
Exploiting and
Introducing Parallelism

for Efficient Object
Detection

Mario Fritz
Rodrigo Benenson

Today

• Overview of techniques that make detection fast

• Exercise will be about optimizing already working pedestrian detector
(1Hz -> 50Hz)

• First overview of recent success stories

2

Main tricks you should know of

• integral images -> fast feature computation

• sliding window detection -> parallelism

• boosted classifier -> cascade

• sparselets -> sharing of computation for multi class

• efficient search over scale -> Rodrigo

3

Recent Success Stories

4

Real-Time Human Pose Recognition in Parts from Single Depth Images
(XBox Kinect Post Estimation) [Shotton] (best paper)

5

Real-Time Human Pose Recognition in Parts from Single Depth Images
Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio

Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation

Abstract
We propose a new method to quickly and accurately pre-

dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

1. Introduction
Robust interactive human body tracking has applica-

tions including gaming, human-computer interaction, secu-
rity, telepresence, and even health-care. The task has re-
cently been greatly simplified by the introduction of real-
time depth cameras [16, 19, 44, 37, 28, 13]. However, even
the best existing systems still exhibit limitations. In partic-
ular, until the launch of Kinect [21], none ran at interactive
rates on consumer hardware while handling a full range of
human body shapes and sizes undergoing general body mo-
tions. Some systems achieve high speeds by tracking from
frame to frame but struggle to re-initialize quickly and so
are not robust. In this paper, we focus on pose recognition
in parts: detecting from a single depth image a small set of
3D position candidates for each skeletal joint. Our focus on
per-frame initialization and recovery is designed to comple-
ment any appropriate tracking algorithm [7, 39, 16, 42, 13]
that might further incorporate temporal and kinematic co-
herence. The algorithm presented here forms a core com-
ponent of the Kinect gaming platform [21].

Illustrated in Fig. 1 and inspired by recent object recog-
nition work that divides objects into parts (e.g. [12, 43]),
our approach is driven by two key design goals: computa-
tional efficiency and robustness. A single input depth image
is segmented into a dense probabilistic body part labeling,
with the parts defined to be spatially localized near skeletal

depth&image& body&parts& 3D&joint&proposals&

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

joints of interest. Reprojecting the inferred parts into world
space, we localize spatial modes of each part distribution
and thus generate (possibly several) confidence-weighted
proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel
classification task (no pairwise terms or CRF have proved
necessary). Evaluating each pixel separately avoids a com-
binatorial search over the different body joints, although
within a single part there are of course still dramatic dif-
ferences in the contextual appearance. For training data,
we generate realistic synthetic depth images of humans of
many shapes and sizes in highly varied poses sampled from
a large motion capture database. We train a deep ran-
domized decision forest classifier which avoids overfitting
by using hundreds of thousands of training images. Sim-
ple, discriminative depth comparison image features yield
3D translation invariance while maintaining high computa-
tional efficiency. For further speed, the classifier can be run
in parallel on each pixel on a GPU [34]. Finally, spatial
modes of the inferred per-pixel distributions are computed
using mean shift [10] resulting in the 3D joint proposals.

An optimized implementation of our algorithm runs in
under 5ms per frame (200 frames per second) on the Xbox
360 GPU, at least one order of magnitude faster than exist-
ing approaches. It works frame-by-frame across dramati-
cally differing body shapes and sizes, and the learned dis-
criminative approach naturally handles self-occlusions and

1297

sy
nt
he

tic
)(t
ra
in
)&
)te

st
))

re
al
)(t
es
t)
)

Figure 2. Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.

simplify the task of background subtraction which we as-
sume in this work. But most importantly for our approach,
it is straightforward to synthesize realistic depth images of
people and thus build a large training dataset cheaply.

2.2. Motion capture data
The human body is capable of an enormous range of

poses which are difficult to simulate. Instead, we capture a
large database of motion capture (mocap) of human actions.
Our aim was to span the wide variety of poses people would
make in an entertainment scenario. The database consists of
approximately 500k frames in a few hundred sequences of
driving, dancing, kicking, running, navigating menus, etc.

We expect our semi-local body part classifier to gener-
alize somewhat to unseen poses. In particular, we need not
record all possible combinations of the different limbs; in
practice, a wide range of poses proves sufficient. Further,
we need not record mocap with variation in rotation about
the vertical axis, mirroring left-right, scene position, body
shape and size, or camera pose, all of which can be added
in (semi-)automatically.

Since the classifier uses no temporal information, we
are interested only in static poses and not motion. Often,
changes in pose from one mocap frame to the next are so
small as to be insignificant. We thus discard many similar,
redundant poses from the initial mocap data using ‘furthest
neighbor’ clustering [15] where the distance between poses
p1 and p2 is defined as maxj ⇥pj1�pj2⇥2, the maximum Eu-
clidean distance over body joints j. We use a subset of 100k
poses such that no two poses are closer than 5cm.

We have found it necessary to iterate the process of mo-
tion capture, sampling from our model, training the classi-
fier, and testing joint prediction accuracy in order to refine
the mocap database with regions of pose space that had been
previously missed out. Our early experiments employed
the CMU mocap database [9] which gave acceptable results
though covered far less of pose space.

2.3. Generating synthetic data
We build a randomized rendering pipeline from which

we can sample fully labeled training images. Our goals in
building this pipeline were twofold: realism and variety. For
the learned model to work well, the samples must closely
resemble real camera images, and contain good coverage of

the appearance variations we hope to recognize at test time.
While depth/scale and translation variations are handled ex-
plicitly in our features (see below), other invariances cannot
be encoded efficiently. Instead we learn invariance from the
data to camera pose, body pose, and body size and shape.

The synthesis pipeline first randomly samples a set of
parameters, and then uses standard computer graphics tech-
niques to render depth and (see below) body part images
from texture mapped 3D meshes. The mocap is retarget-
ting to each of 15 base meshes spanning the range of body
shapes and sizes, using [4]. Further slight random vari-
ation in height and weight give extra coverage of body
shapes. Other randomized parameters include the mocap
frame, camera pose, camera noise, clothing and hairstyle.
We provide more details of these variations in the supple-
mentary material. Fig. 2 compares the varied output of the
pipeline to hand-labeled real camera images.

3. Body Part Inference and Joint Proposals
In this section we describe our intermediate body parts

representation, detail the discriminative depth image fea-
tures, review decision forests and their application to body
part recognition, and finally discuss how a mode finding al-
gorithm is used to generate joint position proposals.
3.1. Body part labeling

A key contribution of this work is our intermediate body
part representation. We define several localized body part
labels that densely cover the body, as color-coded in Fig. 2.
Some of these parts are defined to directly localize partic-
ular skeletal joints of interest, while others fill the gaps or
could be used in combination to predict other joints. Our in-
termediate representation transforms the problem into one
that can readily be solved by efficient classification algo-
rithms; we show in Sec. 4.3 that the penalty paid for this
transformation is small.

The parts are specified in a texture map that is retargetted
to skin the various characters during rendering. The pairs of
depth and body part images are used as fully labeled data for
learning the classifier (see below). For the experiments in
this paper, we use 31 body parts: LU/RU/LW/RW head, neck,
L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R
hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee,
L/R ankle, L/R foot (Left, Right, Upper, loWer). Distinct

1299

(a)$ (b)$
��$

��$

��$

��$

Figure 3. Depth image features. The yellow crosses indicates the
pixel x being classified. The red circles indicate the offset pixels
as defined in Eq. 1. In (a), the two example features give a large
depth difference response. In (b), the same two features at new
image locations give a much smaller response.

parts for left and right allow the classifier to disambiguate
the left and right sides of the body.

Of course, the precise definition of these parts could be
changed to suit a particular application. For example, in an
upper body tracking scenario, all the lower body parts could
be merged. Parts should be sufficiently small to accurately
localize body joints, but not too numerous as to waste ca-
pacity of the classifier.

3.2. Depth image features
We employ simple depth comparison features, inspired

by those in [20]. At a given pixel x, the features compute

f�(I,x) = dI

�
x+

u

dI(x)

⇥
� dI

�
x+

v

dI(x)

⇥
, (1)

where dI(x) is the depth at pixel x in image I , and parame-
ters � = (u,v) describe offsets u and v. The normalization
of the offsets by 1

dI(x)
ensures the features are depth invari-

ant: at a given point on the body, a fixed world space offset
will result whether the pixel is close or far from the camera.
The features are thus 3D translation invariant (modulo per-
spective effects). If an offset pixel lies on the background
or outside the bounds of the image, the depth probe dI(x�)
is given a large positive constant value.

Fig. 3 illustrates two features at different pixel locations
x. Feature f�1 looks upwards: Eq. 1 will give a large pos-
itive response for pixels x near the top of the body, but a
value close to zero for pixels x lower down the body. Fea-
ture f�2 may instead help find thin vertical structures such
as the arm.

Individually these features provide only a weak signal
about which part of the body the pixel belongs to, but in
combination in a decision forest they are sufficient to accu-
rately disambiguate all trained parts. The design of these
features was strongly motivated by their computational effi-
ciency: no preprocessing is needed; each feature need only
read at most 3 image pixels and perform at most 5 arithmetic
operations; and the features can be straightforwardly imple-
mented on the GPU. Given a larger computational budget,
one could employ potentially more powerful features based
on, for example, depth integrals over regions, curvature, or
local descriptors e.g. [5].

Figure 4. Randomized Decision Forests. A forest is an ensemble
of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the different paths that might be
taken by different trees for a particular input.

3.3. Randomized decision forests
Randomized decision trees and forests [35, 30, 2, 8] have

proven fast and effective multi-class classifiers for many
tasks [20, 23, 36], and can be implemented efficiently on the
GPU [34]. As illustrated in Fig. 4, a forest is an ensemble
of T decision trees, each consisting of split and leaf nodes.
Each split node consists of a feature f� and a threshold ⇥ .
To classify pixel x in image I , one starts at the root and re-
peatedly evaluates Eq. 1, branching left or right according
to the comparison to threshold ⇥ . At the leaf node reached
in tree t, a learned distribution Pt(c|I,x) over body part la-
bels c is stored. The distributions are averaged together for
all trees in the forest to give the final classification

P (c|I,x) = 1

T

T⇤

t=1

Pt(c|I,x) . (2)

Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:

1. Randomly propose a set of splitting candidates ⇤ =
(�, ⇥) (feature parameters � and thresholds ⇥).

2. Partition the set of examples Q = {(I,x)} into left
and right subsets by each ⇤:

Ql(⇤) = { (I,x) | f�(I,x) < ⇥ } (3)
Qr(⇤) = Q \Ql(⇤) (4)

3. Compute the ⇤ giving the largest gain in information:

⇤⌅ = argmax
⇥

G(⇤) (5)

G(⇤) = H(Q)�
⇤

s⇥{l,r}

|Qs(⇤)|
|Q| H(Qs(⇤)) (6)

where Shannon entropy H(Q) is computed on the nor-
malized histogram of body part labels lI(x) for all
(I,x) ⇥ Q.

