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Recommender systems

Problem
I Set of users
I Set of items (movies, books, jokes, products, stories, ...)
I Feedback (ratings, purchase, click-through, tags, ...)
I Sometimes: metadata (user profiles, item properties, ...)

Goal: Predict preferences of users for items

Ultimate goal: Create item recommendations for each user

Example


Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3
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Collaborative filtering

Key idea: Make use of past user behavior

No domain knowledge required

No expensive data collection needed

Allows discovery of complex and unexpected patterns

Widely adopted: Amazon, TiVo, Netflix, Microsoft

Key techniques: neighborhood models, latent factor models


Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3



Leverage past behavior of other users and/or on other items.
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A simple baseline

m users, n items, m × n rating matrix D

Revealed entries Ω = { (i , j) | rating Dij is revealed }, N = |Ω|
Baseline predictor: bui = µ+ bi + bj

I µ = 1
N

∑
(i,j)∈Ω Dij is the overall average rating

I bi is a user bias (user’s tendency to rate low/high)
I bj is an item bias (item’s tendency to be rated low/high)

Least squares estimates: argminb∗

∑
(i ,j)∈Ω(Dij − µ− bi − bj)

2

D Avatar Matrix Up
(1.01) (0.34) (−1.32)

Alice ? 4 2
(0.32) (4.5) (3.8) (2.1)

Bob 3 2 ?
(−1.34) (2.8) (2.2) (0.5)

Charlie 5 ? 3
(0.99) (5.2) (4.5) (2.8)

m = 3
n = 3
Ω = { (1, 2), (1, 3), (2, 1), . . . }
N = 6
µ = 3.17

b32 = 3.17 + 0.99 + 0.34 = 4.5

Baseline does not account for
personal tastes.
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When does a user like an item?

Neighborhood models (kNN): When he likes similar items
I Find the top-k most similar items the user has rated
I Combine the ratings of these items (e.g., average)
I Requires a similarity measure (e.g., Pearson correlation coefficient)

is similar to

Unrated by Bob Bob rated 4
→ predict 4

Latent factor models (LFM): When similar users like similar items
I More holistic approach
I Users and items are placed in the

same “latent factor space”
I Position of a user and an item

related to preference (via dot products)
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vector q
i
 ∈  f, and each user u is associ-

ated with a vector p
u
 ∈  f. For a given item 

i, the elements of q
i
 measure the extent to 

which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of p

u
 measure the extent of 

interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
q

i
T p

u
, captures the interaction between user 

u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
r

ui
, leading to the estimate 
 
r̂ui  

= q
i
T p

u
. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
q

i
, p

u
 ∈  f. After the recommender system 

completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (p

u
 and q

i
), the system 

minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i ∈

∑
κ

(r
ui
 - q

i
Tp

u
)2 + λ(|| q

i
 ||2 + || p

u
 ||2)  (2) 

Here, κ is the set of the (u,i) pairs for which r
ui
 is known 

(the training set). 
The system learns the model by fitting the previously 

observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

a Basic matRix factoRization modeL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 
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observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
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Intuition behind latent factor models (2)

Does user u like item v?
Quality: measured via direction from origin (cos∠(u, v))

I Same direction → attraction: cos∠(u, v) ≈ 1
I Opposite direction → repulsion: cos∠(u, v) ≈ −1
I Orthogonal direction → oblivious: cos∠(u, v) ≈ 0

Strength: measured via distance from origin (‖u‖‖v‖)
I Far from origin → strong relationship: ‖u‖‖v‖ large
I Close to origin → weak relationship: ‖u‖‖v‖ small

Overall preference: measured via dot product (u · v)

u · v = ‖u‖‖v‖ u · v
‖u‖‖v‖

= ‖u‖‖v‖ cos∠(u, v)

I Same direction, far out → strong attraction: u · v large positive
I Opposite direction, far out → strong repulsion: u · v large negative
I Orthogonal direction, any distance → oblivious: : u · v ≈ 0

But how to select dimensions and where to place items and users?
Key idea: Pick dimensions that explain the known data well.
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SVD and missing values
Input data Rank-10 truncated SVD

10% of input data Rank-10 truncated SVD
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SVD treats missing entries as 0.



Latent factor models and missing values
Input data Rank-10 LFM

10% of input data Rank-10 LFM
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LFMs “ignore” missing entries.



