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Non-Negative Datasets

Some datasets are intrinsically non-negative:

Counters (e.g., no. occurrences of each word in a text document)

Quantities (e.g., amount of each ingredient in a chemical experiment)

Intensities (e.g., intensity of each color in an image)

The corresponding data matrix D has only non-negative values.

Decompositions such as SVD and SDD may involve negative values in
factors and components

Negative values describe the absence of something

Often no natural interpretation

Can we find a decomposition that is more natural to non-negative data?
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Example (SVD)

Consider the following “bridge” matrix and its truncated SVD:
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Here are the corresponding components:
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Negative values make interpretation unnatural or difficult.
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Non-Negative Matrix Factorization (NMF)

Definition (Non-negative matrix factorization, basic form)

Given a non-negative matrix D ∈ Rm×n
+ , a non-negative matrix

factorization of rank k is

D ≈ LR,

where L ∈ Rm×r
+ and R ∈ Rr×n

+ are both non-negative.

Additive decomposition: factors and components non-negative
→ No cancellation effects

Rows of R can be thought as “parts”

Row of D obtained by mixing (or “assembling”) parts in L

Smallest r such that D = LR exists is called non-negative rank of D

rank(D) ≤ rank+(D) ≤ min {m, n }
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Example (NMF)

Consider the following “bridge” matrix and its rank-2 NMF:
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D = L∗1R1∗ + L∗2R2∗

Non-negative matrix decomposition encourage a more natural,
part-based representation and (sometimes) sparsity.
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Decomposing faces (PCA)

[LR]i∗ = Li∗ R
[UΣVT ]i∗ = Ui∗Σ VT

PCA factors are hard to interpret.
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Di∗ (original)

Lee and Seung, 1999.

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html


Decomposing faces (NMF)

[LR]i∗ = Li∗ R

NMF factors correspond to parts of faces.
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Di∗ (original)

Lee and Seung, 1999.

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html


Decomposing digits (NMF)

D R

NMF factors correspond to parts of digits and “background”.

9 / 39Cichocki et al., 2009.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470746661.html


Some applications

Text mining (more later)
Bioinformatics
Microarray analysis
Mineral exploration
Neuroscience
Image understanding
Air pollution research
Chemometrics
Spectral data analysis
Linear sparse coding
Image classification
Clustering
Neural learning process
Sound recognition
Remote sensing
Object characterization
. . .

10 / 39Cichocki et al., 2009.
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Gaussian NMF

Gaussian NMF is the most basic form of non-negative factorizations:

minimize ‖D− LR‖2F
s. t. L ∈ Rm×r

+

R ∈ Rr×n
+

Truncated SVD minimizes the same objective (but without
non-negativity constraints)

Many other variants exist
I Different objective functions (e.g., KL-divergence)
I Additional regularizations (e.g., L1-regularization)
I Different constraints (e.g., orthogonality of R)
I Different compositions (e.g., 3 matrices)
I multi-layer NMF, semi-NMF, sparse NMF, tri-NMF, symmetric NMF,

orthogonal NMF, non-smooth NMF (nsNMF), overlapping NMF,
convolutive NMF (CNMF), k-Means, . . .
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k-Means can be seen as a variant of NMF

[LR]i∗ = Li∗ R

k-Means factors correspond to prototypical faces.
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Di∗ (original)

Additional constraint: L contains exactly
one 1 in each row, rest 0

Lee and Seung, 1999.

http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html


NMF is not unique

Factors are not “ordered”
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Additional constraints or regularization can encourage uniqueness.
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NMF is not hierarchical

Rank-1 NMF
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Best rank-k approximation may differ significantly from best
rank-(k − 1) approximation

Rank influences sparsity, interpretability, and statistical fidelity

Optimum choice of rank is not well-studied (often requires
experimentation)
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NMF is difficult

We focus on minimizing L(L,R) = ‖D− LR‖2F .