4. If the largest gain G(⇤⌅) is sufficient, and the depth in
the tree is below a maximum, then recurse for left and
right subsets Ql(⇤⌅) and Qr(⇤⌅).

1300

Figure 3. Depth image features. The yellow crosses indicates the
pixel x being classified. The red circles indicate the offset pixels
as defined in Eq. 1. In (a), the two example features give a large
depth difference response. In (b), the same two features at new
image locations give a much smaller response.

parts for left and right allow the classifier to disambiguate
the left and right sides of the body.

Of course, the precise definition of these parts could be
changed to suit a particular application. For example, in an
upper body tracking scenario, all the lower body parts could
be merged. Parts should be sufficiently small to accurately
localize body joints, but not too numerous as to waste ca-
pacity of the classifier.

3.2. Depth image features
We employ simple depth comparison features, inspired

by those in [20]. At a given pixel x, the features compute

f�(I,x) = dI

�
x+

u

dI(x)

⇥
� dI

�
x+

v

dI(x)

⇥
, (1)

where dI(x) is the depth at pixel x in image I , and parame-
ters � = (u,v) describe offsets u and v. The normalization
of the offsets by 1

dI(x)
ensures the features are depth invari-

ant: at a given point on the body, a fixed world space offset
will result whether the pixel is close or far from the camera.
The features are thus 3D translation invariant (modulo per-
spective effects). If an offset pixel lies on the background
or outside the bounds of the image, the depth probe dI(x�)
is given a large positive constant value.

Fig. 3 illustrates two features at different pixel locations
x. Feature f�1 looks upwards: Eq. 1 will give a large pos-
itive response for pixels x near the top of the body, but a
value close to zero for pixels x lower down the body. Fea-
ture f�2 may instead help find thin vertical structures such
as the arm.

Individually these features provide only a weak signal
about which part of the body the pixel belongs to, but in
combination in a decision forest they are sufficient to accu-
rately disambiguate all trained parts. The design of these
features was strongly motivated by their computational effi-
ciency: no preprocessing is needed; each feature need only
read at most 3 image pixels and perform at most 5 arithmetic
operations; and the features can be straightforwardly imple-
mented on the GPU. Given a larger computational budget,
one could employ potentially more powerful features based
on, for example, depth integrals over regions, curvature, or
local descriptors e.g. [5].

�!
tree!�! tree!�!

�� ��!
�� ��!

�	
��!��
��!

Figure 4. Randomized Decision Forests. A forest is an ensemble
of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the different paths that might be
taken by different trees for a particular input.

3.3. Randomized decision forests
Randomized decision trees and forests [35, 30, 2, 8] have

proven fast and effective multi-class classifiers for many
tasks [20, 23, 36], and can be implemented efficiently on the
GPU [34]. As illustrated in Fig. 4, a forest is an ensemble
of T decision trees, each consisting of split and leaf nodes.
Each split node consists of a feature f� and a threshold ⇥ .
To classify pixel x in image I , one starts at the root and re-
peatedly evaluates Eq. 1, branching left or right according
to the comparison to threshold ⇥ . At the leaf node reached
in tree t, a learned distribution Pt(c|I,x) over body part la-
bels c is stored. The distributions are averaged together for
all trees in the forest to give the final classification

P (c|I,x) = 1

T

T⇤

t=1

Pt(c|I,x) . (2)

Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:

1. Randomly propose a set of splitting candidates ⇤ =
(�, ⇥) (feature parameters � and thresholds ⇥).

2. Partition the set of examples Q = {(I,x)} into left
and right subsets by each ⇤:

Ql(⇤) = { (I,x) | f�(I,x) < ⇥ } (3)
Qr(⇤) = Q \Ql(⇤) (4)

3. Compute the ⇤ giving the largest gain in information:

⇤⌅ = argmax
⇥

G(⇤) (5)

G(⇤) = H(Q)�
⇤

s⇥{l,r}

|Qs(⇤)|
|Q| H(Qs(⇤)) (6)

where Shannon entropy H(Q) is computed on the nor-
malized histogram of body part labels lI(x) for all
(I,x) ⇥ Q.

4. If the largest gain G(⇤⌅) is sufficient, and the depth in
the tree is below a maximum, then recurse for left and
right subsets Ql(⇤⌅) and Qr(⇤⌅).

1300

ImageNet Classification with Deep
Convolutional Neural Networks

Alex Krizhevsky
Ilya Sutskever

Geoffrey Hinton

University of Toronto
Canada

Paper with same name to appear in NIPS 2012

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

• Convolutional Network with 60 Million parameters
• Trained on RGB raw pixels (-mean)
• 15 % error on ImageNet challenge ... 10% lower than anybody else

Pedestrian detection at 100 frames per second (in the exercise)
Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool

8

N models, 1 image scale
(a) Naive approach

1 model, N image scales
(b) Traditional approach

1 model, N/K image scales
(c) FPDW approach

N/K models, 1 image scale
(d) Our approach

Figure 2: Different approaches to detecting pedestrians at multiple scales.

rescaling a stump by a relative scale factor s, we keep the
channel index constant, scale the rectangle by s and update
the threshold as ⌧ 0 = ⌧ · r(s).

We can now take a canonical classifier, and convert it
into K classifiers for slightly different scales. Based on this,
we then proceed to train N/K (⇠ 5) classifiers, one for each
octave (scale 0.5, 1, 2, etc.), see figures 2d and 5. Given that
training our baseline detector takes three hours beginning to
end in a single desktop computer, we can easily train our
five classifiers in a few hours.

At test time we use the described approximation to trans-
form our N/K classifiers into N classifiers (one per scale),
we compute the integral channel features on the original in-
put image, and then compute the response for each scale
using the N classifiers. The proposed approach effectively
enables to use the naive approach initially described (fig-
ure 2a). We name our “no image rescaling approach” the
VeryFast detector.

Algorithmic speed-up Being able to skip the effort of
computing multiple times the features, is clearly interesting
speed-wise. Assuming half of the time is spent computing
features for 50 scales and half of the time evaluating clas-
sifier responses, computing features only once would pro-
vide at best a speed-up of 1.9 times. Compared to FPDW,
assuming canonical scales 0.5, 1, 2 and 4; avoiding image
resizing reduces by a factor 3.75 the features computation
time. Then using VeryFast instead of FPDW, provides
theoretical 1.57⇥ speed-up.

Measured speed-up In our GPU code the VeryFast
method is twice as fast as using the ChnFtrs detector
(2.68 Hz versus 1.38 Hz), while at the same time showing
a slight quality improvement (results presented in section
6). As expected, our VeryFast detector is also faster than
FPDW (2.68 Hz versus 1.55 Hz).

After modifying the handling of scales, the GPU code
now spends only 5% of the time computing features and
the remaining 95% is solely dedicated to computing the
features responses at different scales and positions. Even
more, now the code does not need anymore to alternate be-

tween computing detection scores and computing the fea-
tures; having a more streamlined execution path has signif-
icant impact in practice. This creates ideal conditions to
further speed-up our detector, as described in section 4.

3.3. Training the multi-scale classifier

To train the N/K classifiers we rescale the positive train-
ing images to fit the desired object size. All large pedes-
trians can be converted into small training examples, how-
ever when rescaling small examples into large sizes blurring
artefacts appear. The INRIA Persons dataset contains only
few examples (< 600) of pedestrians taller than 256 pixels,
so training the larger scales using only appropriate example
sizes risks leading to poor classifiers for these larger scales.

In the experiments presented here we rescaled all exam-
ples to all scales, without taking any measure to lessen the
negative effect of blurred examples. We acknowledge that a
better handling of scales during training will certainly lead
to a further improved quality. However we focus on speed
more than quality.

Another issue to handle during training is calibrating the
different detectors amongst themselves. Here, again, we
take a simplistic approach that leaves room for improve-
ment. We simply normalize the maximum possible score of
all detectors to 1.

4. Soft cascade design
Up to now we have discussed speed(-up) results when

using all of the 2000 stages of our base Adaboost classifier.
Dollar et al. suggested to use a soft-cascade to accelerate
the detections. The soft-cascade aborts the evaluation of
non-promising detections if the score of a given stage drops
below a learned threshold. The suggested method [19] sets
such stage threshold at the minimal score of all accepted
detections on a training or validation set.

In our experiments building such cascade over the train-
ing set leads to over-fitting of the thresholds and poor detec-
tions at test time. Instead we adjusted quality results with-
out using soft-cascade, and then tuned the soft-cascade to
keep the exact same quality results, but provide the desired
speed-up. In practice, we use the INRIA test set as a val-

Pedestrian detection at 100 frames per second

Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool
ESAT-PSI-VISICS/IBBT, Katholieke Universiteit Leuven, Belgium

firstname.lastname@esat.kuleuven.be

Abstract

We present a new pedestrian detector that improves both
in speed and quality over state-of-the-art. By efficiently
handling different scales and transferring computation from
test time to training time, detection speed is improved.
When processing monocular images, our system provides
high quality detections at 50 fps.

We also propose a new method for exploiting geomet-
ric context extracted from stereo images. On a single
CPU+GPU desktop machine, we reach 135 fps, when pro-
cessing street scenes, from rectified input to detections out-
put.

1. Introduction
Visual object detection is under constant pressure to in-

crease both its quality and speed. Such progress allows for
new applications. A higher speed enables its inclusion into
larger systems with extensive subsequent processing (e.g.
as an initialization for segmentation or tracking), and its
deployment in computationally constrained scenarios (e.g.
embedded system, large-scale data processing).

In this paper we focus on improving the speed of pedes-
trian (walking persons) detection, while providing state-
of-the-art detection quality. We present two new algorith-
mic speed-ups, one based on better handling of scales (on
monocular images), and one based on better exploiting the
depth information (on stereo images). Altogether we ob-
tain speed-ups by a factor ⇠ 20, without suffering a loss in
detection quality. To the best of our knowledge, this is the
first time that pedestrian detections at 100 fps (frames per
second) has been reached with such high detection quality.