Latent factor models (simple form)

Given rank r , find m × r matrix L and r × n matrix R such that

Dij ≈ [LR]ij for (i , j) ∈ Ω

Least squares formulation

min
L,R

∑
(i ,j)∈Ω

(Dij − [LR]ij)
2

Example (r = 1)
R

Avatar The Matrix Up
(2.24) (1.92) (1.18)

L

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)
Bob 3 2 ?

(1.21) (2.7) (2.3) (1.4)
Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)
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Example: Netflix prize data

(≈ 500k users, ≈ 17k movies, ≈ 100M ratings)

47AuGuSt 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing r

ui
 is denoted as 

c
ui
, then the model enhances the cost 

function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i ∈
∑

κ

c
ui
(r

ui
 - µ - b

u
 - b

i
 

- p
u

Tq
i
)2 + λ (|| p

u
 ||2 + || q

i
 ||2  

 + b
u

2 + b
i
2)  (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

netfLix PRize 
comPetition 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean -square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.
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figure 3. The first two vectors from a matrix decomposition of the Netflix Prize 
data. Selected movies are placed at the appropriate spot based on their factor 
vectors in two dimensions. The plot reveals distinct genres, including clusters of 
movies with strong female leads, fraternity humor, and quirky independent films. 
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Latent factor models (summation form)

Least squares formulation prone to overfitting

More general summation form:

L =
∑

(i ,j)∈Ω

lij(Li∗,R∗j) + R(L,R),

I L is global loss
I Li∗ and R∗j are user and item parameters, resp.
I lij is local loss, e.g., lij = (Dij − [LR]ij)

2

I R is regularization term, e.g., R = λ(‖L‖2
F + ‖R‖2

F )

Loss function can be more sophisticated
I Improved predictors (e.g., include user and item bias)
I Additional feedback data (e.g., time, implicit feedback)
I Regularization terms (e.g., weighted depending on amount of feedback)
I Available metadata (e.g., demographics, genre of a movie)
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Example: Netflix prize data

Root mean square error of predictions

COVER FE ATURE

computer 48

M
atrix factoriza-
tion techniques 
have become a 
dominant meth-
odology within 

collaborative filtering recom-
menders. Experience with 
datasets such as the Netflix Prize 
data has shown that they deliver 
accuracy superior to classical 
nearest-neighbor techniques. At 
the same time, they offer a com-
pact memory-efficient model 
that systems can learn relatively 
easily. What makes these tech-
niques even more convenient is 
that models can integrate natu-
rally many crucial aspects of the 
data, such as multiple forms of 
feedback, temporal dynamics, 
and confidence levels. 
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the mainstream crowd-pleasers, is The Sound of Music. 
And smack in the middle, appealing to all types, is The 
Wizard of Oz. 

In this plot, some movies neighboring one another typi-
cally would not be put together. For example, Annie Hall 
and Citizen Kane are next to each other. Although they 
are stylistically very different, they have a lot in common 
as highly regarded classic movies by famous directors. 
Indeed, the third dimension in the factorization does end 
up separating these two. 

We tried many different implementations and pa-
rameterizations for factorization. Figure 4 shows how 
different models and numbers of parameters affect the 
RMSE as well as the performance of the factorization’s 
evolving implementations—plain factorization, adding 
biases, enhancing user profile with implicit feedback, and 
two variants adding temporal components. The accuracy 
of each of the factor models improves by increasing the 
number of involved parameters, which is equivalent to 
increasing the factor model’s dimensionality, denoted by 
numbers on the charts. 

The more complex factor models, whose descriptions 
involve more distinct sets of parameters, are more accu-
rate. In fact, the temporal components are particularly 
important to model as there are significant temporal ef-
fects in the data. 
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figure 4. Matrix factorization models’ accuracy. The plots show the root-mean-square 
error of each of four individual factor models (lower is better). Accuracy improves when 
the factor model’s dimensionality (denoted by numbers on the charts) increases. In 
addition, the more refined factor models, whose descriptions involve more distinct  
sets of parameters, are more accurate. For comparison, the Netflix system achieves 
RMSE = 0.9514 on the same dataset, while the grand prize’s required accuracy is  
RMSE = 0.8563.
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The matrix completion problem

Complete these matrices!
1 1 1 1 1
1 1 1 1 1
1 1 ? 1 1
1 1 1 1 1
1 1 1 1 1



1 1 1 1 1
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?


