Web Dynamics

Part 2 – Modeling static and evolving graphs

2.1 The Web graph and its static properties

2.2 Generative models for random graphs

2.3 Measures of node importance

Notation: Graphs

• G=(V(G),E(G))

We will drop G when the graph is clear from the context.

- directed graph: E(G)⊆V(G)xV(G)
- undirected graph: $E(G) \subseteq \{\{v,w\} \subseteq V(G)\}$
- Degrees of nodes in directed graphs:
 - indegree of node n: indeg(n)= $|\{(v,w) \in E(G):w=n\}|$
 - outdegree of node n: outdeg(n)=|{(v,w)∈ E(G):v=n}|
- Degree of node n in undirected graph:

 $- \operatorname{deg}(n) = |\{ e \in E(G) : n \in e\}|$

• Distributions of degree, indegree, outdegree $P_{deg,G}(k) = \frac{|\{n \in V(G) : deg(n) = k\}|}{|V(G)|}$

Web Graph W

- Nodes are URLs on the Web
 - No dynamic pages, often only HTML-like pages
- Edges correspond to links
 - directed edges, sparse
- Highly dynamic, impossible to grab snapshot at any fixed time

 \Rightarrow large-scale crawls as approximation/samples

Degree distributions

 Assume the average indegree is 3, what would be the shape of P_{in,W}?

Degree distributions

Power Law Distributions

Distribution P(k) follows power law if

$$P(k) = C \cdot k^{-\beta}$$

for real constant C>0 and real coefficient β >0

(needs normalization to become probability distribution)

Moments of order *m* are finite iff $\beta > m+1$:

$$E[X^{m}] = \sum_{k=1}^{\infty} k^{m} \cdot P(k) = \sum_{k=1}^{\infty} C \cdot k^{m-\beta} = C \cdot \zeta(\beta - m)$$

Heavy-tailed distribution: P(k) decays polynomially to 0

Power-Law-Distributions in log-log-scale

Parameter fitting in loglog-scale (fit linear function)

Summer Term 2010

Web Dynamics

Degree distributions of the Web

Based on an Altavista crawl in May 1999 (203 million urls, 1466 million links)

Examples for Power Laws in the Web

- Web page sizes
- Web page access statistics
- Web browsing behavior
- Web page connectivity
- Web connected components size

More graphs with Power-Law degrees

- Connectivity of Internet routers and hosts
- Call graphs in telephone networks
- Power grid of western United States
- Citation networks
- Collaborators of Paul Erdös
- Collaboration graph of actors (IMDB)

Scale-Freeness

Scaling *k* by a constant factor yields a proportional change in *P(k)*, independent of the absolute value of *k*:

$$P(ak) = C \cdot (ak)^{-\beta} = C \cdot a^{-\beta} \cdot k^{-\beta} = a^{-\beta} \cdot P(k)$$

(similar to 80/20 or 90/10 rules)

Additionally: results often independent of graph size (Web or single domain)

Zipfian vs. Power-Law

Zipfian distribution:

Power-law distribution of ranks, not numbers

- Input: map item→value (e.g., terms and their count)
- Sort items by descending value (any tie breaking)
- Plot (k, value of item at position k) pairs and consider their distribution

Important example: Frequency of words in large texts (but: also occurs in completely random texts)

Other related Law:

- Benford's Law: distribution of first digits in numbers
- Heaps' Law: number of distinct words in a text

Example: Term distribution in Wikipedia

Most popular words are "the", "of" and "and" (so-called "stopwords")

Summer Term 2010

Web Dynamics

Heaps' Law

Estimates number of distinct terms in text of size n

$$V_R(n) = K \cdot n^{\beta}$$

In English texts: $10 \le K \le 100$, $0.4 \le \beta \le 0.6$

Harold Stanley Heaps. Information Retrieval: Computational and Theoretical Aspects. Academic Press, 1978