1.1. Related work

Providing an exhaustive overview of previous, fast object
detection work is beyond the scope of this paper. Yet, most
of the work on improving detection speed (without trading-
off quality) exploits one or more of the following ideas:

Better features Having cheap to compute features that

Figure 1: Example result on the Bahnhof sequence. Green
line indicates the stixels bottom, blue line the stixels top and
the red boxes are the obtained detections.

capture best the input image information is crucial for
fast and good detections.
Viola and Jones popularized the use of integral images
to quickly compute rectangular averages [18]. Later,
Dalal and Triggs popularized the idea that gradient ori-
entation bins capture relevant information for detec-
tions [4]. In the same vein, bag-of-words over dense
SIFT features has been used [12].
It has also been shown multiple times that exploiting
depth and motion cues further improves the detection
quality [5, 2, 11], but so far usually at the cost and not
the benefit of speed.

Better classifier For a given set of features, the choice
of classifier has a substantial impact on the resulting
speed and quality, often requiring a trade-off between
these two. Non-linear classifiers (e.g. RBF SVMs)
provide the best quality, but suffer from low speed.
As a result, linear classifiers such as Adaboost, linear
SVMs, or Random/Hough Forests are more commonly
used. Recent work on the linear approximation of non-
linear kernels seems a promising direction [16].

Better prior knowledge In general, image processing
greatly benefits from prior knowledge . For pedestrian
detection the presence of a single dominant ground

1

Detector aspect Relative Absolute
speed speed

Baseline detector (§2) 1⇥ 1.38 Hz
+Single scale detector (§3) 2⇥ 2.68 Hz
+Soft-cascade (§4) 20⇥ 50 Hz
+Estimated ground plane (§5) 2⇥ 100 Hz
+Estimated stixels (§5) 1.35⇥ 135 Hz
Our monocular detector - 50 Hz
Our stereo (stixels) detector - 135 Hz

Table 1: Relative speed-up of each aspect of the proposed
detector, with respect to the baseline detector.

available both to the CPU and the GPU. The measured time,
does include all CPU computations, GPU computations and
the time to download the GPU results and run the non-
maximum suppression on CPU. The ground plane and stix-
els are estimated at frame t�1 and fed to the GPU computa-
tions at frame t. All speed results are given when computing
over the Bahnhof images (640⇥ 480 pixels) over 55 scales
(unless otherwise specified), averaged over the 1000 frames
of the sequence.

As previously indicated our desktop computer is
equipped with an Intel Core i7 870 and an Nvidia GeForce
GTX 470. Our fastest result VeryFast+stixels is
CPU bound (GPU runs at 145 Hz, CPU at 135 Hz), how-
ever the current CPU stixels code is sub-optimal and we be-
lieve it should be amenable for further speed-up (to match
the GPU speed).

When running on a high end laptop (Intel Core
i7-2630QM @ 2.00GHz, Nvidia GeForce GTX
560M), we reach 20 Hz for VeryFast, 38 Hz
for VeryFast+ground plane, and 80 Hz for
VeryFast+stixels.

6.1. INRIA Persons dataset results

We use the INRIA dataset to train our detector and to
evaluate its quality. Although this dataset is rather small,
the diversity of its content helps to highlight the differences
in performance of various methods. As a matter of fact,
the relative ordering of methods seems roughly preserved
across different pedestrian datasets [8].

In figure 3a we present the results of the different detec-
tor variants discussed in section 3. We also evaluate using
the N/K detectors, while still rescaling the input image to
compute the feature responses at different scales (i.e. we
do not use the FPDW approximation), this variant is named
MultipleScales detector.

Figure 3b compares our detector with other state-of-the-
art methods. Our detector is competitive in terms of the de-
tection quality with respect to ChnFtrs and provides sig-
nificant improvement over HOG+SVM.

10
−2

10
−1

10
0

10
1

0.05

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

false positives per image

m
is

s
ra

te

HOG (23.1%)
Ours−FPDW (12.6%)
FPDW (9.3%)
ChnFtrs (8.7%)
Ours−ChnFtrs (8.7%)
Ours−MultipleScales (6.8%)
Ours−VeryFast (6.8%)

(a) Quality of our detector variants (and reference detectors)

(b) Comparison with other methods

Figure 3: Results on the INRIA persons dataset.

6.2. Bahnhof sequence results

The Bahnhof sequence presents a challenging stereo se-
quence, acquired from a stroller moving along a crowded
side-walk. This sequence allows us to evaluate the bene-
fits of using stereo information and its impact on detection
quality. We use the PASCAL VOC evaluation criterion.

The evaluation from Dollar et al. [8], showed that on
this sequence the results between different methods is sig-
nificantly reduced (due to the low intra-variance of the
dataset). On this sequence we expect ChnFtrs to be only
marginally better than HOG+SVM from Dalal and Triggs [4].

In figure 4 we present the results obtained from the meth-
ods described in section 5. We observe that the quality
of our detector stays roughly constant when using ground
plane and stixels, despite the 2.7⇥ speed-up and reaching
135 fps. Equally important, we show that our VeryFast

Sliding Window Methods - Overview

• Sliding Window Based People Detection:

9

Two Important Questions:
1) which feature vector
2) which classifier

‘slide’ detection window over all
positions & scales

Scan
Image

Extract
Feature Vector

Classify
Feature Vector

Non-Maxima
Suppression

Today:
- Viola Jones Face Detector

- Haar Features
- Boosting (cascade)

- HOG Pedestrian Detector
- HOG descriptor
- linear SVM

Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)

Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

The Classical Face Detection Process

Smallest
Scale

Larger
Scale

50,000 Locations/Scales
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Classifier is Learned from Labeled Data

• Training Data
– 5000 faces

• All frontal
– 108 non faces
– Faces are normalized

• Scale, translation

• Many variations
– Across individuals
– Illumination
– Pose (rotation both in plane and out)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

What is novel about this approach?

• Feature set (… is huge about 16,000,000 features)
• Efficient feature selection using AdaBoost
• New image representation: Integral Image
• Cascaded Classifier for rapid detection

– Hierarchy of Attentional Filters

The combination of these ideas yields the fastest
known face detector for gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Image Features

“Rectangle filters”

Similar to Haar wavelets

Differences between sums
of pixels in adjacent
rectangles

{ht(x) = +1 if ft(x) > Tt
-1 otherwise

000,000,16100000,160 u
Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Integral Image

• Define the Integral Image

• Any rectangular sum can be
computed in constant time:

• Rectangle features can be computed
as differences between rectangles

¦
d
d

yy
xx

yxIyxI
'
'

)','(),('

D
BACADCBAA

D

��������

���
)()(

)32(41

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Huge “Library” of Filters

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Constructing Classifiers

• Perceptron yields a sufficiently powerful
classifier

• Use AdaBoost to efficiently choose best
features

¸
¹

·
¨
©

§
� ¦

i
ii bxhxC)()(DT

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

AdaBoost Initial uniform weight
on training examples

weak classifier 1

(Freund & Shapire ’95)

¸
¹

·
¨
©

§
 ¦

t
tt xhxf)()(DT

weak classifier 2

Incorrect classifications
re-weighted more heavily

weak classifier 3

Final classifier is weighted
combination of weak classifiers

¸̧
¹

·
¨̈
©

§
�

t

t
t error

error
1

log5.0D

¦ �
�

�
�

i

xhyi
t

xhyi
ti

t itti

itti

ew
ew

w)(
1

)(
1

D

D

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

AdaBoost (Freund & Shapire 95)

•Given examples (x1, y1), …, (xN, yN) where yi = 0,1 for negative and positive examples
respectively.
•Initialize weights wt=1,i = 1/N

•For t=1, …, T
•Normalize the weights, wt,i = wt,i / 6 wt,j

•Find a weak learner, i.e. a hypothesis, ht(x) with weighted error less than .5
•Calculate the error of ht : et = 6 wt,i | ht(xi) – yi |

•Update the weights: wt,i = wt,i Bt
(1-d

i
) where Bt = et / (1- et) and di = 0 if example xi is

classified correctly, di = 1 otherwise.

•The final strong classifier is

where Dt = log(1/ Bt)

j=1

N

1 if 6�Dt ht(x) !�0.5 6�Dt

0 otherwise

T

t=1 t=1

T

{h(x) =

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

AdaBoost for Efficient Feature Selection

• Our Features = Weak Classifiers
• For each round of boosting:

– Evaluate each rectangle filter on each example
– Sort examples by filter values
– Select best threshold for each filter (min error)

• Sorted list can be quickly scanned for the optimal threshold
– Select best filter/threshold combination
– Weight on this feature is a simple function of error rate
– Reweight examples
– (There are many tricks to make this more efficient.)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Example Classifier for Face Detection

ROC curve for 200 feature classifier

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Not quite competitive...

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Trading Speed for Accuracy

• Given a nested set of classifier
hypothesis classes

• Computational Risk Minimization

vs false negdetermined by

% False Pos

%
 D

et
ec

tio
n

0 50

50

 9
9

FACEIMAGE
SUB-WINDOW

Classifier 1

F

T

NON-FACE

Classifier 3
T

F

NON-FACE

F

T

NON-FACE

Classifier 2
T

F

NON-FACE

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Experiment: Simple Cascaded Classifier

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Cascaded Classifier

1 Feature 5 Features 20 Features
2%50% 20%IMAGE

SUB-WINDOW FACE
F FF

NON-FACE NON-FACENON-FACE

• A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

• A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)
– using data from previous stage.

• A 20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

A Real-time Face Detection System

Training faces: 4916 face images (24 x 24
pixels) plus vertical flips for a total of 9832
faces

Training non-faces: 350 million sub-
windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25, 25, 50, 50, 50, 75, 100, …, 200, …

Final classifier contains 6061 features.
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Accuracy of Face Detector

Performance on MIT+CMU test set containing 130 images with
507 faces and about 75 million sub-windows.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Comparison to Other Systems

10 31 50 65 78 95 110 167

Viola-Jones 76.1 88.4 91.4 92.0 92.1 92.9 93.1 93.9

Viola-Jones
(voting)

81.1 89.7 92.1 93.1 93.1 93.2 93.7 93.7

Rowley-Baluja-
Kanade

83.2 86.0 89.2 90.1

Schneiderman-
Kanade

94.4

Detector

False Detections

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Speed of Face Detector
Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium III, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Output of Face Detector on Test Images

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

More Examples

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Conclusions

• We [they] have developed the fastest known
face detector for gray scale images

• Three contributions with broad applicability
– Cascaded classifier yields rapid classification
– AdaBoost as an extremely efficient feature

selector
– Rectangle Features + Integral Image can be

used for rapid image analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

32

Viola Jones Detector

• try it out
‣ implementations available, e.g. opencv

‣ works in real-time on reasonable image sizes

HOG Pedestrian Detector

33

Goals & Applications of HOG

• Original Goal:
‣ Detect and Localize people in Images and Videos

• Applications:
‣ Images, films & multi-media analysis

‣ Pedestrian detection for autonomous cars

‣ Visual surveillance, behavior analysis

34

Difficulties of People / Object Detection

• Some of the Difficulties
‣ Wide variety of articulated poses

‣ Variable appearance and clothing

‣ Complex backgrounds

‣ Unconstrained illumination

‣ Occlusions, different scales

‣ Videos sequences involves motion of the subject, the
camera and the objects in the background

