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An example

Let us consider a data set of people and their traits
I People: Alice, Bob, and Charles
I Traits: Long-haired, well-known, and male

long-haired 3 3 7

well-known 3 3 3

male 7 3 3
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An example

long-haired 3 3 7

well-known 3 3 3

male 7 3 3

We can write this data as a binary matrix

The data obviously has two groups of people and two groups of traits

I and are long-haired and well-known

I and are well-known males

Can we find these groups automatically (using matrix factorization)?
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SVD?

Could we find the groups using SVD?

The data U1Σ1,1V
T
1

SVD cannot find the groups.
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SVD?

Could we find the groups using SVD?

The data U2Σ2,2V
T
2

SVD cannot find the groups.
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SDD?

The groups are essentially “bumps”, so perhaps SDD?

The data X1D1,1Y
T
1

SDD cannot find the groups, either
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SDD?

The groups are essentially “bumps”, so perhaps SDD?

The data X2D2,2Y
T
2

SDD cannot find the groups, either
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SDD?

The groups are essentially “bumps”, so perhaps SDD?

The data X3D3,3Y
T
3

SDD cannot find the groups, either
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NMF?

The data is non-negative, so what about NMF?

The data W1H1

Already closer, but is the middle element in the group or out of the
group?
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NMF?

The data is non-negative, so what about NMF?

The data W2H2

Already closer, but is the middle element in the group or out of the
group?
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Clustering?

So NMF’s problem was that the results were not precise yes/no.
Clustering can do that. . .

The data Cluster assignment matrix

Precise, yes, but arbitrarily assigns and “well-known” to one of
the groups
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Boolean matrix factorization

What we want looks like this:

= +

The problem: the sum of these two components is not the data
I The center element will have value 2

Solution: don’t care about multiplicity, but let 1 + 1 = 1
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Boolean matrix product

Boolean matrix product

The Boolean product of binary matrices A ∈ {0, 1}m×k and
B ∈ {0, 1}k×n, denoted A� B, is such that

(A� B)ij =
k∨

`=1

Ai`B`j .

The matrix product over the Boolean semi-ring ({0, 1},∧,∨)
I Equivalently, normal matrix product with addition defined as 1 + 1 = 1
I Binary matrices equipped with such algebra are called Boolean

matrices

The Boolean product is only defined for binary matrices

A� B is binary for all A and B
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Definition of the BMF

Boolean Matrix Factorization (BMF)

The (exact) Boolean matrix factorization of a binary matrix
A ∈ {0, 1}m×n expresses it as a Boolean product of two factor matrices,
B ∈ {0, 1}m×k and C ∈ {0, 1}k×n. That is A = B� C .

Typically (in data mining), k is given, and we try to find B and C to
get as close to A as possible

Normally the optimization function is the squared Frobenius norm of
the residual, ‖A− (B� C)‖2F

I Equivalently, |A⊕ (B� C)| where
F |A| is the sum of values of A (number of 1s for binary matrices)
F ⊕ is the element-wise exclusive-or (1+1=0)

I The alternative definition is more “combinatorial” in flavour
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The Boolean rank

The Boolean rank of a binary matrix A ∈ {0, 1}m×n, rankB(A) is
the smallest integer k such that there exists B ∈ {0, 1}m×k and
C ∈ {0, 1}k×n for which A = B� C

I Equivalently, the smallest k such that A is the element-wise or of k
rank-1 binary matrices

Exactly like normal or nonnegative rank, but over Boolean algebra

Recall that for the non-negative rank rank+(A) ≥ rank(A) for all A

For Boolean and non-negative ranks we have rank+(A) ≥ rankB(A)
for all binary A

I Essentially because both are anti-negative but BMF can have
overlapping components without cost

Between normal and Boolean rank things are less clear
I There exists binary matrices for which rank(A) ≈ 1

2 rankB(A)
I There exists binary matrices for which rankB(A) = O(log(rank(A)))
I The logarithmic ratio is essentially the best possible

F There are at most 2rankB (A) distinct rows/columns in A
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Another example

Consider the complement of the identity matrix Ī
I It has full normal rank, but what about the Boolean rank?

Ī64 Boolean rank-12

The factorization is symmetric on diagonal so we draw two factors at
a time
The Boolean rank of the data is 12 = 2 log2(64)

Let’s draw the components in reverse order to see the structure

I And the factor matrices have nice structure, too
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Another example

Consider the complement of the identity matrix Ī
I It has full normal rank, but what about the Boolean rank?