For varying m, n, and r , problem is NP-hard

When rank(D) = 1 (or r = 1), can be solved in polynomial time
1 Take first non-zero column of D as Lm×1
2 Determine R1×n entry by entry (using the fact that D∗j = LR1j)

Problem is not convex
I Local optimum may not correspond to global optimum
I Generally little hope to find global optimum

But: Problem is biconvex
I For fixed R, f (L) = ‖D− LR‖2F is convex

f (L) =
∑

i‖Di∗ − Li∗R‖2F (chain rule)

∇Lik
f (L) = −2(Di∗ − Li∗R)RT

k∗ (product rule)

∇2
Lik
f (L) = 2Rk∗R

T
k∗ ≥ 0 (does not depend on L)

I For fixed L, f (R) = ‖D− LR‖2F is convex
I Allows for efficient algorithms
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General framework

Gradient descent generally slow

Stochastic gradient descent inappropriate

Key approach: alternating minimization

1: Pick starting point L0 and R0

2: while not converged do

3: Keep R fixed, optimize L

4: Keep L fixed, optimize R
5: end while

Update steps 3 and 4 easier than full problem

Also called alternating projections or (block) coordinate descent

Starting point
I Random
I Multi-start initialization: try multiple random starting points, run a few

epochs, continue with best
I Based on SVD
I . . .
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Example

Ignore non-negativity for now. Consider the regularized least-square error:

L(L,R) = ‖D− LR‖2F + λ(‖L‖2F + ‖R‖2F )

By setting m = n = r = 1, D = (1) and λ = 0.05, we obtain

L(l , r) = (1− lr)2 + 0.05(l2 + r2)
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Example (ALS)

f (l , r) = (1− lr)2 + 0.05(l2 + r2)

l ← minl f (l) = 2r
2r2+0.1

r ← minr f (r) = 2l
2l2+0.1

Step l r

0 2 2
1 0.49 2
2 0.49 1.68
3 0.58 1.68
4 0.58 1.49
...

...
...

100 0.97 0.97

Converges to
local minimum
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Example (ALS)

f (l , r) = (1− lr)2 + 0.05(l2 + r2)

l ← minl f (l) = 2r
2r2+0.1

r ← minr f (r) = 2l
2l2+0.1

Step l r

0 2 0
0 0 0
0 0 0
...

...
...

Converges to
stationary point
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Alternating non-negative least squares (ANLS)

Uses non-negative least squares approximation of L and R:

argmin
L∈Rm×r

+

‖D− LR‖2F and argmin
R∈Rr×n

+

‖D− LR‖2F

Equivalently: find non-negative least squares solution to LR = D

Common approach: Solve unconstrained least squares problems and
“remove” negative values. E.g., when columns (rows) of L (R) are
linearly independent, set

L = [DR†]ε and R = [L†D]ε

where
I R† = RT (RRT )−1 is the right pseudo-inverse of R
I L† = (LTL)−1LT is the left pseudo-inverse of L
I [a]ε = max { ε, a } for ε = 0 or some small constant (e.g., ε = 10−9)

Difficult to analyze due to non-linear update steps

Often slow convergence to a “bad” local minimum (better when
regularized)
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Example (ANLS)

f (l , r) = (1− lr)2 + 0.05(l2 + r2) and set ε = 10−9

l ←
[

2r
2r2+0.1

]
ε

r ←
[

2l
2l2+0.1

]
ε

Step l r

0 2 0
1 1 · 10−9 0
2 1 · 10−9 2 · 10−8

3 4 · 10−7 2 · 10−8

4 4 · 10−7 8 · 10−6

...
...

...
100 0.97 0.97

Converges to
local minimum
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Hierarchical alternating least squares (HALS)

Work locally on a single factor, then proceed to next factor, and so on
Let D(k) be the residual matrix (error) when k-th factor is removed:

D(k) = D− LR + L∗kRk∗ = D−
∑
k ′ 6=k

L∗k ′Rk ′∗

HALS minimizes ‖D(k) − L∗kRk∗‖2F for k = 1, 2, . . . , r , 1, . . .
(equivalently: finds best solution for k-th factor, fixing the rest)
In each iteration, set (once or multiple times):