Summer Term 2010

Web Dynamics

Diameters

How many clicks away are two pages?

```
For two nodes u, v \in V:
```

d(u,v) minimal length of a path from u to v

Scale-free graphs: d has Normal distribution (Albert, 1999)

- Average path length
 - E[d]=O(log n), n number of nodes (small world graph)
 - For the Web: $E[d] \sim 0.35 + 2.06* \log_{10} n$ (avg 21 hops distance)
 - Undirected: O(In In n) (Cohen&Havlin, 2003)
- Maximal path length ("diameter")

Diameters

From Broder et al, 2000:

- only 24% of nodes are connected through directed path
- average connected directed distance: 16
- average connected undirected distance: 7

 \Rightarrow small world only for connected nodes!

Connected components

Fig. 5. Distribution of weakly connected components on the Web. The sizes of these components also follow a power law.

Fig. 6. Distribution of strongly connected components on the Web. The sizes of these components also follow a power law.

(Their sample of the) Web graph contains

- one giant weakly connected component with 91% of nodes
- one giant strongly connected component with 28% of nodes

(even after removing well-connected nodes)

Summer Term 2010

A. Broder et al.: Grpah structure in the Web

Bow-Tie Structure of the Web

Connectivity of Power-Law Graphs

(Undirected) connectivity depends on β :

- β <1: connected with high probability
- 1<β<2: one giant component of size O(n), all others size O(1)
- 2<β<β₀=3.4785: one giant component of size O(n), all others size O(log n)
- $\beta > \beta_0$: no giant component with high probability

(Aiello et al, 2001)

Block structure of Web links

Web Dynamics

Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can be expected at distance 1,2,3,...?

- 1 hop: 3 neighbors
- 2 hops: 3*3=9 neighbors

h hops: 3^h neighbors

Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can be expected at/up to distance 1,2,3,...?

- 1 hop: 3 neighbors
- 2 hops: 3*3=9 neighbors

h hops: 3^h neighbors

Not true in general! (duplicates \Rightarrow over-estimation) N(h) \propto h^H (hop exponent) [Faloutsos et al, 1999]

Neighborhood sizes

Intuition: H ~ "fractal dimensionality" of graph

 $N(h) \propto h^1$

 $N(h) \propto h^2$

Web Dynamics

Part 2 – Modeling static and evolving graphs

2.1 The Web graph and its static properties **2.2 Generative models for random graphs**2.3 Measures of node importance

Requirements for a Web graph model

- Online: number of nodes and edges changes with time
- **Power-Law**: degree distribution follows power-law, with exponent β >2
- Small-world: average distance much smaller than O(n)
- Possibly more features of the Web graph...

Random Graphs: Erdös-Rénji

G(n,p) for undirected random graphs:

- Fix n (number of nodes)
- For each pair of nodes, independently add edge with uniform probability p

Degree distribution: binomial

$$P_{\text{deg}}(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$
Pick k out of Probability to have
n-1 targets exactly k edges
$$\frac{\ln n}{2}$$
 threshold for the connectivity of G(n,p)

$$\Rightarrow$$
 cannot be used to model the Web graph

Summer Term 2010

n

Example: p=0.01

http://upload.wikimedia.org/wikipedia/commons/1/13/Erdos_generated_network-p0.01.jpg

Preferential attachment

Idea:

Barabasi&Albert, 1999

- mimic creation of links on the Web
- Links to "important" pages are more likely than links to random pages

Generation algorithm:

- Start with set of M₀ nodes
- When new node is added, add m \leq M₀ random edges probability of adding edge to node v: $\frac{\deg(v)}{\sum \deg(w)}$

Result: Power-law degree distribution with β =2.9 for M₀=m=5 (from simulation)