Ī64 Factor matrices

The factorization is symmetric on diagonal so we draw two factors at
a time
The Boolean rank of the data is 12 = 2 log2(64)

Let’s draw the components in reverse order to see the structure
I And the factor matrices have nice structure, too
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BMF vs. SVD

Truncated SVD gives Frobenius-optimal rank-k approximations of the
matrix

But we’ve already seen that matrices can have smaller Boolean than
real rank ⇒ BMF can give exact decompositions where SVD cannot

I Contradiction?

The answer lies in different algebras: SVD is optimal if you’re using
the normal algebra

I BMF can utilize its different addition in some cases very effectively

In practice, however, SVD usually gives the smallest reconstruction
error

I Even when it’s not exactly correct, it’s very close

But reconstruction error isn’t all that matters
I BMF can be more interpretable and more sparse
I BMF finds different structure than SVD

16 / 44



BMF vs. SDD

Rank-1 binary matrices are sort-of bumps
I The SDD algorithm can be used to find them
I But SDD doesn’t know about the binary structure of the data
I And overlapping bumps will cause problems to SDD

The structure SDD finds is somewhat similar to what BMF finds
(from binary matrices)

I But again, overlapping bumps are handled differently

≈ + +
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BMF vs. NMF

Both BMF and NMF work on anti-negative semi-rings
I There is no inverse to addition
I “Parts-of-whole”

BMF and NMF can be very close to each other
I Especially after NMF is rounded to binary factor matrices

But NMF has to scale down overlapping components

≈ +
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BMF vs. clustering

BMF is a relaxed version of clustering in the hypercube {0, 1}n
I The left factor matrix B is sort-of cluster assignment matrix, but the

“clusters” don’t have to partition the rows
I The right factor matrix C gives the centroids in {0, 1}n

If we restrict B to a cluster assignment matrix (each row has exactly
one 1) we get a clustering problem

I Computationally much easier than BMF
I Simple local search works well

But clustering also loses the power of overlapping components
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Frequent itemset mining

In frequent itemset mining, we are given a transaction–item data
(who bought what) and we try to find items that are typically bought
together

I A frequent itemset is a set of items that appears in many-enough
transactions

The transaction data can be written as a binary matrix
I Columns for items, rows for transactions

Itemsets are subsets of columns
I Itemset = binary n-dimensional vector v with vi = 1 if item i is in the

set

An itemset is frequent if sufficiently many rows have 1s on all
columns corresponding to the itemset

I Let u ∈ {0, 1}m be such that uj = 1 iff the itemset is present in
transaction j

I Then uvT is a binary rank-1 matrix corresponding to a
monochromatic (all-1s) submatrix of the data
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Tiling databases

When tiling databases we try to find tiles that cover (most) of the
1s of the data

I A tile is a monochromatic submatrix of the data (rank-1 binary matrix)
I A tiling is collection of these tiles such that all (most) 1s of the data

belong to at least one of the tiles

In minimum tiling, the goal is to find the least number of tiles such
that all 1s in the data belong to at least one tile

In maximum k-tiling the goal is to find k tiles such that as many 1s
of the data as possible belong to at least one tile

In terms of BMF:
I Tiling with k tiles = rank-k BMF (Boolean sum of k tiles)
I Tiling can never represent a 0 in the data as a 1
I Minimum tiling = Boolean rank
I Maximum k-tiling = best rank-k factorization that never covers a 0

22 / 44Geerts, Goethals & Mielikäinen Tiling Databases. DS’04

http://eprints.pascal-network.org/archive/00000291/01/tilings.pdf


Binary matrices and bipartite graphs

1 1 0
1 1 1
0 1 1


=

1

2

3

A

B

C

There is a bijection between
{0, 1}m×n and (unweighted,
undirected) bipartite graphs of
m + n vertices

I Every A ∈ {0, 1}m×n is a
bi-adjacency matrix of some
bipartite graph
G = (V ∪ U,E )

I V has m vertices, U has n
vertices and (vi , uj) ∈ E iff
Aij = 1
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BMF and (quasi-)biclique covers

1 1 0
1 1 1
0 1 1


=

1

2

3

A

B

C

A biclique is a complete
bipartite graph

I Each left-hand-side verted is
connected to each
right-hand-side vertex

Each rank-1 binary matrix
defines a biclique (subgraph)

I If v ∈ {0, 1}m and
u ∈ {0, 1}n, then vuT is a
biclique between vi ∈ V and
uj ∈ U for which vi = uj = 1

Exact BMF corresponds to
covering each edge of the graph
with at least one biclique

I In approximate BMF,
quasi-bicliques cover most
edges

24 / 44



Binary matrices and sets

1 1 0
1 1 1
0 1 1


=

1 3

2

There is a bijection between
{0, 1}m×n and sets systems of m
sets over n-element universes,
(U,S ∈ 2U), |S| = m, |U| = n

