Web Dynamics

Part 6 – Searching the Past

6.1 Time-travel problems

- 6.2 Efficient Time-Travel Search
- 6.3 Temporal measures of page importance

Time Travel Problems on the Web

- Search engines index only the *current* Web
- But: Many interesting aspects on the *historical* Web:
- Search the Web as of a specific time in the past ("opinions of major US politicians on the Iraq War in 2002")
- Analyze the Web as of a specific time in the past ("most authoritative news page in 2002")
 - Analyze temporal development of the Web ("since when have political blogs been around?")

Web Archives don't provide these functionalities (at least not publicly)

Rare example: Google@2001

Web Dynamics

Part 6 – Searching the Past

- 6.1 Time-travel problems
- 6.2 Efficient Time-Travel Search
- 6.3 Temporal measures of page importance

(Some of the slides were contributed by Klaus Berberich)

The Need for Time-Travel Search

- Historical information needs, e.g.,
 - Contemporary (~2001) articles about the movie "Harry Potter and the Sorcerer's Stone"
 - Search for prior art for a patent submitted 2005
 - Links to some illegal content before Feb 2009
- Relevant pages disappeared in the current Web, but preserved by Web archives (e.g., archive.org)
- Search in existing Web archives limited and ignores the time-axis

The Need for Time-Travel Search

Result on current Web

The movie comes across as a covers act by an extremely competent tribute

band **?** not the real thing but an incredible simulation **?** and there's an

audience for this sort of thing. But watching "Harry Potter" is like seeing

"Dootlamonia" stored in the Hellengered Doord where the chases and con-

POTTER AND THE SORCERER'S

ailer, Wallpaper ... - [Diese Seite übersetzen]

tag erfährt Harry Potter ...

2001. Steven Soderbergh's

the Sorcerer's Stone ...

ne - Ähnlich

www.boxofficemojo.con Summer Teri

Sustamer Service

Harry Potter and the

information and related

Time-Travel Search Beyond the Web

More versioned document collections:

- Wikis (like Wikipedia)
- Repositories (e.g., controlled by CVS, Subversion)
- Your Desktop

Formal Model: Document Versions

Assume continuous time dimension $T=[0...\infty($. For each document (=url) d, maintain set of different $versions\ V(d)$, where each $v\in V(d)$ is a tuple $v=(c_v, [s_v,e_v])$, with $e_v=\infty$ for current versions.

Different versions of the same document have disjoint lifetimes \Rightarrow (d,s_v) identifies version

Archive can only estimate versions of a document

Time-Travel Keyword Queries

Time-travel keyword query q=(k,I) combination of

- standard keyword query $k=(k_1,...k_n)$
- time-of-interest interval $I=(s_{l},e_{l})$

Two important subclasses:

• *Point-in-time* queries: $s_I = e_I$ our focus

• *Interval* queries: $e_I > s_I$

Example:

"harry potter" @ 2001/11/14

This is a point-in-time query if the granularity of time is 1 day!

Scoring Point-in-Time Time-Travel Queries

Reminder: score in standard text retrieval:

$$s(d,q) \propto \sum_{k \in q} tf(d,k) \cdot idf(k)$$
 frequency of k in d importance of k $idf(k) \propto \frac{N}{df(k)}$

score of version
$$v=(c_v,[s_v,e_v])$$
 for $q=(\{k_1...k_n\},t)$

N: # docs; N(t): #docs at time t df(k): # docs with term k

df(k,t): # docs with term k at time t

 $\rightarrow idf(k,t) \propto \frac{N(t)}{df(k,t)}$

Inverted Lists in Text IR

Reminder: Inverted Lists in text retrieval

For each term t, keep list (d,score(d,t)) of documents containing term t and their score, in some order

List for term t in score order

List for term t in document order

d1,0.9 d7,0.85 d2,0.84763 d119,0.79

d1,0.9 d2,0.84763 d4, 0.27 d7,0.85

Query processing using merge joins of these lists (plus optional top-k for efficiency)

Extension for time-travel: SOPT

- 1. Split score in tf and idf component (idf is query-dependent!)

 store this somewhere else
- 2. For each term k, keep list $(v,tf(v,k),(s_v,e_v))$ of document versions containing term k, their tf value, and their lifetime, in some order

List for term k in score order

```
d1,90,(2001/jan/01,2001/jan/15)
d1,90,(2001/jan/16,2001/feb/28)
d7,85,(2004/aug/14,2004/aug/16) ✓
d1,84,(2001/mar/01,∞) ✓
```

Example: k@2004/aug/15

Query processing using merge joins of these lists plus ignoring versions where lifetime does not match query

This is not good enough

Major problems of this simple approach:

- index size explodes (one index entry per version per term)
 - \Rightarrow for Wikipedia alone: 9·10⁹ entries!
- Many entries
 - differ only in their lifetimes
 - have almost identical tf values (hardly matters for ranking)

Reducing Index Size: Coalescing

Idea:

Coalesce sequences of temporally adjacent postings having similar scores

Can drastically reduce index size But: what happens to result quality?