Analysis of Preferential Attachment

(Using "mean field" analysis and assuming continuous time, see Baldi et al.) After *t* steps: M_0 +*t* nodes, *tm* edges Consider node v with $k_v(t)$ edges after step t

$$k_{v}(t+1) - k_{v}(t) = m \frac{k_{v}(t)}{2mt} = \frac{k_{v}(t)}{2t}$$
 (considering expectations, allowing multiple edges)
$$\frac{\partial k_{v}}{\partial t} = \frac{k_{v}}{2t}$$
 (assuming continous time, considering differential equation)

with initial condition $k_v(t_v) = m$ (t_v : time when v was added)

This can be solved as

$$k_v(t) = m \sqrt{\frac{t}{t_v}}$$
 (older nodes grow faster than younger ones)

Further analysis shows that $P(k) = \frac{2m}{k^3}$

Summer Term 2010

Properties and extensions

- Diameter of generated graphs:
 - $O(\log n)$ for m=1
 - − O(log n/log logn) for m≥2
- Extension to directed edges:
 - randomly choose direction of each added edge
 - consider indegree and outdegree for edge choice
- Extensions to generate different distributions (where β≠3): mixtures of operations
 - Allow addition of edges between existing nodes
 - Allow rewiring of edges
- Extensions for node and edge deletion required

Copying

Idea:

Kleinberg et al., 1999

- mimic creation of *pages* on the Web
- links are partially copied from existing pages

Generation algorithm:

- When new node is added, pick random (uniform) existing node *u* and add *d* edges as follows
 - Add edge to random (uniform) node with probability p
 - Copy random (uniform) existing edge from u with probability 1-p

Prefers nodes with high indegree (similar to preferential attachment)

Generates Power-law degree distribution with

$$\beta = \frac{2-p}{1-p}$$

Other Generative Models

- Watts and Strogatz model:
 - Fix number of nodes n and degree k
 - Start with a regular ring lattice with degree k
 - Iterate over nodes, rewire edge with probability p
 - ⇒ Degree distribution similar to random graph (for p>0), infeasible to model the Web graph
- Growth-Deletion Models:
 - Generative model (like PA or Copying)
 - Generate new node + *m* PA-style edges with probability p_1
 - Generate m PA-style edges with probability p2
 - Delete existing node (uniform, random) with probability p_3
 - Delete m edges (uniform, random) with probability $1-p_1-p_2-p_3$

Generates power-law degree distribution with $\beta = 2 + \frac{p_1 + p_2}{p_1 + 2p_2 - p_3 - p_4}$

Web Dynamics

Part 2 – Modeling static and evolving graphs

2.1 The Web graph and its static properties2.2 Generative models for random graphs2.3 Measures of node importance

More networks than just the Web

- Citation networks (authors, co-authorship)
- Social networks (people, friendship)
- Actor networks (actors, co-starring)
- Computer networks (computers, network links)
- Road networks (junctions, roads)

Characteristics are similar to the Web:

- Degree distribution
- (strongly, weakly) connected components
- Diameters
- *Centrality of nodes*: how important is a node

Assume undirected graphs for the moment

Clustering: Edge density in neighborhood

For each node v having at least two neighbors:

$$C^{v} = \frac{\left|\{\{j,k\} \in E : \{v,j\} \in E \land \{v,k\} \in E\}\right|}{\frac{\deg(v)(\deg(v)-1)}{2}}$$

For each node v having less than two neighbors:

 $C^{v} = 0$

Clustering index of the network: $C = \frac{1}{|V|} \sum_{v=1}^{V} C^{v}$

Summer Term 2010

Degree centrality

General principle:

Nodes with many connections are important.

$$C_D(v) = \frac{\deg(v)}{|V| - 1}$$

But: too simple in practice, link targets/sources matter!

Closeness centrality

Total distance for a node *v*:

$$\sum_{w\in V} d(v,w)$$

Closeness is defined as:

$$C_C(v) = \frac{1}{\sum_{w \in V} d(v, w)}$$

Helps to find central nodes w.r.t. distance

(e.g., useful to find good location for service stations)

But: what happens with nodes that are (almost) isolated?