• Main assumption for HOG:
upright fully visible people

35

Sliding Window Methods - Overview

• Sliding Window Based People Detection:

36

Two Important Questions:
1) which feature vector
2) which classifier

‘slide’ detection window over all
positions & scales

Scan
Image

Extract
Feature Vector

Classify
Feature Vector

Non-Maxima
Suppression

Today:
- Viola Jones Face Detector

- Haar Features
- Boosting (cascade)

- HOG Pedestrian Detector
- HOG descriptor
- linear SVM

HOG: Static Feature Extraction

37

Input Image

Detection Window

Overview of Learning

38

Bootstrapping

Bootstrapping:

Sparselet Model for Efficient Multiclass
Object Detection

Hyun-Oh Song1, Stefan Zickler2, Tim Althoff1,
Ross Girshick3, Christopher Geyer2,

Mario Fritz4, Pedro Felzenszwalb5, Trevor Darrell1

1 UC Berkeley 2 iRobot 3 UChicago 4 MPI 5 Brown

Towards Scalable Learning and Inference for Visual Recognition

Motivation

• Deformable Part Model [Felzenszwalb] and variants still one of
the strongest detectors

• Not particularly fast
‣ Lots of parts & convolutions

‣ Detectors evaluated in isolation

• Goal:
‣ intermediate representation that shares computation across classes

‣ leverage power of GPUs by parallel execution

‣ realize different performance-speed-tradeoffs

‣ Explore offline setting (post-hoc detection)

40

High Level Computer Vision - June 15, 2o11 41

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

Deformable Part Model:
The Big Picture

Towards Scalable Learning and Inference for Visual Recognition

Main Idea

• Intermediate
Representation that
allows to share
computation
between parts

• True part responses
can be
reconstructed from a
sparse subset of the
basis

• General concept:
exploit redundancy
when doing lots of
convolutions

42

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#713

ECCV
#713

2 ECCV-12 submission ID 713

Pre-processing Reconstruction

`"DPM_bicycle input
image

`"
 Bicycle
detections

Fig. 1: Top: System concept. Middle row: example bicycle detection and true
part filter convolution response for the wheel part from the bicycle model. Bot-
tom row: reconstructed responses from SVD and sparselets respectively using
20 bases. Our method still maintains the specificity of the part (high response
at the wheel) while SVD reconstruction fails to maintain the sharpness. Best
viewed in color.

category in a large media corpus, feature and basis convolution are typically
computed in a pre-processing step. Our representation is especially well-suited
to a parallel architecture, where the memory and processor architecture allows for
e�cient reconstruction in a direct fashion (e.g., without a cascade). The method
is also applicable to a cascaded CPU implementation, but the speed improvement
can be limited by memory cache issues relative to a GPU implementation. Our
CUDA implementation of a sparselet-based DPM model is approximately 35
times faster than the fastest single CPU cascaded DPM implementations on
benchmark PASCAL evaluations.

Experimentally, we evaluate our methods using the PASCAL VOC, Ima-
geNet, and TRECVID MED datasets: we show 1) real-time performance on
PASCAL VOC using 20 categories on a laptop computer, 2) that a sparselet

Towards Scalable Learning and Inference for Visual Recognition

Main Idea

• Reconstruction and convolutions are carried out in parallel on
GPU

43

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#713

ECCV
#713

4 ECCV-12 submission ID 713

Sparse activation
vectors

 Final
detection

Reconstructed
 responses

Learned
sparselets

Response
 matrix

Input
image

 Reconstruction Pre-processing

Fig. 3: Overview diagram of the our method: once we evaluate the image with
learned sparselets, reconstruction phase can be done via e�cient sparse matrix
vector multiplications.

Others attempt to optimize against a discriminative objective [9, 10]. [11] builds
a taxonomy of object classes based on shared features. Unlike our method, these
approaches may preemptively discard a correct detection if it falls on the wrong
side of a low-depth decision boundary. Attempts have been made to address this
using relaxed hierarchies [12, 13].

3 Sparselets

In this paper we propose and evaluate sparse prototype representations for en-
coding deformable and/or articulated object detection models. We use a part
dictionary learned in a sparse coding framework. This approach, which we term
“sparselets”, has the advantage of leading not only to fast and accurate multi-
class object detection, but o↵ers an e�cient intermediate representation for de-
tecting new object categories. It is important to note that our approach learns a
dictionary overmodel parameters, not over observed features, as is the customary
application of existing sparse coding methods in the recognition literature.

While sparselets are applicable to a range of techniques, we focus in this pa-
per on the star-structured deformable part models (DPM) from [14]. Briefly, a
DPM is composed of low-resolution root filters that describe an object category’s
global appearance and high-resolution part filters that capture local appearance.
These filters are weight vectors over HOG [15] style features learned by optimiz-
ing a latent SVM [14]. The main computational bottleneck in applying these
models is convolving their filters with a HOG feature pyramid. This fact is
demonstrated by the cascade algorithm for detection with DPMs [1], which dra-
matically reduces detection time by computing filter convolutions over a reduced
set of locations that are chosen based on learned pruning thresholds. Sparselets
o↵er a complementary approach for reducing filter convolution costs when the
number of categories becomes large.

Towards Scalable Learning and Inference for Visual Recognition

Sparselets: Sparse Representation for Part Filters

• part filters:
• activations:
• sparselet:
• maximum number of activations

44

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 5

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for the purpose of our post-hoc scenario being the relative e�-
ciency of a sparse reconstruction at query time. Our objective is to find a set
of generic dictionary of compressed filters, sparselets, Z = {Z

1

, Z
2

, · · · , ZJ}
that optimally approximates the part filters from the set of training models
P = {P

1

, P
2

, · · · , PN} with sparse linear combinations. Explicitly, we formulate
the following optimization problem

min
↵ij ,Zj

NX

i=1

||Pi �
JX

j=1

↵ijZj ||2
2

subject to ||↵i||0 ✏ 8i = 1, ..., N

||Zj ||2
2

 1 8j = 1, ..., J

(1)

where Pi 2 R p⇥ p⇥ h is a part filter or convolution tensor, Zj is a dictionary

element of the same size. ↵i 2 RJ is the activation vector, ✏ imposes a cap on
the number of activations, p is filter size, h is feature dimension. Denote the
matricized dictionary as D = [vec (Z

1

) , · · · , vec (ZJ)].
Although the above optimization is NP-hard, greedy algorithms such as or-

thogonal matching pursuit algorithm (OMP) [16, 17] can be used to e�ciently
compute an approximate solution to the problem. OMP iteratively estimates
the optimal matching projections of the input signal onto the over complete
dictionary D. Interested readers on OMP are referred to [16, 17]. The above op-
timization problem is convex with respect to D if ↵i is fixed so we can optimize
the objective in coordinate descent fashion iterating between updating ↵i while
fixing D and vice versa. We used an online dictionary learning algorithm to
solve this optimization problem [18]. Figure 2 shows randomly chosen part fil-
ters from models trained on the PASCAL VOC 2007 [19] dataset and compares
our sparselet reconstruction with ✏ = 20 to the SVD-based reconstruction using
20 singular bases out of the full set of 216.

3.2 Precomputation and e�cient reconstruction

As the number of classes increases, we amortize the time required to compute an
intermediate representation. By linearity of convolution, we can precompute the
convolution response with the sparselets. We can then use sparse reconstruction
with the activation vector estimated from the query object model to approx-
imate the convolution response we would have obtained from convolving with
the original filter sets. Denoting the feature pyramid of an image as , we have:

 ⇤Pi = ⇤
⇣P

j ↵ijDj

⌘
=

P
j ↵ij (⇤Dj) . Concretely, we can recover individ-

ual part filter responses via sparse matrix multiplication (or lookups) with the
activation vector replacing the heavy convolution operation as shown in Eqn (2):

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 5

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for the purpose of our post-hoc scenario being the relative e�-
ciency of a sparse reconstruction at query time. Our objective is to find a set
of generic dictionary of compressed filters, sparselets, Z = {Z

1

, Z
2

, · · · , ZJ}
that optimally approximates the part filters from the set of training models
P = {P

1

, P
2

, · · · , PN} with sparse linear combinations. Explicitly, we formulate
the following optimization problem

min
↵ij ,Zj

NX

i=1

||Pi �
JX

j=1

↵ijZj ||2
2

subject to ||↵i||0 ✏ 8i = 1, ..., N

||Zj ||2
2

 1 8j = 1, ..., J

(1)

where Pi 2 R p⇥ p⇥ h is a part filter or convolution tensor, Zj is a dictionary

element of the same size. ↵i 2 RJ is the activation vector, ✏ imposes a cap on
the number of activations, p is filter size, h is feature dimension. Denote the
matricized dictionary as D = [vec (Z

1

) , · · · , vec (ZJ)].
Although the above optimization is NP-hard, greedy algorithms such as or-

thogonal matching pursuit algorithm (OMP) [16, 17] can be used to e�ciently
compute an approximate solution to the problem. OMP iteratively estimates
the optimal matching projections of the input signal onto the over complete
dictionary D. Interested readers on OMP are referred to [16, 17]. The above op-
timization problem is convex with respect to D if ↵i is fixed so we can optimize
the objective in coordinate descent fashion iterating between updating ↵i while
fixing D and vice versa. We used an online dictionary learning algorithm to
solve this optimization problem [18]. Figure 2 shows randomly chosen part fil-
ters from models trained on the PASCAL VOC 2007 [19] dataset and compares
our sparselet reconstruction with ✏ = 20 to the SVD-based reconstruction using
20 singular bases out of the full set of 216.

