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Web Dynamics

Part 2 – Modeling static and evolving graphs

2.1 The Web graph and its static properties

2.2 Generative models for random graphs

2.3 Measures of node importance
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Notation: Graphs

• G=(V(G),E(G))

– directed graph: E(G)⊆V(G)xV(G)

– undirected graph: E(G) ⊆{{v,w} ⊆V(G)}

• Degrees of nodes in directed graphs:

– indegree of node n: indeg(n)=|{(v,w)∈E(G):w=n}|

– outdegree of node n: outdeg(n)=|{(v,w)∈E(G):v=n}|

• Degree of node n in undirected graph:

– deg(n)=|{ e∈E(G):n∈e}|

• Distributions of degree, indegree, outdegree
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We will drop G when the graph is clear from the context.
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Web Graph W

• Nodes are URLs on the Web

– No dynamic pages, often only HTML-like pages

• Edges correspond to links

– directed edges, sparse

• Highly dynamic, impossible to grab snapshot at 

any fixed time

⇒ large-scale crawls as approximation/samples
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Degree distributions

• Assume the average indegree is 3, what would

be the shape of Pin,W?
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Degree distributions
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Power Law Distributions

Distribution P(k) follows power law if

for real constant C>0 and real coefficient β>0

(needs normalization to become probability distribution)

Moments of order m are finite iff β>m+1:

Heavy-tailed distribution: P(k) decays polynomially to 0
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Power-Law-Distributions in log-log-scale

Parameter fitting in loglog-scale (fit linear function) 
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Degree distributions of the Web
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Based on an Altavista crawl in May 1999

(203 million urls, 1466 million links)

β = 2.1                                       β = 2.72
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Examples for Power Laws in the Web

• Web page sizes

• Web page access statistics

• Web browsing behavior

• Web page connectivity

• Web connected components size
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More graphs with Power-Law degrees

• Connectivity of Internet routers and hosts

• Call graphs in telephone networks

• Power grid of western United States

• Citation networks

• Collaborators of Paul Erdös

• Collaboration graph of actors (IMDB)
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Scale-Freeness

Scaling k by a constant factor yields a proportional 

change in P(k), independent of the absolute value

of k:

(similar to 80/20 or 90/10 rules)

Additionally: results often independent of graph

size (Web or single domain)
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Zipfian vs. Power-Law
Zipfian distribution:

Power-law distribution of ranks, not numbers

• Input: map item→value (e.g., terms and their count)

• Sort items by descending value (any tie breaking)

• Plot (k, value of item at position k) pairs and consider
their distribution

Important example: Frequency of words in large texts
(but: also occurs in completely random texts)

Other related Law:

• Benford‘s Law: distribution of first digits in numbers

• Heaps‘ Law: number of distinct words in a text
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Example: Term distribution in Wikipedia
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Most popular words are “the”, “of” and “and” (so-called “stopwords”) 
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Heaps‘ Law

Estimates number of distinct terms in text of size n

In English texts: 10 ≤ K ≤ 100, 0.4 ≤ β ≤ 0.6

β
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(from http://planetmath.org/encyclopedia/HeapsLaw.html)
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Harold Stanley Heaps. Information Retrieval: Computational and Theoretical Aspects. Academic Press, 1978 
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Diameters

How many clicks away are two pages?

For two nodes u,v∈V:

d(u,v) minimal length of a path from u to v

Scale-free graphs: d has Normal distribution (Albert, 1999)

• Average path length

– E[d]=O(log n), n number of nodes (small world graph)

– For the Web: E[d] ~ 0.35 + 2.06*log10n (avg 21 hops distance)

– Undirected: O(ln ln n) (Cohen&Havlin, 2003)

• Maximal path length („diameter“)
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Diameters

From Broder et al, 2000:

• only 24% of nodes are connected through

directed path

• average connected directed distance: 16

• average connected undirected distance: 7

⇒ small world only for connected nodes!
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Connected components
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(Their sample of the) Web graph contains

• one giant weakly connected component with 91% of nodes

• one giant strongly connected component with 28% of nodes

(even after removing well-connected nodes)
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Bow-Tie Structure of the Web
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Connectivity of Power-Law Graphs

(Undirected) connectivity depends on β:

• β<1: connected with high probability

• 1<β<2: one giant component of size O(n),

all others size O(1)

• 2<β<β0=3.4785: one giant component of size O(n),

all others size O(log n)

• β>β0: no giant component with high probability

(Aiello et al, 2001)
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Block structure of Web links
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Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can

be expected at distance 1,2,3,…?