Matrix completion is impossible without additional assumptions!

Let’s assume that underlying full matrix is “simple” (here: rank 1).
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


When/how can we recover a low-rank matrix from a sample of its entries?
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Rank minimization

Definition (rank minimization problem)

Given an n × n data matrix D and an index set Ω of revealed entries. The
rank minimization problem is

minimize rank(X)
subject to Dij = Xij (i , j) ∈ Ω

X ∈ Rn×n.

Seeks for “simplest explanation” fitting the data

If unique and sufficient samples, recovers D (i.e., X = D)

NP-hard

Time complexity of existing rank minimization algorithms dou-
ble exponential in n (and also slow in practice).
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Nuclear norm minimization

Rank: rank(D) = |{σk(D) > 0 : 1 ≤ k ≤ n }| =
∑n

k=1 Iσk (D)>0

Nuclear norm: ‖D‖∗ =
∑n

k=1 σk(D)

Definition (nuclear norm minimization)

Given an n × n data matrix D and an index set Ω of revealed entries. The
nuclear minimization problem is

minimize ‖X‖∗
subject to Dij = Xij (i , j) ∈ Ω

X ∈ Rn×n.

A heuristic for rank minimization

Nuclear norm is convex function (thus local optimum is global opt.)

Can be optimized (more) efficiently via semidefinite programming.
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Why nuclear norm minimization?
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Whereas the rank function is equal to the number of non-
vanishing singular values, the nuclear norm equals their 
sum. The nuclear norm is to the rank functional what the 
convex 1 norm is to the 0 norm in the area of sparse signal 
recovery. The main point here is that the nuclear norm is a 
convex function and can be optimized efficiently via semi-
definite programming.14

There are many norms one could define for a given 
matrix. The operator norm is the largest singular value. 
The Frobenius norm is equal to the square root of the sum 
of the squares of the entries. This norm is akin to the stan-
dard Euclidean norm on a real vector space. Why should the 
nuclear norm provide lower rank solutions than either of 
these two more commonly studied norms?

One can gain further intuition by analyzing the geometric 
structure of the nuclear norm ball. The unit nuclear norm 
ball is precisely the convex hull of the rank 1 matrices of unit 
Frobenius norm. The nuclear norm minimization problem 
(2.3) can be interpreted as inflating the unit ball until it 
just touches the affine space Xij = Mij. Such an intersection 
will occur at an extreme point of the nuclear norm ball, and 
these extreme points are sparse convex combinations of 
rank 1 matrices. That is, the extreme points of the nuclear 
norm ball have low rank. This phenomenon is depicted 
graphically in Figure 1. There, we plot the unit ball of the 
nuclear norm for matrices parametrized as

The extreme points of this cylindrical object are the rank 1 
matrices with unit Frobenius norm. The red line in this figure 
is a “random,” one-dimensional, affine subspace which, as 
expected, intersects the nuclear norm ball at a rank 1 matrix.

As further motivation, an interesting connection exists 
between the nuclear norm and popular algorithms in 

data-mining and collaborative filtering. In these fields, 
researchers commonly aim to find an explicit factorization 
X = lrT that agrees with the measured entries. Here l and r 
are n × k matrices. Since there are many possible such factor-
izations that might agree with the observations, a common 
approach searches for matrices l and r that have Frobenius 
norm as small as possible, that is, the solution of the optimi-
zation problem

  (2.4)

where we are minimizing with respect to l ∈ Rn×k, r ∈ Rn×k, 
and X ∈ Rn×n, and ⋅F denotes the Frobenius norm. 
Surprisingly, the optimization problem (2.4) is equivalent 
to minimization of the nuclear norm subject to the same 
equality constraints provided k is chosen to be larger than 
the rank of the optimum of the nuclear norm problem (2.3).30

To get an intuition for this equivalence, take any matrix X 
of rank k. Suppose the SVD is X = USvT. If we set  and 

, we see that

because  for all j. Thus, the optimal solution 
of (2.3) is suboptimal for (2.4). The full equivalence can be 
seen via an appeal to semidefinite programming and can be 
found in Recht et al.30

The main advantage of this reformulation (2.4) is to sub-
stantially decrease the number of decision variables from n2 
to 2nr. For large problems, this leads to a significant reduc-
tion in computation time, such that very large instances can 
be solved on a desktop computer. On the other hand, the for-
mulation (2.4) is nonconvex and thus potentially has local 
minima that are not globally optimal. Nonetheless, this fac-
tored approximation (2.4) of the nuclear norm is one of the 
most successful stand-alone approaches to solving the Net-
flix Prize problem.16, 24 Indeed, it was one of the foundational 
components of the winning team’s prediction engine.