Assumes connected graph

Betweenness centrality

Centrality of a node *v*:

- which fraction of shortest paths through v
- Probability that an arbitrary shortest path passes through v

Number of shortest paths between *s* and *t*: σ_{st} Number of shortest paths between *s* and *t* through *v*: $\sigma_{st}(v)$

Betweenness of node v:
$$C_B(v) = \sum_{s \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Can be computed in $O(|V| \cdot |E|)$ using per-node BFS plus clever tricks (to account for overlapping paths) [Brandes,2001]

Summer Term 2010

Example: Betweenness

http://en.wikipedia.org/wiki/File:Graph_betweenness.svg

red=0, blue=max

Betweenness: Properties & Extensions

- Node with high betweenness may be crucial in communication networks:
 - May intercept and/or modify many messages
 - Danger of congestion
 - Danger of breaking connectivity if it fails
- But: No information how messages really flow!
- Extension: take network flow into account ("flow betweenness")

Authority Measures for the Web

<u>Goal:</u>

Determine **authority** (prestige, importance) of a page

with respect to

- volume
- significance
- freshness
- authenticity
- of its information content

Approximate authority by (modified) centrality measures in the (directed) Web graph

PageRank

Idea: incoming links are endorsements & increase page authority, authority is higher if links come from high-authority pages

Random walk: uniformly random choice of links + random jumps

Summer Term 2010

Web Dynamics

PageRank

<u>Input:</u> directed Web graph G=(V,E) with |V|=n and adjacency matrix E: E_{ij} = 1 if (i,j)∈ E, 0 otherwise

Random surfer page-visiting probability after i +1 steps:

$$p^{(i+1)}(y) = r_{y} + \sum_{x=1..n} C_{yx} p^{(i)}(x) \text{ with conductance matrix C:} \\ C_{yx} = (1-\varepsilon)E_{xy} / \text{ outdeg}(x) \\ and random jump vector r: \\ r_{y} = \varepsilon/n \end{cases}$$

Finding solution of fixpoint equation suggests power iteration: initialization: $p^{(0)}(y) = 1/n$ for all y repeat until convergence (L_1 or L_∞ of diff of $p^{(i)}$ and $p^{(i+1)} <$ threshold) $p^{(i+1)} := r + Cp^{(i)}$ (typically ~50 iterations until convergence of top authorities)

PageRank: Foundations

Random walk can be cast into ergodic Markov chain:

- → hyperlinks
 - additional edges to model random jumps between unconnected urls

Transition probability (from state i to state j):

$$p_{i,j} = \frac{\varepsilon}{n^2} + (1 - \varepsilon) \frac{E_{i,j}}{outdeg(i)}$$

random jump $i \rightarrow j$ move along link **Probability** $\pi_i^{(t+1)}$ for being in state i in step t+1:

$$\pi_i^{(t+1)} = \sum_n p_{ji} \cdot \pi_j^{(t)} \implies \text{Fixpoint equation: } \pi = P\pi \left(\sum \pi_i = 1 \right)$$

Summer Term 2010

Web Dynamics

PageRank: Extensions

Principle: Adapt random jump probabilities

- **Personal PageRank**: Favour pages with "good" content (personal bookmarks, visited pages)
- Topic-specific PageRank:
 - Fix set of topics
 - For each topic, fix (small) set of authoritative pages
 - For each topic, compute PR_t with random jumps only to authoritative pages of that topic
 - Compute query-specific topic probability P[t|q] and query-specific pagerank $PR(d,q)=\sum P[t|q]\cdot PR_t(d)$

HITS (Hyperlink Induced Topic Search)

Idea: determine

- Pages with good content (*authorities*): many inlinks
- Pages with good links (*hubs*): many outlinks

Mutual reinforcement:

- good authorities have good hubs as predecessors
- good hubs have good authorities as successors