1 hop: 3 neighbors

2 hops: 3*3=9 neighbors

h hops: 3h neighbors
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Neighborhood sizes

N(h): number of pairs of nodes at distance <=h

When average degree=3, how many neighbors can
be expected at/up to distance 1,2,3,…?

1 hop: 3 neighbors

2 hops: 3*3=9 neighbors

h hops: 3h neighbors

Not true in general! (duplicates ⇒ over-estimation)

N(h) ∝ hH (hop exponent) [Faloutsos et al, 1999]
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Neighborhood sizes

Intuition: H ~ „fractal dimensionality“ of graph

…

N(h) ∝ h1 N(h) ∝ h2
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Web Dynamics

Part 2 – Modeling static and evolving graphs

2.1 The Web graph and its static properties

2.2 Generative models for random graphs

2.3 Measures of node importance
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Requirements for a Web graph model

• Online: number of nodes and edges changes

with time

• Power-Law: degree distribution follows power-

law, with exponent β>2

• Small-world: average distance much smaller

than O(n)

• Possibly more features of the Web graph…
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Random Graphs: Erdös-Rénji
G(n,p) for undirected random graphs:

• Fix n (number of nodes)

• For each pair of nodes, independently add edge with uniform 
probability p

Degree distribution: binomial

threshold for the connectivity of G(n,p)

⇒ cannot be used to model the Web graph

n

nln

Pick k out of

n-1 targets

Probability to have

exactly k edges

knk
pp

k

n
kP

−−−






 −
= 1

deg )1(
1

)(



Summer Term 2010 Web Dynamics 2-27

Example: p=0.01

http://upload.wikimedia.org/wikipedia/commons/1/13/Erdos_generated_network-p0.01.jpg
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Preferential attachment

Idea:

• mimic creation of links on the Web

• Links to „important“ pages are more likely than links to random

pages

Generation algorithm:

• Start with set of M0 nodes

• When new node is added, add m≤M0 random edges

probability of adding edge to node v: 

Result: Power-law degree distribution with β=2.9 for M0=m=5 

(from simulation)
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Barabasi&Albert, 1999
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Analysis of Preferential Attachment

(Using „mean field“ analysis and assuming continuous time, see Baldi et al.)

After t steps: M0+t nodes, tm edges

Consider node v with kv(t) edges after step t
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(assuming continous time, considering differential equation)

with initial condition                     (tv: time when v was added)

This can be solved as

(older nodes grow faster than younger ones)

Further analysis shows that
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Properties and extensions

• Diameter of generated graphs:

– O(log n) for m=1

– O(log n/log logn) for m≥2

• Extension to directed edges:

– randomly choose direction of each added edge

– consider indegree and outdegree for edge choice

• Extensions to generate different distributions (where
β≠3): mixtures of operations

– Allow addition of edges between existing nodes

– Allow rewiring of edges

• Extensions for node and edge deletion required
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Copying

Idea:

• mimic creation of pages on the Web

• links are partially copied from existing pages

Generation algorithm:

• When new node is added, pick random (uniform) existing node u
and add d edges as follows

– Add edge to random (uniform) node with probability p

– Copy random (uniform) existing edge from u with probability 1-p

Prefers nodes with high indegree (similar to preferential attachment)

Generates Power-law degree distribution with

Kleinberg et al., 1999
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Other Generative Models

• Watts and Strogatz model:

– Fix number of nodes n and degree k

– Start with a regular ring lattice with degree k

– Iterate over nodes, rewire edge with probability p

⇒Degree distribution similar to random graph (for p>0), infeasible to model

the Web graph

• Growth-Deletion Models:

– Generative model (like PA or Copying)

– Generate new node + m PA-style edges with probability p1

– Generate m PA-style edges with probability p2

– Delete existing node (uniform, random) with probability p3

– Delete m edges (uniform, random) with probability 1-p1-p2-p3

Generates power-law degree distribution with
4321
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Web Dynamics

Part 2 – Modeling static and evolving graphs

2.1 The Web graph and its static properties

2.2 Generative models for random graphs

2.3 Measures of node importance
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More networks than just the Web

• Citation networks (authors, co-authorship)

• Social networks (people, friendship)

• Actor networks (actors, co-starring)

• Computer networks (computers, network links)

• Road networks (junctions, roads)

Characteristics are similar to the Web:

• Degree distribution

• (strongly, weakly) connected components

• Diameters

• Centrality of nodes: how important is a node

Assume undirected graphs for the moment



Summer Term 2010 Web Dynamics 2-35

Clustering: Edge density in neighborhood

For each node v having at least two neighbors:

For each node v having less than two neighbors: 

Clustering index of the network:
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Degree centrality

General principle:

Nodes with many connections are important.