3.2 Precomputation and e�cient reconstruction

As the number of classes increases, we amortize the time required to compute an
intermediate representation. By linearity of convolution, we can precompute the
convolution response with the sparselets. We can then use sparse reconstruction
with the activation vector estimated from the query object model to approx-
imate the convolution response we would have obtained from convolving with
the original filter sets. Denoting the feature pyramid of an image as , we have:

 ⇤Pi = ⇤
⇣P

j ↵ijDj

⌘
=

P
j ↵ij (⇤Dj) . Concretely, we can recover individ-

ual part filter responses via sparse matrix multiplication (or lookups) with the
activation vector replacing the heavy convolution operation as shown in Eqn (2):

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 5

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for the purpose of our post-hoc scenario being the relative e�-
ciency of a sparse reconstruction at query time. Our objective is to find a set
of generic dictionary of compressed filters, sparselets, Z = {Z

1

, Z
2

, · · · , ZJ}
that optimally approximates the part filters from the set of training models
P = {P

1

, P
2

, · · · , PN} with sparse linear combinations. Explicitly, we formulate
the following optimization problem

min
↵ij ,Zj

NX

i=1

||Pi �
JX

j=1

↵ijZj ||2
2

subject to ||↵i||0 ✏ 8i = 1, ..., N

||Zj ||2
2

 1 8j = 1, ..., J

(1)

where Pi 2 R p⇥ p⇥ h is a part filter or convolution tensor, Zj is a dictionary

element of the same size. ↵i 2 RJ is the activation vector, ✏ imposes a cap on
the number of activations, p is filter size, h is feature dimension. Denote the
matricized dictionary as D = [vec (Z

1

) , · · · , vec (ZJ)].
Although the above optimization is NP-hard, greedy algorithms such as or-

thogonal matching pursuit algorithm (OMP) [16, 17] can be used to e�ciently
compute an approximate solution to the problem. OMP iteratively estimates
the optimal matching projections of the input signal onto the over complete
dictionary D. Interested readers on OMP are referred to [16, 17]. The above op-
timization problem is convex with respect to D if ↵i is fixed so we can optimize
the objective in coordinate descent fashion iterating between updating ↵i while
fixing D and vice versa. We used an online dictionary learning algorithm to
solve this optimization problem [18]. Figure 2 shows randomly chosen part fil-
ters from models trained on the PASCAL VOC 2007 [19] dataset and compares
our sparselet reconstruction with ✏ = 20 to the SVD-based reconstruction using
20 singular bases out of the full set of 216.

3.2 Precomputation and e�cient reconstruction

As the number of classes increases, we amortize the time required to compute an
intermediate representation. By linearity of convolution, we can precompute the
convolution response with the sparselets. We can then use sparse reconstruction
with the activation vector estimated from the query object model to approx-
imate the convolution response we would have obtained from convolving with
the original filter sets. Denoting the feature pyramid of an image as , we have:

 ⇤Pi = ⇤
⇣P

j ↵ijDj

⌘
=

P
j ↵ij (⇤Dj) . Concretely, we can recover individ-

ual part filter responses via sparse matrix multiplication (or lookups) with the
activation vector replacing the heavy convolution operation as shown in Eqn (2):

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 5

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for the purpose of our post-hoc scenario being the relative e�-
ciency of a sparse reconstruction at query time. Our objective is to find a set
of generic dictionary of compressed filters, sparselets, Z = {Z

1

, Z
2

, · · · , ZJ}
that optimally approximates the part filters from the set of training models
P = {P

1

, P
2

, · · · , PN} with sparse linear combinations. Explicitly, we formulate
the following optimization problem

min
↵ij ,Zj

NX

i=1

||Pi �
JX

j=1

↵ijZj ||2
2

subject to ||↵i||0 ✏ 8i = 1, ..., N

||Zj ||2
2

 1 8j = 1, ..., J

(1)

where Pi 2 R p⇥ p⇥ h is a part filter or convolution tensor, Zj is a dictionary

element of the same size. ↵i 2 RJ is the activation vector, ✏ imposes a cap on
the number of activations, p is filter size, h is feature dimension. Denote the
matricized dictionary as D = [vec (Z

1

) , · · · , vec (ZJ)].
Although the above optimization is NP-hard, greedy algorithms such as or-

thogonal matching pursuit algorithm (OMP) [16, 17] can be used to e�ciently
compute an approximate solution to the problem. OMP iteratively estimates
the optimal matching projections of the input signal onto the over complete
dictionary D. Interested readers on OMP are referred to [16, 17]. The above op-
timization problem is convex with respect to D if ↵i is fixed so we can optimize
the objective in coordinate descent fashion iterating between updating ↵i while
fixing D and vice versa. We used an online dictionary learning algorithm to
solve this optimization problem [18]. Figure 2 shows randomly chosen part fil-
ters from models trained on the PASCAL VOC 2007 [19] dataset and compares
our sparselet reconstruction with ✏ = 20 to the SVD-based reconstruction using
20 singular bases out of the full set of 216.

3.2 Precomputation and e�cient reconstruction

As the number of classes increases, we amortize the time required to compute an
intermediate representation. By linearity of convolution, we can precompute the
convolution response with the sparselets. We can then use sparse reconstruction
with the activation vector estimated from the query object model to approx-
imate the convolution response we would have obtained from convolving with
the original filter sets. Denoting the feature pyramid of an image as , we have:

 ⇤Pi = ⇤
⇣P

j ↵ijDj

⌘
=

P
j ↵ij (⇤Dj) . Concretely, we can recover individ-

ual part filter responses via sparse matrix multiplication (or lookups) with the
activation vector replacing the heavy convolution operation as shown in Eqn (2):

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 5

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for the purpose of our post-hoc scenario being the relative e�-
ciency of a sparse reconstruction at query time. Our objective is to find a set
of generic dictionary of compressed filters, sparselets, Z = {Z

1

, Z
2

, · · · , ZJ}
that optimally approximates the part filters from the set of training models
P = {P

1

, P
2

, · · · , PN} with sparse linear combinations. Explicitly, we formulate
the following optimization problem

min
↵ij ,Zj

NX

i=1

||Pi �
JX

j=1

↵ijZj ||2
2

subject to ||↵i||0 ✏ 8i = 1, ..., N

||Zj ||2
2

 1 8j = 1, ..., J

(1)

where Pi 2 R p⇥ p⇥ h is a part filter or convolution tensor, Zj is a dictionary

element of the same size. ↵i 2 RJ is the activation vector, ✏ imposes a cap on
the number of activations, p is filter size, h is feature dimension. Denote the
matricized dictionary as D = [vec (Z

1

) , · · · , vec (ZJ)].
Although the above optimization is NP-hard, greedy algorithms such as or-

thogonal matching pursuit algorithm (OMP) [16, 17] can be used to e�ciently
compute an approximate solution to the problem. OMP iteratively estimates
the optimal matching projections of the input signal onto the over complete
dictionary D. Interested readers on OMP are referred to [16, 17]. The above op-
timization problem is convex with respect to D if ↵i is fixed so we can optimize
the objective in coordinate descent fashion iterating between updating ↵i while
fixing D and vice versa. We used an online dictionary learning algorithm to
solve this optimization problem [18]. Figure 2 shows randomly chosen part fil-
ters from models trained on the PASCAL VOC 2007 [19] dataset and compares
our sparselet reconstruction with ✏ = 20 to the SVD-based reconstruction using
20 singular bases out of the full set of 216.

3.2 Precomputation and e�cient reconstruction

As the number of classes increases, we amortize the time required to compute an
intermediate representation. By linearity of convolution, we can precompute the
convolution response with the sparselets. We can then use sparse reconstruction
with the activation vector estimated from the query object model to approx-
imate the convolution response we would have obtained from convolving with
the original filter sets. Denoting the feature pyramid of an image as , we have:

 ⇤Pi = ⇤
⇣P

j ↵ijDj

⌘
=

P
j ↵ij (⇤Dj) . Concretely, we can recover individ-

ual part filter responses via sparse matrix multiplication (or lookups) with the
activation vector replacing the heavy convolution operation as shown in Eqn (2):

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 5

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for the purpose of our post-hoc scenario being the relative e�-
ciency of a sparse reconstruction at query time. Our objective is to find a set
of generic dictionary of compressed filters, sparselets, Z = {Z

1

, Z
2

, · · · , ZJ}
that optimally approximates the part filters from the set of training models
P = {P

1

, P
2

, · · · , PN} with sparse linear combinations. Explicitly, we formulate
the following optimization problem

min
↵ij ,Zj

NX

i=1

||Pi �
JX

j=1

↵ijZj ||2
2

subject to ||↵i||0 ✏ 8i = 1, ..., N

||Zj ||2
2

 1 8j = 1, ..., J

(1)

where Pi 2 R p⇥ p⇥ h is a part filter or convolution tensor, Zj is a dictionary

element of the same size. ↵i 2 RJ is the activation vector, ✏ imposes a cap on
the number of activations, p is filter size, h is feature dimension. Denote the
matricized dictionary as D = [vec (Z

1

) , · · · , vec (ZJ)].
Although the above optimization is NP-hard, greedy algorithms such as or-

thogonal matching pursuit algorithm (OMP) [16, 17] can be used to e�ciently
compute an approximate solution to the problem. OMP iteratively estimates
the optimal matching projections of the input signal onto the over complete
dictionary D. Interested readers on OMP are referred to [16, 17]. The above op-
timization problem is convex with respect to D if ↵i is fixed so we can optimize
the objective in coordinate descent fashion iterating between updating ↵i while
fixing D and vice versa. We used an online dictionary learning algorithm to
solve this optimization problem [18]. Figure 2 shows randomly chosen part fil-
ters from models trained on the PASCAL VOC 2007 [19] dataset and compares
our sparselet reconstruction with ✏ = 20 to the SVD-based reconstruction using
20 singular bases out of the full set of 216.

3.2 Precomputation and e�cient reconstruction

As the number of classes increases, we amortize the time required to compute an
intermediate representation. By linearity of convolution, we can precompute the
convolution response with the sparselets. We can then use sparse reconstruction
with the activation vector estimated from the query object model to approx-
imate the convolution response we would have obtained from convolving with
the original filter sets. Denoting the feature pyramid of an image as , we have:

 ⇤Pi = ⇤
⇣P

j ↵ijDj

⌘
=

P
j ↵ij (⇤Dj) . Concretely, we can recover individ-

ual part filter responses via sparse matrix multiplication (or lookups) with the
activation vector replacing the heavy convolution operation as shown in Eqn (2):

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 3

(a) Motorbike part 10 (b) Sofa part 25

(c) Aeroplane part 27 (d) Cat part 34
Fig. 2: Randomly chosen reconstructed part filters. Each row shows original
parts, sparselet reconstruction with activation cap 20 and SVD reconstruction
with 20 bases out of 216 respectively. Sparselets preserve the structure much
better than singular vectors. Only positive weights are shown for clarity.

model learned on PASCAL can e↵ectively reconstruct classifiers in the ImageNet
dataset, and 3) that ad-hoc classifiers trained from ImageNet using PASCAL-
derived bases can be e↵ective at detecting objects related to TRECVID-MED
activities.

Although we focus on object and activity recognition, the conceptual contri-
bution of this paper – sparse decomposition of part-based models – is generally
applicable to a variety of multiclass classification settings where linear models
are employed.

