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What is data mining?

“Data mining is the process of discovering knowledge or patterns from
massive amounts of data.” (Encyclopedia of Database Systems)

Rock Gold Tools Miners

Data Knowledge Software Analysts

Estimated $100 billion industry around managing and analyzing data.

3 / 27Data, Data everywhere. The Economist, 2010.

http://www.economist.com/node/15557443


What is data mining?

“Data mining is the process of discovering knowledge or patterns from
massive amounts of data.” (Encyclopedia of Database Systems)

Science
I The Sloan Digital Sky Survey gathered 140TB of information
I NASA Center for Climate Simulation stores 32PB of data
I 3B base pairs exist in the human genome
I LHC registers 600M particle collisions per second, 25PB/year

Social data
I 1M customer transactions are performed at Walmart per hour
I 25M Netflix customers view and rate hundreds of thousands of movies
I 40B photos have been uploaded to Facebook
I 200M active Twitter users write 400M tweets per day
I 4.6B mobile-phone subscriptions worldwide

Government, health care, news, stocks, books, web search, ...

4 / 27Data, Data everywhere. The Economist, 2010.

http://www.economist.com/node/15557443


What is data mining?

“Data mining is the process of discovering knowledge or patterns from
massive amounts of data.” (Encyclopedia of Database Systems)
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Prediction

Clustering

Outlier detection

“Regnet es am Siebenschläfertag, der
Regen sieben Wochen nicht weichen mag.”
(German folklore)

Pattern mining



What is data mining?

“Data mining is the process of discovering knowledge or patterns from
massive amounts of data.” (Encyclopedia of Database Systems)

Knowledge discovery pipeline
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Focus of this lecture





Womb
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mater (Latin) = mother

matrix (Latin) = pregnant animal

matrix (Late Latin) = womb
also source, origin

Since 1550s: place or medium where
something is developed

Since 1640s: embedding or enclosing
mass

Online Etymology Dictionary

http://www.etymonline.com/index.php?term=matrix


Rectangular arrays of numbers

“Rectangular arrays” known in ancient China (rod calculus, estimated
as early as 300BC)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Term “matrix” coined by J.J. Sylvester
in 1850
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System of linear equations

Systems of linear equations can be written as matrices

3x + 2y + z = 39

2x + 3y + z = 34

x + 2y + 3z = 26

→

3 2 1 39
2 3 1 34
1 2 3 26


and then be solved using linear algebra methods3 2 1 39

5 1 24
12 33

 =⇒

x
y
z

 =

9.25
4.25
2.75


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Set of data points
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

x y

−3.84 −2.21
−3.33 −2.19
−2.55 −1.47
−2.46 −1.25
−1.49 −0.76
−1.67 −0.39
−1.3 −0.59

...
...

1.59 0.78
1.53 1.02
1.45 1.26
1.86 1.18
2.04 0.96
2.42 1.24
2.32 2.03
2.9 1.35





Linear maps

Linear maps from R3 to R
f1(x , y , z) = 3x + 2y + z

f2(x , y , z) = 2x + 3y + z

f3(x , y , z) = x + 2y + 3z

f4(x , y , z) = x

Linear map f1 written as a matrix

(
3 2 1

) x
y
z

 = f1(x , y , z)

Linear map from R3 to R4
3 2 1
2 3 1
1 2 3
1 0 0


x
y
z

 =


f1(x , y , z)
f2(x , y , z)
f3(x , y , z)
f4(x , y , z)


12 / 27

Original data
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Rotated and stretched
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Graphs
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Adjacency matrix



Objects and attributes

Anna, Bob, and Charlie went shopping

Anna bought butter and bread

Bob bought butter, bread, and beer

Charlie bought bread and beer


Bread Butter Beer

Anna 1 1 0
Bob 1 1 1
Charlie 0 1 1


Customer transactions


Data Matrix Mining

Book 1 5 0 3
Book 2 0 0 7
Book 3 4 6 5


Document-term matrix


Avatar The Matrix Up

Alice 4 2
Bob 3 2
Charlie 5 3


Incomplete rating matrix


Jan Jun Sep

Saarbrücken 1 11 10
Helsinki 6.5 10.9 8.7
Cape Town 15.7 7.8 8.7


Cities and monthly temperatures

Many different kinds of data fit this object-attribute viewpoint.
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What is a matrix?