L∗k =
1

‖Rk∗‖2F

[
D(k)RT

k∗

]
ε

and RT
k∗ =

1

‖L∗k‖2F

[
(D(k))TL∗k

]
ε

D(k) can be incrementally maintained → fast implementation

D(k+1) = D(k) + L∗kRk∗ − L∗(k+1)R(k+1)∗

Often better performance in practice than ANLS
Converges to stationary point when initialized with positive matrix
and sufficiently small ε 23 / 39



Multiplicative updates

Gradient descent step with step size ηkj

Rkj ← Rkj + ηkj([LTD]kj − [LTLR]kj)

Setting ηkj =
Rkj

(LTLR)kj
, we obtain the multiplicative update rules

L← L ◦ DRT

LRRT
and R← R ◦ LTD

LTLR
,

where multiplication (◦) and division are element-wise

Does not necessarily find optimum L (or R), but can be shown to
never increase loss

Faster than ANLS (no computation of pseudo-inverse), easy to
implement and parallelize

Zeros in factors are problematic (divisions become undefined)

L← L ◦ [DRT ]ε

LRRT + ε
and R← R ◦ [LTD]ε

LTLR + ε

24 / 39Lee and Seung, 2001. Cichocki et al., 2006.

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf
http://www.open.brain.riken.jp/publications/2006/Cichocki-ICASSP-rev.pdf


Example (multiplicative updates)

f (l , r) = (1− lr)2 + 0.05(l2 + r2)

l ← l 1r−0.05l
lr2

r ← r l1−0.05r
l2r

Step l r

0 2 2
1 0.48 2
2 0.48 1.66
3 0.59 1.66
4 0.58 1.45
...

...
...

100 0.97 0.97

Converges to
local minimum
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Topic modeling

Consider a document-word matrix constructed from some corpus

D̃ =



air water pollution democrat republican

doc 1 3 2 8 0 0
doc 2 1 4 12 0 0
doc 3 0 0 0 10 11
doc 4 0 0 0 8 5
doc 5 1 1 1 1 1


Documents seem to talk about two “topics”

1 Environment (with words air, water, and pollution)
2 Congress (with words democrat and republican)

Can we automatically detect topics in documents?
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A probabilistic viewpoint

Let’s normalize such that the entries sum to unity

D =



air water pollution democrat republican

doc 1 0.04 0.03 0.12 0.00 0.00
doc 2 0.01 0.06 0.17 0.00 0.00
doc 3 0.00 0.00 0.00 0.14 0.16
doc 4 0.00 0.00 0.00 0.12 0.07
doc 5 0.01 0.01 0.01 0.01 0.015


Put all words in an urn and draw. The probability to draw word w
from document d is given by

P(d ,w) = Ddw

Matrix D can represent any probability distribution

pLSA tries to find a distribution that is “close” to D but exposes
information about topics

28 / 39



Probabilistic latent semantic analysis (pLSA)

Definition (pLSA, NMF formulation)

Given a rank r , find matrices L, Σ, and R such that

D ≈ LΣR

where

Lm×r is a non-negative, column-stochastic matrix (columns sum to
unity),

Σr×r is a non-negative, diagonal matrix that sums to unity, and

Rr×n is a non-negative, row-stochastic matrix (rows sum to unity).

≈ is usually taken to be the (generalized) KL divergence

Additional regularization or tempering necessary to avoid overfitting

29 / 39Hofmann, 2001.

http://link.springer.com/article/10.1023%2FA%3A1007617005950


Example

pLSA factorization of example matrix
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D ≈ L Σ R

Rank r corresponds to number of topics

Σkk corresponds to overall frequency of topic k

Ldk corresponds to contribution of document d to topic k

Rkw corresponds to frequency of word w in topic k

pLSA constraints allow for probabilistic interpretation
P(d ,w) ≈ [LΣR]dw =

∑
k ΣkkLdkRkw =

∑
k P(k)P(d | k)P(w | k)

pLSA model imposes conditional independence constraints
→ restricted space of distributions
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Another example

Concepts (10 of 128) extracted from Science Magazine articles (12K)