2 Related Work

Deformable part models have been proven to yield high accuracy on benchmark
challenges, yet are computationally demanding. Previous e↵orts have addressed
hypothesis pruning in a cascaded implementation [1], and in coarse-to-fine search
schemes [2], but relatively little attention has been paid to the problem of how
to scale such models to handle hundreds or thousands of categories at near real-
time speeds, or to quickly index very large repositories of media for a category
of interest not known a-priori.

Other authors have recently explored schemes for part sharing, including [3].
Our method implicitly also shares part prototypes and can provide a significant
improvement in speed by compressing the parts used in typical DPM models
for PASCAL. Other authors have explored group regularization of a prototype
representation [4], and linear manifold [5] and/or topic models [6] over visual
classifier parameter spaces, but have also not addressed the reconstruction of
novel categories, nor the advantages of sparsity for large-scale detection.

Several e↵orts maintain a tree-based hierarchy of classes which can be used
to speed up classification by discarding irrelevant classes while descending the
tree. We note a few, focusing on recent works with vision results. Some learn
a tree in a top-down fashion [7, 8] by spectral clustering on the a�nity matrix.

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 3

(a) Motorbike part 10 (b) Sofa part 25

(c) Aeroplane part 27 (d) Cat part 34
Fig. 2: Randomly chosen reconstructed part filters. Each row shows original
parts, sparselet reconstruction with activation cap 20 and SVD reconstruction
with 20 bases out of 216 respectively. Sparselets preserve the structure much
better than singular vectors. Only positive weights are shown for clarity.

model learned on PASCAL can e↵ectively reconstruct classifiers in the ImageNet
dataset, and 3) that ad-hoc classifiers trained from ImageNet using PASCAL-
derived bases can be e↵ective at detecting objects related to TRECVID-MED
activities.

Although we focus on object and activity recognition, the conceptual contri-
bution of this paper – sparse decomposition of part-based models – is generally
applicable to a variety of multiclass classification settings where linear models
are employed.

2 Related Work

Deformable part models have been proven to yield high accuracy on benchmark
challenges, yet are computationally demanding. Previous e↵orts have addressed
hypothesis pruning in a cascaded implementation [1], and in coarse-to-fine search
schemes [2], but relatively little attention has been paid to the problem of how
to scale such models to handle hundreds or thousands of categories at near real-
time speeds, or to quickly index very large repositories of media for a category
of interest not known a-priori.

Other authors have recently explored schemes for part sharing, including [3].
Our method implicitly also shares part prototypes and can provide a significant
improvement in speed by compressing the parts used in typical DPM models
for PASCAL. Other authors have explored group regularization of a prototype
representation [4], and linear manifold [5] and/or topic models [6] over visual
classifier parameter spaces, but have also not addressed the reconstruction of
novel categories, nor the advantages of sparsity for large-scale detection.

Several e↵orts maintain a tree-based hierarchy of classes which can be used
to speed up classification by discarding irrelevant classes while descending the
tree. We note a few, focusing on recent works with vision results. Some learn
a tree in a top-down fashion [7, 8] by spectral clustering on the a�nity matrix.

original
sparselet

svd

Towards Scalable Learning and Inference for Visual Recognition

Sparselets: Sparse Representation for Part Filters

• Reconstruction of filter
responses from sparselet
filters

• Efficient sparse matrix
multiplication

• Reconstructed DPM score

45

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 5

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for the purpose of our post-hoc scenario being the relative e�-
ciency of a sparse reconstruction at query time. Our objective is to find a set
of generic dictionary of compressed filters, sparselets, Z = {Z

1

, Z
2

, · · · , ZJ}
that optimally approximates the part filters from the set of training models
P = {P

1

, P
2

, · · · , PN} with sparse linear combinations. Explicitly, we formulate
the following optimization problem

min
↵ij ,Zj

NX

i=1

||Pi �
JX

j=1

↵ijZj ||2
2

subject to ||↵i||0 ✏ 8i = 1, ..., N

||Zj ||2
2

 1 8j = 1, ..., J

(1)

where Pi 2 R p⇥ p⇥ h is a part filter or convolution tensor, Zj is a dictionary

element of the same size. ↵i 2 RJ is the activation vector, ✏ imposes a cap on
the number of activations, p is filter size, h is feature dimension. Denote the
matricized dictionary as D = [vec (Z

1

) , · · · , vec (ZJ)].
Although the above optimization is NP-hard, greedy algorithms such as or-

thogonal matching pursuit algorithm (OMP) [16, 17] can be used to e�ciently
compute an approximate solution to the problem. OMP iteratively estimates
the optimal matching projections of the input signal onto the over complete
dictionary D. Interested readers on OMP are referred to [16, 17]. The above op-
timization problem is convex with respect to D if ↵i is fixed so we can optimize
the objective in coordinate descent fashion iterating between updating ↵i while
fixing D and vice versa. We used an online dictionary learning algorithm to
solve this optimization problem [18]. Figure 2 shows randomly chosen part fil-
ters from models trained on the PASCAL VOC 2007 [19] dataset and compares
our sparselet reconstruction with ✏ = 20 to the SVD-based reconstruction using
20 singular bases out of the full set of 216.

3.2 Precomputation and e�cient reconstruction

As the number of classes increases, we amortize the time required to compute an
intermediate representation. By linearity of convolution, we can precompute the
convolution response with the sparselets. We can then use sparse reconstruction
with the activation vector estimated from the query object model to approx-
imate the convolution response we would have obtained from convolving with
the original filter sets. Denoting the feature pyramid of an image as , we have:

 ⇤Pi = ⇤
⇣P

j ↵ijDj

⌘
=

P
j ↵ij (⇤Dj) . Concretely, we can recover individ-

ual part filter responses via sparse matrix multiplication (or lookups) with the
activation vector replacing the heavy convolution operation as shown in Eqn (2):

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#713

ECCV
#713

6 ECCV-12 submission ID 713

2

6666666666664

� ⇤ P
1

�
� ⇤ P

2

�
...
...
...
...

� ⇤ Pn�

3

7777777777775

=

2

6666666666664

↵
1

↵
2

...

...

...

...
↵n

3

7777777777775

2

6666664

� ⇤D
1

�
� ⇤D

2

�
...
...

� ⇤DJ�

3

7777775
= A M, (2)

where M is the matrix of all the sparselets responses, A is the matrix of sparse
reconstruction vectors. In practice the score of a DPM can be reconstructed as
following,

score
recon

(!) = m
0

(!) +
NX

i=1

max
�

si(! + �)� di(�)

where si(!) =

|D|X

j=1

8↵ij 6=0

↵ij ((!) ⇤Dj) .

(3)

Here di are quadratic deformation costs, � is a displacement and ! is a position
and scale in a feature pyramid. After precomputation, the reconstructed part
filter score, si (!), simplifies to

si(!) =

|D|X

j=1

8↵ij 6=0

↵ijMj(!). (4)

Note that the summation is only over non-zero elements of the sparse vector
↵i. Additionally, this could be e�ciently implemented as sparse matrix mul-
tiplications or lookups. Figure 1 shows a sample reconstruction and Figure 3
summarizes our framework.

In an online detection scheme, we convolve the query image with the sparse-
lets and do sparse reconstruction in turn per frame. For dictionary size |D|,
total number of filters N , filter size p and feature dimension h, an exhaus-
tive convolution based detection scheme requires approximatelly Nhp2 opera-
tions per location in a score pyramid while our scheme requires approximatelly
|D|hp2 +NE[||↵i||0] operations. The first term is from convolution with sparse-
lets and the second term is the average activation level from the sparse recon-
struction.

As the number of DPM models grows (due to more classes or more mixture
components per class), the precomputation time |D|hp2 is amortized. At the

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#713

ECCV
#713

6 ECCV-12 submission ID 713

2

6666666666664

� ⇤ P
1

�
� ⇤ P

2

�
...
...
...
...

� ⇤ Pn�

3

7777777777775

=

2

6666666666664

↵
1

↵
2

...

...

...

...
↵n

3

7777777777775

2

6666664

� ⇤D
1

�
� ⇤D

2

�
...
...

� ⇤DJ�

3

7777775
= A M, (2)

where M is the matrix of all the sparselets responses, A is the matrix of sparse
reconstruction vectors. In practice the score of a DPM can be reconstructed as
following,

score
recon

(!) = m
0

(!) +
NX

i=1

max
�

si(! + �)� di(�)

where si(!) =

|D|X

j=1

8↵ij 6=0

↵ij ((!) ⇤Dj) .

(3)

Here di are quadratic deformation costs, � is a displacement and ! is a position
and scale in a feature pyramid. After precomputation, the reconstructed part
filter score, si (!), simplifies to

si(!) =

|D|X

j=1

8↵ij 6=0

↵ijMj(!). (4)

Note that the summation is only over non-zero elements of the sparse vector
↵i. Additionally, this could be e�ciently implemented as sparse matrix mul-
tiplications or lookups. Figure 1 shows a sample reconstruction and Figure 3
summarizes our framework.

In an online detection scheme, we convolve the query image with the sparse-
lets and do sparse reconstruction in turn per frame. For dictionary size |D|,
total number of filters N , filter size p and feature dimension h, an exhaus-
tive convolution based detection scheme requires approximatelly Nhp2 opera-
tions per location in a score pyramid while our scheme requires approximatelly
|D|hp2 +NE[||↵i||0] operations. The first term is from convolution with sparse-
lets and the second term is the average activation level from the sparse recon-
struction.

As the number of DPM models grows (due to more classes or more mixture
components per class), the precomputation time |D|hp2 is amortized. At the

sparselet
responses

sparse
reconstruction

vector

Towards Scalable Learning and Inference for Visual Recognition

Speedup

• online scenario
‣ traditional:

‣ sparselet:

• offline/posthoc scenario:

• example:
‣ 6x6 part, average activation of 20 at least 10x speedup

46

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#713

ECCV
#713

6 ECCV-12 submission ID 713

2

6666666666664

� ⇤ P
1

�
� ⇤ P

2

�
...
...
...
...

� ⇤ Pn�

3

7777777777775

=

2

6666666666664

↵
1

↵
2

...

...

...

...
↵n

3

7777777777775

2

6666664

� ⇤D
1

�
� ⇤D

2

�
...
...

� ⇤DJ�

3

7777775
= A M, (2)

where M is the matrix of all the sparselets responses, A is the matrix of sparse
reconstruction vectors. In practice the score of a DPM can be reconstructed as
following,

score
recon

(!) = m
0

(!) +
NX

i=1

max
�

si(! + �)� di(�)

where si(!) =

|D|X

j=1

8↵ij 6=0

↵ij ((!) ⇤Dj) .