Define for nodes x, $y \in V$ in Web graph W = (V, E)

h_x

authority score ay

$$\sim \sum_{(x,y)\in E} h_x$$

hub score

$$\sim \sum_{(x,y)\in E} a_y$$

Web Dynamics

Summer Term 2010

HITS as Eigenvector Computation

Authority and hub scores in matrix notation:

$$\vec{a} = E^T \vec{h} \qquad \qquad \vec{h} = E \vec{a}$$

Iteration with adjacency matrix A:

$$\vec{a} = E^T \vec{h} = E^T E \vec{a}$$
 $\vec{h} = E \vec{a} = E E^T \vec{h}$

a and h are **Eigenvectors** of $E^T E$ and $E E^T$, respectively

Intuitive interpretation:

$$\begin{split} M^{(auth)} = E^{T}E & \text{is the cocitation matrix: } M^{(auth)}_{ij} \text{ is the} \\ \text{number of nodes that point to both i and j} \\ M^{(hub)} = EE^{T} & \text{is the bibliographic-coupling matrix: } M^{(hub)}_{ij} \\ \text{is the number of nodes to which both i and j point} \end{split}$$

HITS Algorithm

Compute fixpoint solution by **iteration with length normalization:**

initialization: $a^{(0)} = (1, 1, ..., 1)^T$, $h^{(0)} = (1, 1, ..., 1)^T$ repeat until sufficient convergence $h^{(i+1)} := E a^{(i)}$ $h^{(i+1)} := h^{(i+1)} / ||h^{(i+1)}||_1$ $a^{(i+1)} := E^T h^{(i)}$ $a^{(i+1)} := a^{(i+1)} / ||a^{(i+1)}||_1$

convergence guaranteed under fairly general conditions

HITS for Ranking Query Results

- Determine sufficient number (e.g. 50-200) of "root pages" via relevance ranking (using any content-based ranking scheme)
- 2) Add all successors of root pages
- 3) For each root page add up to *d* predecessors
- 4) Compute iteratively

 authority and hub scores of this "expansion set" (e.g. 1000-5000 pages)
 → converges to principal Eigenvector
- Return pages in descending order of authority scores (e.g. the 10 largest elements of vector a)

Potential problem of HITS algorithm: Relevance ranking within root set is not considered

Example: HITS Construction of Graph

Improved HITS Algorithm

Potential weakness of the HITS algorithm:

- irritating links (automatically generated links, spam, etc.)
- topic drift (e.g. from "Jaguar car" to "car" in general)

Improvement:

• Introduce edge weights:

0 for links within the same host,

1/k with k links from k URLs of the same host to 1 URL (aweight)

1/m with m links from 1 URL to m URLs on the same host (hweight)

- Consider relevance weights w.r.t. query (score)
- \rightarrow Iterative computation of

authority score
$$a_q \coloneqq \sum_{(p,q) \in E} h_p \cdot score(p) \cdot aweight(p,q)$$

hub score

$$h_p \coloneqq \sum_{(p,q) \in E} a_q \cdot score(q) \cdot hweight(p,q)$$

Summer Term 2010

Web Dynamics

Efficiently Computing PageRank

(Selected) Solutions:

- Compute Page-Rank-style authority measure online without storing the complete link graph
- Exploit block structure of the Web
- Decentralized, synchronous algorithm
- Decentralized, asynchronous algorithm

Online Link Analysis

Key ideas:

- Compute small fraction of authority as crawler proceeds without storing the Web graph
- Each page holds some "cash" that reflects its importance
- When a page is visited, it distributes its cash among its successors
- When a page is not visited, it can still accumulate cash
- This random process has a stationary limit that captures importance of pages

OPIC (Online Page Importance Computation)

Maintain for each page i (out of n pages):

- C[i] cash that page i currently has and distributes
- **H[i]** history of how much cash page has ever had in total plus global counter
 - **G** total amount of cash that has ever been distributed

```
for each i do { C[i] := 1/n; H[i] := 0 }; G := 0;
do forever {
    choose page i (e.g., randomly);
    H[i] := H[i] + C[i];
    for each successor j of i do C[j] := C[j] + C[i] / outdegree(i);
    G := G + C[i];
    C[i] := 0; };
```

