 𝑔 𝐱  
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Simple Model 

Empirical vs. True Error 

• Inifinte stream 𝐱𝑖 , 𝑦𝑖 ~𝒟, drawn i.i.d. 

• Finite training set { 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛 }~𝒟, drawn i.i.d. 

• Expected error: 

𝜖 ℎ = 𝑃𝒟 ℎ 𝐱 ≠ 𝑔 𝐱  

• Empirical error (training error): 

𝜖 ℎ =
1

𝑛
 ℎ 𝐱𝑖 − 𝑔 𝐱𝑖

𝑛

𝑖

 

• Bernoulli experiment: Chernoff bound 
 

𝑃 𝜖 ℎ − 𝜖 ℎ > 𝛾 ≤ 2exp (−2𝛾2𝑛) 
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Simple Model 

Empirical vs. True Error 

• Finite training set { 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛 }~𝒟, drawn i.i.d. 

• Training error bound: 
 

𝑃 𝜖 ℎ − 𝜖 ℎ > 𝛾 ≤ 2exp (−2𝛾2𝑛) 

Result 

• Reliability of assessment of hypothesis quality grows 
quickly with increasing number of trials 

• We can bound generalization error 
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Machine Learning 

We have multiple hypothesis 

• Multiple hypothesis ℋ = {ℎ1, … , ℎ𝑘} 

• Need a bound on generalization error estimate for 
all of them after n training examples 

𝑃 ∃ℎ𝑖 ∈ ℋ: 𝜖 ℎ𝑖 − 𝜖 ℎ𝑖 > 𝛾  

= 𝑃 ℎ1 breaks ∪ ⋯∪ ℎ𝑘  breaks  

≤ 𝑘𝑃 ℎ𝑖 breaks  

= 2𝑘 exp(−2𝛾2𝑛)  



 77 

Machine Learning 

Result 

• After n training examples, we now training error up to 𝛾 
uniformly for k hypothesis with probability of at least 

1 − 2𝑘 exp(−2𝛾2𝑛)  

• With probability of at least 1 − 𝛿 sufficient to use 

𝑛 ≥
1

2𝛾2 log
2𝑘

𝛿
  (log in k) 

training examples. 

• With probability 1 − 𝛿, error bounded by 

∀ℎ𝑖 ∈ ℋ: 𝜖 ℎ𝑖 − 𝜖 ℎ𝑖 ≤
1

2𝑛
log

2𝑘

𝛿
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Empirical Risk Minimization 

ERM Learning Algorithm 

• Evaluate all hypothesis ℋ = {ℎ1, … , ℎ𝑘} on training set 

• Choose ℎ  with lowest error,  
ℎ = arg min

𝑖=1..𝑘
𝜖 ℎ𝑖   

• “Empirical Risk Minimization” 
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Empirical Risk Minimization 

Guarantees  

• When using empirical risk minimization 

• With probability ≥  1 − 𝛿, we get: 

 Not far from optimum:  

𝜖 ℎ ≤ 𝜖 ℎ𝑏𝑒𝑠𝑡 + 2𝛾  

• Trade off: 

𝜖 ℎ ≤ 𝜖 ℎ𝑏𝑒𝑠𝑡

Bias

+ 2
1

2𝑛
log

2𝑘

𝛿
 

Variance
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Generalization 

Can be generalized 

• For multi-class learning, regression, etc. 

Continuous set of hypothesis 

• Simple: k bits encode hypothesis 

• More sophisticated model: 
Vapnik-Chervonenkis (VC) dimension 

 „Capacity“ of classifier 

 Max. number of points that can be labled differently by 
hypothesis set 

 𝒪 𝑉𝐶 ℋ  training examples needed 
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Conclusion 

Two theoretical insights 

• No free lunch:  
Without additional information, 
no prediction possible about off-training examples 

• Significance: Yes, we can... 

 ...estimate expected generalization error with high probability 

 ...choose a good hypothesis from a set (with h.p. / error bounds) 
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Conclusion 

Two theoretical insights 

• There is no contradiction here 

 Still, some non-training points might be misclassified all the time 

 But they cannot show up frequently 

 Have to choose hypothesis set 

– Infinite capacity leads to unbounded error 

– Thus: We do need prior knowledge 
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Conclusions 

Machine Learning 
• Is basically density estimation 

• Curse of dimensionality 
 High dimensionality makes things intractable 

 Model dependencies to fight the problem 
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Conclusions 

Machine Learning 
• No free lunch 

 You can only learn when you already know something 

 Math won’t tell you were knowledge initially came from 

• Significance 
 Beware of overfitting! 

 Need to adapt plasticity of model to available training data 
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Recommended Further Readings 

Short intro: 
• Aaron Hertzman: Siggraph 2004 Course 

“Introduction to Bayesian Learning” 
http://www.dgp.toronto.edu/~hertzman/ibl2004/ 

Bayesian learning, no free lunch: 
• R. Duda, P. Hart, D. Stork: Pattern Classification, 2nd edition, Wiley. 

Significance of multiple hypothesis: 
• Andrew Ng, Stanford University 

“CS 229 – Machine Learning” Course notes (Lecture 4) 
http://cs229.stanford.edu/materials.html 