(3)

Here di are quadratic deformation costs, � is a displacement and ! is a position
and scale in a feature pyramid. After precomputation, the reconstructed part
filter score, si (!), simplifies to

si(!) =

|D|X

j=1

8↵ij 6=0

↵ijMj(!). (4)

Note that the summation is only over non-zero elements of the sparse vector
↵i. Additionally, this could be e�ciently implemented as sparse matrix mul-
tiplications or lookups. Figure 1 shows a sample reconstruction and Figure 3
summarizes our framework.

In an online detection scheme, we convolve the query image with the sparse-
lets and do sparse reconstruction in turn per frame. For dictionary size |D|,
total number of filters N , filter size p and feature dimension h, an exhaus-
tive convolution based detection scheme requires approximatelly Nhp2 opera-
tions per location in a score pyramid while our scheme requires approximatelly
|D|hp2 +NE[||↵i||0] operations. The first term is from convolution with sparse-
lets and the second term is the average activation level from the sparse recon-
struction.

As the number of DPM models grows (due to more classes or more mixture
components per class), the precomputation time |D|hp2 is amortized. At the

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#713

ECCV
#713

6 ECCV-12 submission ID 713

2

6666666666664

� ⇤ P
1

�
� ⇤ P

2

�
...
...
...
...

� ⇤ Pn�

3

7777777777775

=

2

6666666666664

↵
1

↵
2

...

...

...

...
↵n

3

7777777777775

2

6666664

� ⇤D
1

�
� ⇤D

2

�
...
...

� ⇤DJ�

3

7777775
= A M, (2)

where M is the matrix of all the sparselets responses, A is the matrix of sparse
reconstruction vectors. In practice the score of a DPM can be reconstructed as
following,

score
recon

(!) = m
0

(!) +
NX

i=1

max
�

si(! + �)� di(�)

where si(!) =

|D|X

j=1

8↵ij 6=0

↵ij ((!) ⇤Dj) .

(3)

Here di are quadratic deformation costs, � is a displacement and ! is a position
and scale in a feature pyramid. After precomputation, the reconstructed part
filter score, si (!), simplifies to

si(!) =

|D|X

j=1

8↵ij 6=0

↵ijMj(!). (4)

Note that the summation is only over non-zero elements of the sparse vector
↵i. Additionally, this could be e�ciently implemented as sparse matrix mul-
tiplications or lookups. Figure 1 shows a sample reconstruction and Figure 3
summarizes our framework.

In an online detection scheme, we convolve the query image with the sparse-
lets and do sparse reconstruction in turn per frame. For dictionary size |D|,
total number of filters N , filter size p and feature dimension h, an exhaus-
tive convolution based detection scheme requires approximatelly Nhp2 opera-
tions per location in a score pyramid while our scheme requires approximatelly
|D|hp2 +NE[||↵i||0] operations. The first term is from convolution with sparse-
lets and the second term is the average activation level from the sparse recon-
struction.

As the number of DPM models grows (due to more classes or more mixture
components per class), the precomputation time |D|hp2 is amortized. At the

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 7

limit it becomes equivalent to an o✏ine or “post-hoc” scenario, where prepro-
cessing time is not considered, only retrieval or indexing time. Preprocessing
of image corpora allows us work directly with the intermediate representation
for e�cient search when retrieving a new category from a large dataset. In this
setting the reconstruction speed up factor is the ratio between the complexity
of the convolution kernel and the average activation. Explicitly:

hp2

E[||↵i||0]

For example, reconstructing response from a 6 by 6 kernel with feature dimen-
sion 6 and average activation level of 20, we would get more than an order of
magnitude speedup in terms of number of arithmetic operations.

4 Implementation

4.1 CPU Cascaded Sparselets

We first implemented our model using the cascade code of [1], and interleaved
sparse reconstruction with the cascaded search. In this implementation we pro-
jected HOG features to a PCA-derived basis to reduce the feature dimensional-
ity, as in previous work; we found that a sparse reconstruction model was still
successful. We report results in the following section on the ability of sparselet
models to reconstruct held-out and/or post-hoc categories; that is, categories
which were not used in training the part dictionary model. While reconstruction
can be accurate with a small number of bases, as is shown below, the mem-
ory cache behavior on a conventional CPU limited the overall speedup of the
method, even when the theoretical ratio of the size of the convolution window
to the number of sparse bases was relatively large. To address this, we turned
to a GPU implementation, described in the following section.

4.2 Vanilla DPM and Sparselets Implementations on GPU

One of our contributions is the highest reported throughput for DPM-based
methods, which is due to both the use of GPUs and sparselets. We describe here
our CUDA1 implementation of both a “Vanilla” DPM approach, which follows
the classic implementation in [14], as well as sparselets. We expected DPM to
benefit from porting to the GPU since a large fraction of the computation time
of the original implementation is spent on convolution, HOG computation and
distance transforms - all operations that are parallelizable. GPUs o↵er a mas-
sively parallel computing architecture and have been successfully used to speed
up similar algorithms, e.g. HOG-based pedestrian detection [15].

1 Compute Unified Device Architecture (CUDA) is the programming paradigm for
Nvidia GPUs. Briefly, the GPU code is specified in kernels written in CUDA -
essentially C/C++ with some additional language constructs. Each core executes
compiled kernel code in a single thread. See [20] for more information.

#filte
rs

#features

patch
 siz

e

dictionary size

Towards Scalable Learning and Inference for Visual Recognition

Speed Ups

• 640x480 resolution

• 60 classes obtained by repetition
of VOC

• dashed extrapolation

47

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 13

Casc
ade

DPM
on C

PU

Van
illa D

PM
on G

PU

Spar
sele
ts on

GPU

1 10 100 1000

1 sec

10 sec

1 min

10 min

Number of Object Classes

Pr
oc
es
sin
g
Ti
m
e

Va
nil
la
DP
M

on
GP
U H128,

48
L
H128,

32
L
H64,3

2L
H128,

16
L
H64,1

6L
H32,1

6L
H64,8
L

H64,4
L

H128,
48
L
H512,

32
L
H600,

20
L
H512,

16
L
H128,

16
L
H512,

8L
H512,

4L
H256,

4L
H128,

4L

H64,4
L

5 15 25 35
0

5

10

15

20

25

30

Speedup over Cascade DPM on CPU H¥L

M
ea
n
A
P
H%L

Fig. 6: Top: Comparison of cascade algorithm on CPU vs. vanilla DPM on GPU
vs. sparselets accelerated DPM on GPU as number of object classes grows.
Sparselet accelerated DPM on GPU o↵ers approximately 35 times faster com-
pared to the cascade implementation on CPU. Frame size used in this experiment
was 640⇥480. Bottom: Speedup vs. Mean AP. Blue dots are for “online” results
measuring end-to-end time. Orange dots are for “post-hoc” case. The tuple in
parenthesis denote (|D|, ✏).

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 13

Casc
ade

DPM
on C

PU

Van
illa D

PM
on G

PU

Spar
sele
ts on

GPU

1 10 100 1000

1 sec

10 sec

1 min

10 min

Number of Object Classes

Pr
oc
es
sin
g
Ti
m
e

Va
nil
la
DP
M

on
GP
U H128,

48
L
H128,

32
L
H64,3

2L
H128,

16
L
H64,1

6L
H32,1

6L
H64,8
L

H64,4
L

H128,
48
L
H512,

32
L
H600,

20
L
H512,

16
L
H128,

16
L
H512,

8L
H512,

4L
H256,

4L
H128,

4L

H64,4
L

5 15 25 35
0

5

10

15

20

25

30

Speedup over Cascade DPM on CPU H¥L

M
ea
n
A
P
H%L

Fig. 6: Top: Comparison of cascade algorithm on CPU vs. vanilla DPM on GPU
vs. sparselets accelerated DPM on GPU as number of object classes grows.
Sparselet accelerated DPM on GPU o↵ers approximately 35 times faster com-
pared to the cascade implementation on CPU. Frame size used in this experiment
was 640⇥480. Bottom: Speedup vs. Mean AP. Blue dots are for “online” results
measuring end-to-end time. Orange dots are for “post-hoc” case. The tuple in
parenthesis denote (|D|, ✏).

• method can realize different trade-
offs by choosing number of basis and
reconstruction quality

• orange: posthoc, retrieval setting

• 25x for online; 35x for offline

Towards Scalable Learning and Inference for Visual Recognition

Generalization Performance

• averaged AP performance vs. number of coefficients
• training dictionary on PASCAL; learn and test on imagenet

48

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#713

ECCV
#713

10 ECCV-12 submission ID 713

10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) 20 PASCAL categories
10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) 9 PASCAL categories
20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) 9 ImageNet categories

Fig. 4: Results on held-out evaluation on PASCAL VOC2007 [19] and Ima-
geNet[21] dataset. Y-axes show class averaged AP. X-axes represent number of
bases used in reconstruction for SVD and sparselets. Red and purple line means
original cascade and nearest neighbor of parts reconstruction. Orange and cyan
show sparselet and SVD reconstruction respectively.

object model retrieves closest matching part filters (in L2 distance) from the pool
of training object models. The global threshold was fixed to �1.1 for all object
models throughout the experiment for consistency. This number was roughly the
saturation threshold for AP evalutation.

To test the reconstruction generalization performance against previously un-
seen category model we first performed leave one class out evaluation where we
used dictionaries and the set of singular vectors that are trained on all other
classes.

Figure 4 (a) shows the experimental results in AP for all 20 classes from
PASCAL VOC 2007 test dataset [19]. Figure 4 (b) shows AP for 9 categories that
have AP above 0.3. This shows that the reconstruction error is relatively small
for well performing models compared to mediocre DPM models. Our intuition
is that well performing models have relatively higher classification margin than
others and are more tolerant to approximation errors. We can see from Figure 4
that our sparse reconstruction method preserves most of AP on average with only
20 bases while SVD reconstruction does not quite preserve the AP at the same
level of reconstruction budget. Although nearest-neighbor-of-parts baseline has
poor performance overall, on subset of categories that DPM detector has poor
detection performance (e.g. bird, dog and pottedplant), it worked as well as or
a little bit better than the original held-out query models. Please refer to the
supplementary material for full per class AP table.