2.1. Main results
As seen in our first example (2.1), it is impossible to recover 
a matrix which is equal to 0 in nearly all of its entries unless 
we see all the entries of the matrix. This is particularly likely 
if the singular vectors of a matrix M have most of their mass 
concentrated in a few coordinates. For instance, consider 
the rank 2 symmetric matrix M given by

where the singular values are arbitrary. Then, this matrix 
vanishes everywhere except in the top-left 2 × 2 corner, and 
one would basically need to see all the entries of M to be 
able to recover this matrix exactly. There is an endless list 
of examples of this sort. Hence, we arrive at the notion that 
the singular vectors need to be sufficiently spread across 

figure 1. unit ball of the nuclear norm for symmetric 2 × 2 matrices. 
The red line depicts a random one-dimensional affine space. such a 
subspace will generically intersect a sufficiently large nuclear norm 
ball at a rank one matrix.
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Consider SVD of D = UΣVT

Unit nuclear norm ball =
convex combination (σk) of
rank-1 matrices of unit
Frobenius (U∗kV

T
∗k)

Extreme points have low rank
(in figure: rank-1 matrices of
unit Frobenius norm)

Nuclear norm minimization:
inflate unit ball as little as
possible to reach Dij = Xij

Solution lies at extreme point
of inflated ball → (hopefully)
low rank
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Relationship to LFMs

Recall regularized LFM (L is m × r , R is r × n):

min
L,R

∑
(i ,j)∈Ω

(Dij − [LR]ij)
2 + λ

(
‖L‖2

F + ‖R‖2
F

)
View as matrix completion problem by enforcing Dij = [LR]ij :

minimize 1
2

(
‖L‖2

F + ‖R‖2
F

)
subject to Dij = Xij (i , j) ∈ Ω

LR = X.

One can show: for r chosen larger than rank of nuclear norm
optimum, equivalent to nuclear norm minimization

For some intuition, suppose X = UΣVT at optimum L and R:
1
2

(
‖L‖2

F + ‖R‖2
F

)
≤ 1

2

(
‖UΣ1/2‖2

F + ‖Σ1/2VT‖2
F

)
= 1

2

∑n
i=1

∑r
k=1(U2

ikσk + V2
ikσk)

=
∑r

k=1 σk = ‖X‖∗
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When can we hope to recover D? (1)

Assume D is the 5× 5 all-ones matrix (rank 1).
1 1 1 1 1
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?
1 ? ? ? ?



1 ? ? 1 ?
? ? 1 ? ?
? 1 ? ? 1
1 ? 1 ? ?
? 1 1 ? ?


Ok Ok

1 1 1 1 ?
1 1 ? ? ?
1 ? ? ? ?
1 ? ? 1 ?
1 ? ? ? ?



1 ? ? ? ?
? 1 ? ? ?
? ? 1 ? ?
? ? ? 1 ?
? ? ? ? 1


Not unique Not unique

(column missed) (insufficient samples)

Sampling strategy and sample size matter.
21 / 35



When can we hope to recover D? (2)

Consider the following rank-1 matrices and assume few revealed entries.
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




20 20 22 20 20
20 20 22 20 20
22 22 24 22 22
20 20 22 20 20
20 20 22 20 20


Ok (“incoherent”) Ok (“incoherent”)

1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Bad (“coherent”) Bad (“coherent”)
→ first row required → (1, 1)-entry required

Properties of D matter.
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When can we hope to recover D? (3)

Exact conditions under which matrix completion “works” is active research
area:

Which sampling schemes? (e.g., random, WR/WOR, active)

Which sample size?