A means to describe computation
I Rotation
I Rescaling
I Permutation
I Projection
I · · ·

 Linear operators

A means to describe data

15 / 27

Rows Columns Entries

Objects Attributes Values
Equations Variables Coefficients

Data points Axes Coordinates
Vertices Vertices Edges

...
...

...

A
tt

ri
b

u
te

j

A11 A12 · · · A1j · · ·
A21 A22 · · · A2j · · ·

...
...

. . .
...

. . .

Object i Ai1 Ai2 · · · Aij · · ·


...

...
. . .

...
. . .



In data mining, we make use of both viewpoints simultaneously.
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Key tool: Matrix decompositions

A matrix decomposition of a data matrix D is given by three matrices L,
M, R such that

D = LMR,

where

D is an m × n data matrix,

L is an m × r matrix,

M is an r × r matrix,

R is an r × n matrix, and

r is an integer ≥ 1.
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Dij =
∑

k,k ′ LikMkk ′Rk ′j

DL

RM

Li∗

R∗j

Dij
k

k

k′
k′

There are many different kinds of matrix
decompositions, each putting certain con-
straints on matrices L, M, R (which may
not be easy to find).



Example: Singular value decomposition

D50×2
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Example: Non-negative matrix factorization
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L R∗j

D∗j

LR∗j

Lee and Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 1999.

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html


Example: Latent Dirichlet allocation
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R

(L)

Blei et al. Latent dirichlet allocation. JMLR, 2003.

http://dl.acm.org/citation.cfm?id=944937


Other matrix decompositions

Singular value decomposition (SVD)

k-means

Non-negative matrix factorization (NMF)

Semi-discrete decomposition (SDD)

Boolean matrix decomposition (BMF)

Independent component analysis (ICA)

Matrix completion

Probabilistic matrix factorization

. . .
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What can we do with matrix decompositions?

Separate data from multiple processes

Remove noise from the data

Remove redundancy from the data

Reveal latent structure and similarities in the data

Fill in missing entries

Find local patterns

Reduce space consumption

Reduce computational cost

Aid visualization

Matrix decompositions can make data mining algorithms
more effective. They may also provide insight into the
data by themselves.
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Factor interpretion of matrix decompositions

Assume that M is diagonal. Consider object i .

Row of R = part (or piece), called latent factor (“latent object”)

Entry of M = weight of corresponding part

Row of MR = weighted part

Row of L = “view” of corresponding row of D
in terms of the weighted parts
(r pieces of information)

r forces “compactness” (often r < n)
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Each object can be viewed as a combina-
tion of r (weighted) “latent objects” (or
“prototypical objects”). Similarly, each at-
tribute can be viewed as a combination of r
(weighted) “latent attributes.”

(e.g., latent attribute = “body size”; latent ob-
ject relates body size to real attributes such as
“height”, “weight”, “shoe size”)

Di∗ =
∑

k LikMkkRk∗

DL

RM

Li∗
Di∗



Other interpretions

Geometric interpretation
I Transformation of n-dimensional space in r -dimensional space
I Row of R = axis
I Row of C = coordinates

Component interpretation
I D is viewed as consisting of r layers (of same shape as D)
I k-th layer described by L∗kMkkRk∗
I D =

∑
k L∗kMkkRk∗

Graph interpretation
I D is thought of as a bipartite graph with object and attribute vertexes
I Edge weights measure association b/w objects and attributes
I Decomposition thought of as a tripartite graph with row, waypoint,

and column vertexes

All interpretations are useful (more later).
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Lessons learned

Data mining = from data to knowledge
→ Prediction, clustering, outlier detection, local patterns

Many different data types can be represented with a matrix
→ Linear equations, data points, maps, graphs, relational data, . . .

Common interpretation: rows = objects, columns = attributes

Matrix decompositions reveal structure in the data
→ D = LMR

Many different decompositions with different applications exist
→ SVD, k-means, NMF, SDD, BMF, ICA, completion, ...

Factor interpretation: objects described by “latent attributes”
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Suggested reading

David Skillicorn
Understanding Complex Datasets: Data Mining with Matrix
Decompositions (Chapters 1–2)
Chapman and Hall, 2007
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