But: too simple in practice, link targets/sources matter!
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Closeness centrality

Total distance for a node v:

Closeness is defined as:

Helps to find central nodes w.r.t. distance

(e.g., useful to find good location for service stations)

But: what happens with nodes that are (almost) isolated?
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Betweenness centrality

Centrality of a node v:

– which fraction of shortest paths through v

– Probability that an arbitrary shortest path passes through v

Number of shortest paths between s and t: 

Number of shortest paths between s and t through v:

Betweenness of node v: 

Can be computed in O(|V|·|E|) using per-node BFS plus

clever tricks (to account for overlapping paths) [Brandes,2001]
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Example: Betweenness
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Betweenness: Properties & Extensions

• Node with high betweenness may be crucial in 

communication networks:

– May intercept and/or modify many messages

– Danger of congestion

– Danger of breaking connectivity if it fails

• But: No information how messages really flow!

• Extension: take network flow

into account („flow betweenness“)

Node

set 2

Node

set 1
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Authority Measures for the Web

Goal: 

Determine authority (prestige, importance) of a page

with respect to 

– volume

– significance

– freshness

– authenticity

of its information content

Approximate authority by (modified) centrality measures

in the (directed) Web graph
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Idea: incoming links are endorsements & increase page authority,

authority is higher if links come from high-authority pages

Random walk: uniformly random choice of links + random jumps

Authority (page q) = 
stationary prob. of visiting q

PageRank
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Input: directed Web graph G=(V,E) with |V|=n and

adjacency matrix E: Eij = 1 if (i,j)∈E, 0 otherwise

Random surfer page-visiting probability after i +1 steps:
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+ += with conductance matrix C:

Cyx = (1-ε)Exy / outdeg(x)

and random jump vector r:

ry = ε/n
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Finding solution of fixpoint equation suggests power iteration:

initialization: p(0) (y) =1/n for all y

repeat until convergence (L1 or L∞ of diff of p(i) and p(i+1) < threshold)

p(i+1) := r + Cp(i)

(typically ~50 iterations until convergence of top authorities)

PageRank
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PageRank: Foundations

Random walk can be cast into ergodic Markov chain:

Transition probability (from state i to state j):

Probability πi
(t+1) for being in state i in step t+1:
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⇒ Fixpoint equation: π=Pπ (∑πi=1)
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PageRank: Extensions

Principle: Adapt random jump probabilities

• Personal PageRank: Favour pages with „good“

content (personal bookmarks, visited pages)

• Topic-specific PageRank:

– Fix set of topics

– For each topic, fix (small) set of authoritative pages

– For each topic, compute PRt with random jumps only

to authoritative pages of that topic

– Compute query-specific topic probability P[t|q] and 

query-specific pagerank PR(d,q)=∑P[t|q]·PRt(d)



Summer Term 2010 Web Dynamics 2-46

HITS (Hyperlink Induced Topic Search)

Idea: determine

– Pages with good content (authorities): many inlinks

– Pages with good links (hubs): many outlinks

Mutual reinforcement:

– good authorities have good hubs as predecessors

– good hubs have good authorities as successors

Define for nodes x, y ∈V in Web graph W = (V, E) 

authority score

hub score
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Iteration with adjacency matrix A:

aEEhEa
TT rrr

== hEEaEh
T
rrr

==

a and h are Eigenvectors of ET E and E ET, respectively

Authority and hub scores in matrix notation:

hEa
T
rr

= aEh
rr

=

Intuitive interpretation:

EEM T)auth( = is the cocitation matrix: M(auth)
ij is the

number of nodes that point to both i and j 

T)hub(
EEM = is the bibliographic-coupling matrix: M(hub)

ij

is the number of nodes to which both i and j point

HITS as Eigenvector Computation
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Compute fixpoint solution by iteration with length

normalization:

initialization: a(0) = (1, 1, ..., 1)T, h(0) = (1, 1, ..., 1)T

repeat until sufficient convergence

h(i+1) := E a(i)

h(i+1) := h(i+1) / ||h(i+1)||1

a(i+1) := ET h(i)

a(i+1) := a(i+1) / ||a(i+1) ||1

convergence guaranteed under fairly general conditions

HITS Algorithm



Summer Term 2010 Web Dynamics 2-49

1) Determine sufficient number (e.g. 50-200) of „root pages“

via relevance ranking (using any content-based ranking scheme)

2) Add all successors of root pages

3) For each root page add up to d predecessors

4) Compute iteratively

authority and hub scores of this „expansion set“ (e.g. 1000-5000 pages)

→ converges to principal Eigenvector

5) Return pages in descending order of authority scores

(e.g. the 10 largest elements of vector a)

Potential problem of HITS algorithm:
Relevance ranking within root set is not considered

HITS for Ranking Query Results



Summer Term 2010 Web Dynamics 2-50

expansion set

1

2

3
root set

4

5

6

7

8

query result

Example: HITS Construction of Graph
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Potential weakness of the HITS algorithm:
• irritating links (automatically generated links, spam, etc.)
• topic drift (e.g. from „Jaguar car“ to „car“ in general)

Improvement:

• Introduce edge weights:

0 for links within the same host,

1/k with k links from k URLs of the same host to 1 URL (aweight)

1/m with m links from 1 URL to m URLs on the same host (hweight)

• Consider relevance weights w.r.t. query (score)

→ Iterative computation of

authority score

hub score

),()(:
),(

qpaweightpscoreha
Eqp

pq ⋅⋅= ∑
∈

),()(:
),(

qphweightqscoreah
Eqp

qp ⋅⋅= ∑
∈

Improved HITS Algorithm
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Efficiently Computing PageRank

(Selected) Solutions:

• Compute Page-Rank-style authority measure

online without storing the complete link graph

• Exploit block structure of the Web

• Decentralized, synchronous algorithm

• Decentralized, asynchronous algorithm
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Online Link Analysis

Key ideas: 

• Compute small fraction of authority as crawler
proceeds without storing the Web graph

• Each page holds some „cash“ that reflects its
importance

• When a page is visited, it distributes its cash 
among its successors

• When a page is not visited, it can still 
accumulate cash

• This random process has a stationary limit that
captures importance of pages
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Maintain for each page i (out of n pages):
• C[i] – cash that page i currently has and distributes
• H[i] – history of how much cash page has ever had in total

plus global counter
• G – total amount of cash that has ever been distributed

for each i do { C[i] := 1/n; H[i] := 0 }; G := 0;

do forever {

choose page i (e.g., randomly);

H[i] := H[i] + C[i];

for each successor j of i do C[j] := C[j] + C[i] / outdegree(i);

G := G + C[i]; 

C[i] := 0; }; 

Note: 1) every page needs to be visited infinitely often (fairness)

2) the link graph is assumed to be strongly connected

OPIC (Online Page Importance Computation)
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At each step t an estimate of the importance of page i is:

(Ht[i] + Ct[i]) / (Gt + 1) (or alternatively:  Ht[i] / Gt )

Theorem:

Let Xt = Ht / Gt denote the vector of cash fractions

accumulated by pages until step t.

The limit X = lim t→∞ Xt exists with ||X||1 = Σi X[i] = 1.

with crawl strategies such as:

• random

• greedy: read page i with highest cash C[i]

(fair because non-visited pages accumulate cash until eventually read)

• cyclic (round-robin)

OPIC Importance Measure
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Exploit locality in Web link graph: construct block structure
(disjoint graph partitioning) based on sites or domains

1) Compute local per-block pageranks

2) Construct block graph B with aggregated link weights proportional 

to sum of local pageranks of source nodes

3) Compute pagerank of B

4) Rescale local pageranks of pages by global pagerank of their block

5) Use these values as seeds for global pagerank computation

Exploiting Web structure
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Decentralized synchronous computation

PageRank computation highly local:

needs only previous ranks of adjacent nodes

⇒ Apply distributed computing framework like

MapReduce
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