Next, we investigated whether a part dictionary model trained with PASCAL
categories would work on other datasets. We manually selected a set of object
categories which are related to events in the 2011 TRECVID-MED challenge [22]:
sailboat, bread, cake, candle, fish, goat, jeep, scissors, and tire. We trained DPM
models using data sampled from ImageNet [21] for these classes. We used the

vanilla DPM

sparselet

svd

NN

vanilla DPM

sparselet

svd

NN

vanilla DPM

sparselet

svd

NN

av
er

ag
ed

 A
P

Generalization to New Classes: Retrieval Setting

49

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#2052

CVPR
#2052

CVPR 2012 Submission #2052. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Don’t Look Back: Post-hoc Category Detection via Sparse Reconstruction

Anonymous CVPR submission

Paper ID 2052

Abstract

We consider optimal representations for representing

prototypical categories in the latent deformable part model

framework, with a specific emphasis on category-level re-

trieval tasks defined “on the fly” for a large corpus. In this

setting, it is impractical to perform an exhaustive search

with a full model; we investigate methods which approxi-

mately reconstruct the score function of a novel category

from a set of precomputed responses. We propose a novel

sparse reconstruction method where part classifiers are de-

composed via a shared dictionary of part filters; in turn,

our method can efficiently reconstruct approximate part re-

sponses on large image corpora using a sparse matrix-

vector product based on pre-computed filter responses in-

stead of exhaustive convolutions. We compare our method

to baseline schemes using SVD-based or nearest-category

approximation and show our method is more effective at

detecting novel categories. We additionally demonstrate

results towards an end-to-end system for activity detection

which trains a protoype category concept model from one

dataset (PASCAL), learns post-hoc categories on the fly

based on training data from a second dataset where labeled

data are available (ImageNet), and sucessfully detects in-

stances in test data from a third dataset (TRECVID MED)

via reconstruction with the precomputed prototype models.

1. Introduction
Many perceptual tasks of interest are not known a priori,

but are instead defined on the fly when a phenomena of in-
terest is identified. For example, one may decide to search
a personal media cache for cases where a certain type of
car is present, or look for events of a novel type of sport
or dance in online media. Contemporary object or activity
category recognition methods largely consider detection of
separate categories independently, applying a separate de-
tector for each. We consider here the efficient large-scale
detection of “post-hoc” categories, where the desired con-
cept is known only after data has been collected and pre-
processed, and there is not enough time to run a detector

Figure 1: “Post-hoc” detection of novel categories: a part
model dictionary is learned from a set of canonical cate-
gories, and used to precompute an intermediate represen-
tation for a large corpus. Later, a novel category can be
efficiently approximated using sparse reconstruction.

for that category exhaustively on the entire dataset. We are
specifically interested in detection of small-scale object cat-
egories that occupy only a subwindow of a larger image or
scene, as is customary in contemporary object category de-
tection challenges such as PASCAL VOC.

The naive application of a windowed object detector
trained post-hoc for a specific category is generally imprac-
tical on typical large-scale datasets, e.g., TRECVID MED
[28]. Existing approaches either forgo any windowed repre-
sentation and simply compute image-level descriptors (e.g,
GIST [23], PHOG [4], SPM-BOW [18, 8]), or rely on the
output of specific concept detectors precomputed on an im-
age. The majority of these latter approaches rely also only
on image-level descriptors (but see [19], which spatially
pools the output of a windowed detector for a fixed num-
ber of pre-trained categories.)

While image-level image descriptors provide a success-
ful solution to many retrieval tasks, especially those that
are scene-level events (or objects that are highly correlated
with scene level events) they are generally inadequate when
it comes to retrieval of specific objects that may comprise
only a limited region of the image and may occur in a wide
range of scene contexts. In this paper, we focus on the
challenge of developing an efficient representation for post-
hoc windowed detection of novel categories in large scale

1

PASCAL

IMAGENET

TRECVID MED

Towards Scalable Learning and Inference for Visual Recognition

Final Experiment

50

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 11

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rank

P
re

c
is

io
n

original
svd20
svd40
lookup_20_800
lookup_40_800

Fig. 5: Left: Example keyframes on TRECVID [22] dataset. Right: Ranked re-
trieved examples vs Precision using models trained with ImageNet training data
reconstructed with sparselet representations learned from PASCAL categories.

ImageNet bounding boxes for training, and manually annotated 200 additional
test images that had at least one instance of the above object categories with
bounding boxes. We tested how the dictionary learned from PASCAL models in
the previous experiment performed when approximating previously unseen novel
categories trained and tested on ImageNet imagery.

Figure 4 (c) shows the AP for the 9 categories: the dictionary of parts learned
from PASCAL does transfer to novel categories from ImageNet domain. With
the domain change however, we can see that SVD reconstruction with 40 bases
preserves only about 12% to 15% of the original AP while sparselet reconstruc-
tion with 40 bases preserves about 88% to 93% of the AP. Again we can observe
the same behavior that well performing DPM models are more tolerant on re-
construction errors than mediocre models. Please refer to the supplementary
material for average AP plot of subset of classes which have AP above 0.3.

Finally, we tested how well these classifiers performed and were reconstructed
on TRECVID imagery. The contents of TRECVID videos are highly variant, for
example, “wedding ceremony” varies from a traditional catholic mass, to a Hindi
ceremony, to home-made music videos, so precision is only high at relatively
low recall in this model transfer scenario even for the baseline model. Figure 5
shows example frames from the event kit and category averaged precision for
top 50 retrieved examples (based on sampled keyframes annotated using AMT
[23]). We can see that sparse reconstruction significantly improves the precision
as compared to SVD reconstruction for an equivalently compact intermediate
representation.

5.2 Runtimes and Performance on the PASCAL VOC2007 Dataset

In this section we present results of experiments examining runtime, and mean
average precision (AP) of Cascade DPM [1] on a CPU, Vanilla DPM on a GPU,

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#713

ECCV
#713

ECCV-12 submission ID 713 11

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rank

P
re

c
is

io
n

original
svd20
svd40
lookup_20_800
lookup_40_800

Fig. 5: Left: Example keyframes on TRECVID [22] dataset. Right: Ranked re-
trieved examples vs Precision using models trained with ImageNet training data
reconstructed with sparselet representations learned from PASCAL categories.

ImageNet bounding boxes for training, and manually annotated 200 additional
test images that had at least one instance of the above object categories with
bounding boxes. We tested how the dictionary learned from PASCAL models in
the previous experiment performed when approximating previously unseen novel
categories trained and tested on ImageNet imagery.

Figure 4 (c) shows the AP for the 9 categories: the dictionary of parts learned
from PASCAL does transfer to novel categories from ImageNet domain. With
the domain change however, we can see that SVD reconstruction with 40 bases
preserves only about 12% to 15% of the original AP while sparselet reconstruc-
tion with 40 bases preserves about 88% to 93% of the AP. Again we can observe
the same behavior that well performing DPM models are more tolerant on re-
construction errors than mediocre models. Please refer to the supplementary
material for average AP plot of subset of classes which have AP above 0.3.

Finally, we tested how well these classifiers performed and were reconstructed
on TRECVID imagery. The contents of TRECVID videos are highly variant, for
example, “wedding ceremony” varies from a traditional catholic mass, to a Hindi
ceremony, to home-made music videos, so precision is only high at relatively
low recall in this model transfer scenario even for the baseline model. Figure 5
shows example frames from the event kit and category averaged precision for
top 50 retrieved examples (based on sampled keyframes annotated using AMT
[23]). We can see that sparse reconstruction significantly improves the precision
as compared to SVD reconstruction for an equivalently compact intermediate
representation.

5.2 Runtimes and Performance on the PASCAL VOC2007 Dataset

In this section we present results of experiments examining runtime, and mean
average precision (AP) of Cascade DPM [1] on a CPU, Vanilla DPM on a GPU,

TRECVID dataset

• PASCAL -> Dictionary

• Imagenet -> Object Classes

• Detection on TRECVID

• Precompute Representation
• 35x speedup with GPU

manually selected object
classes related to events:
sailboat, bread, cake, candle,
fish, goat, jeep, scissors, and
tire

Towards Scalable Learning and Inference for Visual Recognition

Demo

51

Towards Scalable Learning and Inference for Visual Recognition

Conclusion

• General formulation to share computation and exploit
correlations

• Total detection speedup up to 25x

• PASCAL VOC detection in real-time

• Offline-retrieval task up to 35x speedup

52

Rodrigo Benenson

100 classifiers to
detect a single class

Rodrigo Benenson

Part III
50 classifiers are faster than 1

Third version: detector is the bottleneck

Milliseconds per frame

INRIA dataset

[Dollar et al. 2011]

B
e
tt
e
r

Better

INRIA dataset

VeryFast 50 Hz

B
e
tt
e
r

Better

INRIA dataset

[Viola & Jones 2004]

fastHOG
~10 Hz on GPU

[Prisacariu 2009]

Parts Model
[Felzenszwalb 2008]

ChnFtrs/FPDW
~5 Hz on CPU
[Dollar 2009+2010]

EXPLAIN HOW CHNFTRS WORK
(versus HOG)

mention speed on GPU: ~3 Hz

+1 -1 +1 -1

score= w
1
⋅h

1
+

+1 -1 +1 -1 +1 -1 +1 -1

score= w
2
⋅h

2
+w

1
⋅h

1
+

+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

score=

⋯

⋯ +w
N
⋅h

N
w
2
⋅h

2
+w

1
⋅h

1
+

(~3 Hz on GPU)[ChnFtrs, Dollar et al. 2009]

What slows down fastHOG ?

[Prisacariu and Reid 2009]

How to make
features computation

faster ?

One template cannot detect at
multiple scales

✔✔ ✘

Traditionally, features are computed
many times

~50 scales

Traditionally, features are computed
many times

~50 scales

We invert the relation

1 model,

50 image scales

50 models,

1 image scale

Training one model per scale
is too expensive

~50 scales

We propose a method to reduce
training time 10x

5 models,

1 image scale

50 models,

1 image scale

≈

Features can be approximated

across scales

~5 scales ~50 scales

≈

[Dollar et al. 2010]

We transfer test time computation

to training time

1 model,

5 image scales

5 models,

1 image scale
(3x reduction in features computation)

At runtime, we use as many

models as scales

5 models,

1 image scale

50 models,

1 image scale

≈

Detecting without resizing

provides quality

Monocular

50 Hz

Detecting without resizing

provides speed

Stereo with stixels

160 Hz, 80 Hz on laptop

ETH's dataset results have
less variance than INRIA's

Monocular Stereo

Tasks for the exercise

• Take version 0 of Rodrigos code and optimize
• This should roughly take you from 1Hz to 50Hz
• Note that there is a license on the code!

• Current code is cmake & linux
• Compiling on win might be tricky
• If you have an MPI or IMPRS account

‣ you can use one of our GPU machines (ruegen, ganymede (open))

• If there is no way for you - tell us and we try to get you an
account

80

Tasks for the exercise

• figure out right number of threads
‣ CUDA occupancy calculator (and http://en.wikipedia.org/wiki/CUDA)

‣ nvcc compiler flag --ptxas-options=-v

• implement cascade
• parallelize execution over scales
• pre-read all 3 decision values for tree stump
• experiment with texture and global memory (in the code)
• look into additional optimizations
• extra points for fixing exception at the end of code ;)
• vary stride

• always check output (detections)

81

http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/CUDA