Which matrices? (e.g., “incoherent” matrices)

Noise (e.g., independent, normally distributed noise)

Theorem (Candès and Recht, 2009)

Let D = UΣVT . If D is incoherent in that

max
ij

U2
ij ≤

µB
n

and max
ij

V2
ij ≤

µB
n

for some µB = O(1), and if rank(D) ≤ µ−1
B n1/5, then O(n6/5r log n)

random samples without replacement suffice to recover D exactly with
high probability.
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Overview

Latent factor models in practice

Millions of users and items

Billions of ratings

Sometimes quite complex models

Many algorithms have been applied to large-scale problems

Gradient descent and quasi-Newton methods

Coordinate-wise gradient descent

Stochastic gradient descent

Alternating least squares
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Continuous gradient descent

Find minimum θ∗ of function L

Pick a starting point θ0

Compute gradient L′(θ0)

Walk downhill

Differential equation

∂θ(t)

∂t
= −L′(θ(t))

with boundary cond. θ(0) = θ0

Under certain conditions

θ(t)→ θ∗
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Discrete gradient descent

Find minimum θ∗ of function L

Pick a starting point θ0

Compute gradient L′(θ0)

Jump downhill

Difference equation

θn+1 = θn − εnL′(θn)

Under certain conditions,
approximates CGD in that

θn(t) = θn + “steps of size t”

satisfies the ODE as n→∞
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Gradient descent for LFMs

Set θ = (L,R) and write

L(θ) =
∑

(i,j)∈Ω

Lij(Li∗,R∗j)

∇Li∗L(θ) =
∑

j∈{ j′|(i,j′)∈Ω }

∇Li∗Lij(Li∗,R∗j)

GD epoch
1 Compute gradient

F Initialize zero matrices L∇ and R∇

F For each entry (i , j) ∈ Ω, update gradients

L∇i∗ ← L∇i∗ +∇Li∗Lij(Li∗,R∗j)

R∇∗j ← R∇∗j +∇R∗jLij(Li∗,R∗j)

2 Update parameters

L← L− εnL∇

R← R− εnR∇

28 / 35
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Computing the gradient (example)

Simplest form (unregularized)

Lij(Li∗,R∗j) = (Dij − Li∗R∗j)
2

Gradient computation

∇Li′k Lij(Li∗,R∗j) =

{
0 if i ′ 6= i

−2Rkj(Dij − Li∗R∗j) if i ′ = i

Local gradient of entry (i , j) ∈ Ω nonzero only on row Li∗ and
column R∗j .
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Stochastic gradient descent

Find minimum θ∗ of function L

Pick a starting point θ0

Approximate gradient L̂′(θ0)

Jump “approximately” downhill

Stochastic difference equation

θn+1 = θn − εnL̂′(θn)

Under certain conditions,
asymptotically approximates
(continuous) gradient descent
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Stochastic gradient descent for LFMs

Set θ = (L,R) and use

L(θ) =
∑

(i,j)∈Ω

Lij(Li∗,R∗j)

L′(θ) =
∑

(i,j)∈Ω

L′ij(Li∗,R∗j)

L̂′(θ, z) = NL′iz jz (Liz∗,R∗jz ),

where N = |Ω| and z = (iz , jz) ∈ Ω

SGD epoch
1 Pick a random entry z ∈ Ω
2 Compute approximate gradient L̂′(θ, z)
3 Update parameters

θn+1 = θn − εnL̂′(θn, z)

4 Repeat N times
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SGD in practice

Step size sequence { εn } needs to be chosen carefully

Pick initial step size based on sample (of some rows and columns)
Reduce step size gradually
Bold driver heuristic: After every epoch

I Increase step size slightly when loss decreased (by, say, 5%)
I Decrease step size sharply when loss increased (by, say, 50%)
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Lessons learned

Collaborative filtering methods learn from past user behavior

Latent factor models are best-performing single approach for
collaborative filtering

I But often combined with other methods

Users and items are represented in common latent factor space
I Holistic matrix-factorization approach
I Similar users/item placed at similar positions
I Low-rank assumption = few “factors” influence user preferences

Close relationship to matrix completion problem
I Reconstruct a partially observed low-rank matrix

SGD is simple and practical algorithm to solve LFMs in summation
form
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Suggested reading

Y. Koren, R. Bell, C. Volinsky
Matrix factorization techniques for recommender systems
IEEE Computer, 42(8), p. 30–37, 2009
http://research.yahoo.com/pub/2859

E. Candès, B. Recht
Exact matrix completion via convex optimization
Communications of the ACM, 55(6), p. 111–119, 2012
http://doi.acm.org/10.1145/2184319.2184343

And references in the above articles
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