Note: 1) every page needs to be visited infinitely often (fairness) 2) the link graph is assumed to be strongly connected Web Dynamics

OPIC Importance Measure

At each step t an estimate of the importance of page i is: $(H_t[i] + C_t[i]) / (G_t + 1)$ (or alternatively: $H_t[i] / G_t$)

<u>Theorem:</u> Let $X_t = H_t / G_t$ denote the vector of cash fractions accumulated by pages until step t. The limit $X = \lim_{t \to \infty} X_t$ exists with $||X||_1 = \sum_i X[i] = 1$.

with crawl strategies such as:

- random
- greedy: read page *i* with highest cash *C*[*i*] (fair because non-visited pages accumulate cash until eventually read)
- cyclic (round-robin)

Exploiting Web structure

Exploit locality in Web link graph: construct block structure (disjoint graph partitioning) based on sites or domains

- 1) Compute local per-block pageranks
- 2) Construct block graph B with aggregated link weights proportional to sum of local pageranks of source nodes
- 3) Compute pagerank of B
- 4) Rescale local pageranks of pages by global pagerank of their block
- 5) Use these values as seeds for global pagerank computation

Summer Term 2010

Decentralized synchronous computation

PageRank computation highly local: needs only previous ranks of adjacent nodes

⇒ Apply distributed computing framework like MapReduce

References

Main references:

- A. Z. Broder et al.: Graph structure in the Web, Computer Networks 33, 309—320, 2000
- A. Bonato: A survey of models of the Web graph, Combinatorial and Algorithmic Aspects of Networking, 2005
- P. Baldi, P. Frasconi, P. Smyth: Modeling the Internet and the Web, chapters 1.7, 3, A

Additional references:

- A.-L. Barabasi, R. Albert: Emergence of scaling in random networks, Science 286, 509-512, 1999
- W. Aiello et al.: A random graph model for massive graphs, ACM STC, 2000
- W. Aiello et al.: A random graph model for power-law graphs, Experimental Math 10, 53–66, 2001
- R. Albert et al.: Diameter of the World Wide Web, Nature 401, 130–131, 1999
- M. Mitzenbacher: A brief history of generative models for power law and lognormal distributions, Internet Mathematics 1(2), 226–251, 2004
- R. Kumar et al.: Stochastic model for the Web graph, FOCS, 2000
- R. Cohen, S. Havlin: Scale-free networks are ultrasmall, Phys. Rev. Lett. 90, 058701, 2003
- A. Bonato, J. Janssen: Limits and power laws of models for the Web graph and other networked information spaces. Combinatorial and Algorithmic Aspects of Networking, 2005
- S.D. Kamvar et al.: Exploiting the block structure of the Web for computing Pagerank, WWW conference, 2003
- M. Faloutsos et al.: On Power-Law relationships of the Internet topology, SIGCOMM conference, 1999
- J. Kleinberg et al.: The Web as a graph: Measurements, models, and methods. Conference on Combinatorics and Computing, 1999
- D.J. Watts, S.H. Strogatz: Collective dynamics of small-world networks, Nature 393(6684), 409–410, 1998
- U. Brandes: A Faster Algorithm for Betweenness Centrality, Journal of Mathematical Sociology 25, 163–177, 2001
- S Brin, L. Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine, WWW 1998
- T.H. Haveliwala: **Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search,** IEEE Trans. Knowl. Data Eng. 15(4), 784–796, 2003
- G. Jeh, J. Widom: Scaling personalized web search. WWW Conference, 2003
- J. Kleinberg: Authoritative sources in a hyperlinked environment, Journal of the ACM 36(5), 604–632, 1999
- S. Abiteboul, M. Preda, G. Cobena: Adaptive on-line page importance computation, WWW Conference 2003

Summer Term 2010