Formal Optimization Problem

Problem Statement:

Given input sequence I find a *minimal length* output sequence O with approximation errors bounded by a threshold ϵ

Guarantee:

$$|p' - p_i| / |p_i| \le \varepsilon$$

Approximate Temporal Coalescing (ATC):

finds an optimal output sequence using a greedy linear time algorithm

Approximate Temporal Coalescing (ATC)

General approach:

- Scan from left to right
- Maintain current estimate for representative p'
- When next value is encountered, check if it can be represented within the error margin
 - If not, close current subsequence

Tuning query performance

Problem:

Many postings are *ignored* during query processing

We read 10 postings, but only {1, 5, 8} are needed

Tuning Query Performance: POPT

Idea:

Materialize smaller sublists containing only postings that *overlap* with a smaller interval

Maintaining a sublist for each elementary interval yields optimal query performance

Tuning Index Performance

Two extreme solutions up to now:

- space-optimal: keep only a single list (SOPT)
- performance-optimal: keep one list per elementary time-interval (POPT)

Now: two systematic techniques to trade-off space and performance

- performance-guarantee: consumes minimal space while retaining a performance guarantee (PG)
- **space-bound**: achieves best performance while not exceeding a space limit (SB)

Performance Guarantee (PG)

- consumes *minimal* space
- guarantees that for any t at most $\gamma \cdot n_t$ postings are read where n_t is the number of postings that exist at time t
- Optimal solution computable for discrete time by means of induction (on the number of time points) in $O(T^2)$ time and $O(T^2)$ space (where T is the number of distinct timestamps in the list)
 - start with elementary intervals (length 1)
 - compute optimal solution for intervals of length k+1
 from solutions for intervals of length≤k

Space Bound (SB)

- achieves minimal expected processing cost
 (i.e., expected length of the list that is scanned)
- consumes at most $\kappa \cdot n$ space where n is the length of the original list

Optimal solution computable using dynamic programming in $O(n^4)$ time and $O(n^3)$ space

Approximate solution computable in $O(T^2)$ time and O(T) space using simulated annealing

Experimental Evaluation: Setup

Implementation:

Java, Oracle 10g

Datasets:

- WIKI: Revision history of English Wikipedia (2001-2005)
 892K documents / 13,976K versions / 0.7 TBytes
- UKGOV: Weekly crawls of 11 .gov.uk sites (2004-2005)
 502K documents / 8,687K versions / 0.4 TBytes

Queries:

- 300 keyword queries from AOL query log that most frequently produced a result click on en.wikipedia.org / .gov.uk
- Each keyword query is assigned one time point per month in the collection's lifespan (18K / 7.2K time-travel queries in total)

Experimental Evaluation: Setup

Implementation:

Java, Oracle 10g

Datasets:

- WIKI: Revision history of English Wikipedia (2001-2005)
 892K documents / 13,976K versions / 0.7 TBytes
- UKGOV: Weekly crawls of 11 .gov.uk sites (2004-2005)

WIKI:

ten commandments, abraham lincoln, da vinci code, harlem renaissance...

UKGOV:

1901 uk census, british royal family, migrant worker statistics, witness intimidation...

Approximate Temporal Coalescing

Indexes computed for different values of threshold ϵ

At the same time provides excellent result quality

Sublist Materialization - Setup

Start with index created by ATC for $\varepsilon = 0.10$

For terms in query workloads (422/522) apply

- SOPT and POPT
- PG for γ varying between 1.10 and 3.00
- SB for κ varying between 1.10 and 3.00

Report

- Space, i.e., total number of postings in materialized sublists
- Expected Processing Cost (EPC), i.e., expected length of scanned list for random term and time

Performance Guarantee

	WIKI			UKGOV			
	Space		EPC	Space		EPC	
P _{OPT}		14,428%	100%		11,406%		100%
S _{OPT}		100%	963%		100%		147%

Performance Guarantee

	WIKI		UKGOV			
	Space	EPC	Space	EPC		
γ = 1.10	1,004%	106%	616%	103%		
γ = 1.50	295%	132%	233%	117%		
γ = 2.00	195%	160%	163%	125%		
γ = 3.00	145%	207%	132%	133%		

EPC = Expected Processing Cost

Space Bound

	WIKI		UKGOV					
	Space		EPC		Space		EPC	
P _{OPT}		14,428%	100	0%		11,406%		100%
SOPT		100%	963	3%		100%		147%