31 / 39Hofmann, 2004.

http://www.mpi-inf.mpg.de/conferences/adfocs-04/adfocs04.slides-hofmann.pdf


pLSA geometry

Rewrite probabilistic formulation

P(d ,w) =
∑
k

P(k)P(d | k)P(w | k)

P(w | d) =
∑
z

P(w | z)P(z | d)

Generative process
of creating a word

1 Pick a document
according to P(d)

2 Select a topic
acc. to P(z | d)

3 Select a word
acc. to P(w | z)

32 / 39Hofmann, 2001.

http://link.springer.com/article/10.1023%2FA%3A1007617005950


Kullback-Leibler divergence (1)

Let D̃ be the unnormalized word-count data and denote by N total
number of words
Likelihood of seeing D̃ when drawing N words with replacement is
proportional to

m∏
d=1

n∏
w=1

P(d ,w)D̃dw

pLSA maximizes the log-likelihood of seeing the data given the model

logP(D̃ | L,Σ,R) ∝
m∑

d=1

n∑
w=1

D̃dw logP(d ,w | L,Σ,R)

∝ −
m∑

d=1

n∑
w=1

D log
1

[LΣR]dw

= −
m∑

d=1

n∑
w=1

Ddw log
Ddw

[LΣR]dw︸ ︷︷ ︸
Kullback-Leibler divergence

+cD

33 / 39Gaussier and Goutte, 2005.

http://dl.acm.org/citation.cfm?id=1076148


Kullback-Leibler divergence (2)

KL divergence

DKL(P‖Q) =
m∑

d=1

n∑
w=1

Pdw log
Pdw

Qdw

Interpretation: expected number of extra bits for encoding a value
drawn from P using an optimum code for distribution Q

DKL(P‖Q) ≥ 0

DKL(P‖P) = 0

DKL(P‖Q) 6= DKL(Q‖P)

NMF-based pLSA algorithms minimize the generalized KL divergence

DGKL(P̃‖Q̃) =
m∑

d=1

n∑
w=1

(P̃dw log
P̃dw

Q̃dw

− P̃dw + Q̃dw ),

where P̃ = D̃ and Q̃ = LΣ̃R
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Multiplicative updates for GKL (w/o tempering)

We first find a decomposition D̃ ≈ L̃R̃, where L̃ and R̃ are
non-negative matrices

Update rules

L̃← L̃ ◦ D̃

L̃R̃
R̃
T

diag(1/ rowSums(R̃))

R̃← R̃ ◦ diag(1/ colSums(L̃))L̃
T D̃

L̃R̃

GKL is non-increasing under these update rules

Normalize by rescaling columns of L̃ and rows of R̃ to obtain

L = L̃ diag(1/ colSums(L̃))

R = diag(1/ rowSums(R̃))R̃

Σ̃ = diag(colSums(L̃) ◦ rowSums(R̃))

Σ = Σ̃/
∑

k Σ̃kk

35 / 39Lee and Seung, 2001.

http://hebb.mit.edu/people/seung/papers/nmfconverge.pdf


Applications of pLSA

Topic modeling

Clustering documents

Clustering terms

Information retrieval
I Treat query q as a “new” document (new row in D̃ and L)
I Determine P(k | q) by keeping Σ and R fixed (“fold in” the query)
I Retrieve documents with similar topic mixture as query
I Can deal with synonymy and polysemy

Better generalization performance
than LSA (=SVD), esp. with tempering

In practice, outperformed by
Latent Dirichlet Allocation (LDA)

36 / 39Hofmann, 2001.

http://link.springer.com/article/10.1023%2FA%3A1007617005950
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Lessons learned

Non-negative matrix factorization (NMF) appears natural for
non-negative data

NMF encourages parts-based decomposition, interpretability, and
(sometimes) sparseness

Many variants, many applications

Usually solved via alternating minimization algorithms
I Alternating non-negative least squares (ANLS)
I Projected gradient local hierarchical ALS (HALS)
I Multiplicative updates

pLSA is an approach to topic modeling that can be seen as an NMF

38 / 39
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