Space Bound

	WIKI		UKGOV	
	Space	EPC	Space	EPC
κ = 3.00	288%	139%	273%	107%
κ = 2.00	194%	171%	180%	119%
κ = 1.50	146%	214%	131%	131%
κ = 1.10	109%	406%	104%	145%

EPC = Expected Processing Cost

Web Dynamics

Part 6 – Searching the Past

- 6.1 Time-travel problems
- 6.2 Efficient Time-Travel Search
- 6.3 Temporal measures of page importance

Differences between Citations and Links

- Citations in printed documents (papers)
 - never change once paper is published
 - mostly to recent documents
 - ⇒ Old papers hardly cited, negative authority bias

2001

- Links on the Web
 - frequently change after page is published
 - old (but updated!) pages still get many new links
 - ⇒ Old pages have **positive authority bias**

Temporal Development of Links

- PageRank (HITS, ...): x more authoritative than y
- But:
 - x has 6 links in 10 years
 - y has 3 links in 2 years
 - ⇒ y a lot more dynamic and up-to-date than x, but difficult to beat x's "temporal advantage"
- Whi Temporal notions of authority required!

Example: Search for SIGMOD conference

sigmod conference

Web Bilder Video Maps News Shopping E-Mail Mehr ▼

Google

Modelling Temporal Changes

For each page p, maintain

- timestamp of creation $TS_C(p)$
- timestamp of deletion $TS_D(p)$
- set of timestamps of modifications $TS_M(p)$

(timestamp: amount of time units since time 0)

Analogous definitions for link (x,y):

- timestamp of creation $TS_C(x,y)$: time when (x,y) added
- timestamp of deletion $TS_D(x,y)$: time when (x,y) del'ed
- timestamp TS(x,y): last modification time of page x

Timestamped Link Profile (TLP)

Goal: Measure the "activity" of a topic on the Web

- ⇒ Construction of *Timestamped Link Profile*:
- Collect set of Web pages for the topic
 (e.g., by collecting results of keyword queries)
- Collect set of inlinks (x,y) to these pages (provided by search engines: link:url)
- Compute temporal distribution of timestamps of inlinks (partitioning time range into intervals)

Based on *limited sample* of the inlinks

Timestamps usually available for some inlinks only (last-modified timestamp of page)

Example TLP

FIG. 2. TLP for the theme "Year 2000 Bug" (~750 timestamped links).

Towards Timely Authorities

Goal: Determine *currently* authoritative pages (opposed to those authoritative years ago, but still around)

Intuition of [Amitay et al.]:

- Deviate from uniform link weight in HITS etc
- Give more weight to recent links:

```
weight(x,y) \propto 1/age(x,y)
= 1/(currentTime - TS(x,y))
(with linear or exponential decay)
```

Authoritative Pages in the Past

Goal: extend this approach towards

- finding important pages at any interval in the past
- including page activity as quality measure

Consider interval of interest $ti=[TS_{Origin}, TS_{End}]$ with additional tolerance interval [t1,t2] where pages are less interesting, but still relevant to user $(t1 \le TS_{Origin}, t2 \ge TS_{End})$

Freshness

Freshness measures relevance of timestamp to interval of interest:

$$f(ts) = \begin{cases} if \ TS_{\text{Origin}} \leq ts \leq TS_{\text{End}}; & 1 \\ if \ t_1 \leq ts < TS_{\text{Origin}}; & \frac{1-e}{TS_{\text{Origin}}-t_1} \cdot (ts-t_1) + e \\ if \ TS_{\text{End}} < ts \leq t_2; & \frac{e-1}{t_2 - TS_{\text{End}}} \cdot (ts - TS_{\text{End}}) + 1 \\ otherwise: & e \end{cases}$$

$$time$$

Freshness of node x: f(x) = f(TS(x))Freshness of edge (x,y): f(x,y) = f(TS(x,y))

Activity

Activity of set TS of timestamps measures frequency of change with respect to interval of interest:

$$a(TS) = \begin{cases} if \ TS \cap [t_1, t_2] \neq \emptyset : & \sum_{t_1}^{t_2} \{f(ts) | ts \in TS\} \\ otherwise : & e \end{cases}$$

Activity of node x: $a(x) = a(TS_M(x))$

Activity of edge (x,y): $a(x,y) = a(TS_M(x,y))$

Restricting the Graph to an Interval

For graph G and interval of interest ti=[ts,te] with tolerance interval [t1,t2], consider $time\ projection$ $G_{ti}=(V_{ti},E_{ti})$ of G=(V,E):

$$V_{ti} = \{ v \in V \mid TS_C(v) \leq t_2 \land TS_D(v) \geq t_1 \}$$

$$E_{ti} = \{(x,y) \in E \mid (x,y) \in V_{ti} \times V_{ti} \land TS_{C}(x,y) \leq t_{2} \land TS_{D}(x,y) \geq t_{1} \}$$

Special case t₁=t₂: G_{ti} snapshot of G as of time t₁

Towards Temporal PageRank

Standard definition of PageRank:

$$r(y) = \sum_{(x,y)\in E} (1-\varepsilon) \cdot \frac{r(x)}{\text{outdegree}(x)} + \frac{\varepsilon}{n}$$

Generalized version allowing for **non-uniform** transition and random jump probabilities:

$$r(y) = \sum_{(x,y)\in E} (1-\varepsilon)\cdot t(x,y)\cdot r(x) + \varepsilon\cdot s(y)$$

- t(x,y) describes transition probabilities
- s(y) describes random jump probabilities

Temporal Pagerank (T-Rank)

- Modified PageRank on Gti
- Transition probabilities t(x,y) depend on freshness of nodes and edges
- Random jump probabilities depend on freshness and activity of nodes and edges

T-Rank – Transitions

- Transitions favor fresh nodes/edges
- Coefficients w_{ti} : probabilities that random surfer follows (x,y) with probabilities proportional to
 - freshness of node y
 - freshness of edge (x,y)
 - average (mean) freshness of incoming edges of node y

$$t(x,y) = W_{t1} \cdot \frac{f(y)}{\sum_{(x,z) \in E} f(z)} + W_{t2} \cdot \frac{f(x,y)}{\sum_{(x,z) \in E} f(x,z)} + W_{t3} \cdot \frac{avg\{f(v,y) \mid (v,y) \in E\}}{\sum_{(x,w) \in E} avg\{f(v,w) \mid (v,w) \in E\}}$$

T-Rank – Random Jumps

- Random jumps favor fresh and active nodes/edges
- Coefficients w_{si} probabilities that random surfer jumps to node y with probabilities proportional to
 - freshness and activity of node y
 - average (mean) freshness and activity of incoming edges of node y

$$s(y) = W_{s1} \cdot \frac{f(y)}{\sum_{z \in V} f(z)} + W_{s2} \cdot \frac{a(y)}{\sum_{z \in V} a(z)} + W_{s3} \cdot \frac{avg\{f(v, y) \mid (v, y) \in E\}}{\sum_{z \in V} avg\{f(w, z) \mid (w, z) \in E\}} + W_{s4} \cdot \frac{avg\{a(v, y) \mid (v, y) \in E\}}{\sum_{z \in V} avg\{a(w, z) \mid (w, z) \in E\}}$$

T-Rank Experiment: DBLP

Digital Bibliography & Library Project (DBLP) freely available bibliographic dataset (as XML)

Evolving graph derived from DBLP: Authors as nodes, citations as edges

	PageRank 2000s	T-Rank 2000s
1	E. F. Codd	Jim Gray
2	Michael Stonebraker	Michael Stonebraker
3	Jim Gray	Jeffrey D. Ullman
4	Donald D. Chamberlin	Philip A. Bernstein
5	Jeffrey D. Ullman	Hector Garcia-Molina
6	Philip A. Bernstein	Jeffrey F. Naughton
7	Raymond A. Lorie	Donald D. Chamberlin
8	Morton M. Astrahan	David J. DeWitt
9	Kapali P. Eswaran	Jennifer Widom
10	John Miles Smith	Rakesh Agrawal

T-Rank Experiment: Web

- Theme: Olympic Games 2004
 - ~200K thematically related Web pages
 - 9 crawls in period July 26th to September 1st
- Blind test comparing PageRank and T-Rank
 - Users asked to grade quality of given top-10 lists
 - Half of the queries drawn from Google Zeitgeist

Berberich et al, Internet Mathematics 2006

T-Rank Experiment: Web

References

Time-Travel Search:

- Klaus Berberich et al.: A Time Machine for Text Search, SIGIR Conference, 2007
- Klaus Berberich et al.: *FluxCapacitor: Efficient Time-Travel Text Search*, VLDB Conference, 2007

Temporal Link Analysis:

- L. Adamic & B.A. Huberman: *The Web's hidden order*, CACM 44(9), 2001
- Einat Amitay et al.: *Trend Detection Through Temporal Link Analysis*, Journal of the American Society for Information Science and Technology 55, pp. 1-12, 2004
- Ricardo Baeza-Yates et al.: Web Structure, Dynamics and Page Quality, SPIRE Conference, 2002
- Klaus Berberich et al.: Time-Aware Authority Ranking, Internet Mathematics 2(3), 2006
- Klaus Berberich et al.: A Pocket Guide to Web History, SPIRE Conference, 2007
- Philip S. Yu et al.: On the Temporal Dimension of Search, WWW
 Conference, 2004