I Up to labeling of elements in
U

I The columns of
A ∈ {0, 1}m×n correspond to
the elements of U

I The rows of A correspond to
the sets in S

I If Si ∈ S, then uj ∈ Si iff
Aij = 1
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BMF and the Set Basis problem

1 1 0
1 1 1
0 1 1


=

1 3

2

In the Set Basis problem, we
are given a set system (U,S),
and our task is to find collection
C ⊆ 2U such that we can cover
each set S ∈ S with a union of
some sets of C

I For each S ∈ S, there is
CS ⊆ C such that
S =

⋃
C∈CS C

A set basis corresponds to exact
BMF

I The size of the smallest set
basis is the Boolean rank

N.B.: this is the same problem
as covering with bicliques
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Binary matrices in data mining

A common use for binary matrices is to represent presence/absence
data

I Animals in spatial areas
I Items in transactions

Another common use are binary relations
I “has seen” between users and movies
I “links to” between anchor texts and web pages

Also any directed graphs are typical

A common problem is that presence/absence data doesn’t necessarily
tell about absence

I We know that 1s are probably “true” 1s, but 0s might either be “true”
0s or missing values

F If a species is not in some area, is it because we haven’t seen it or
because it’s not there?

27 / 44



Outline

1 Warm-Up

2 What is BMF

3 BMF vs. other three-letter abbreviations

4 Binary matrices, tiles, graphs, and sets

5 Computational Complexity

6 Algorithms

7 Wrap-Up

28 / 44



The Basis Usage problem

Alternating projections -style algorithms are very common tool for
finding matrix factorizations

I E.g. the alternating least squares algorithm

As a subproblem they require you to solve the following problem:
Given matrices Y and A, find matrix X such that ‖Y − AX‖ is
minimized

I Each column of X is independent: Given vector y and matrix A, find a
vector x that minimizes ‖y − Ax‖

F Linear regression if no constraints on x and Euclidean norm is used

The Basis Usage problem is the Boolean variant of this problem:

Basis Usage problem

Given binary matrices A and B, find binary matrix C that minimizes
‖A− (B� C)‖2F .

How hard can it be?
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The problem of selecting the best components

Consider the problem of selecting the best k rank-1 binary matrices
from a given set

BMF component selection

Given a binary matrix A, set of n rank-1 binary matrices
S = {S1,S2, . . . ,Sn : rank(Si ) = 1}, and integer k , find C ⊂ S of size k
such that ‖A−

∨
S∈C S‖2F is minimized.

If matrices Si are tiles of A, this problem is equivalent to the Max-k
cover problem

I S is a tile of A if for all i , j : when Aij = 0 then Sij = 0
I The Max k-cover problem: given a set system (U,S), find partial cover
C ⊂ S of size k (|C| = k) such that |

⋃
C| =

∣∣⋃
C∈C C

∣∣ is maximized
I Equivalence: U has an element for each Aij = 1, S ∈ S are equivalent

to S ∈ S , and
⋃
C is equivalent to

∨
S∈C S

But when the matrices Si can cover 1s in A, the problem is much
harder
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The Positive-Negative Partial Set Cover problem

When the matrices Si can cover 1s in A, Max k-cover is not sufficient
I We need to model the error we make when not covering 1s (as in the

Max k-cover)
I And we need to model the error we make when covering 0s

Positive-Negative Partial Set Cover problem (±PSC)

Given a set system (P ∪ N,S ∈ 2P∪N) and integer k, find a partial cover
C ⊂ S of size k such that C minimizes |P \ (

⋃
C)|+ |N ∩ (

⋃
C)|.

±PSC minimizes the number of uncovered positive elements plus the
number of covered elements

Equivalence to component selection:
I Element Aij ∈ P if Aij = 1, else Aij = N
I Each matrix Si ∈ S corresponds to a set Si in S (Aij ∈ Sell iff

(Sell)ij = 1
I
⋃
C is equivalent to

∨
S∈C S

I ‖A−
∨
S‖2F = |A⊕ (

∨
S)| (for binary A and S)

31 / 44Miettinen On the Positive-Negative Partial Set Cover Problem. Inf. Proc. Lett. 108(4), 2008

http://www.mpi-inf.mpg.de/~pmiettin/papers/pmPSC.pdf


Back to the Basis Usage

But what has the Basis Usage problem to do with ±PSC?
I They’re also almost equivalent problems

To see the equivalence, consider the one-column problem: given a
and B, find c such that ‖a− Bc‖2F is minimized

I ai ∈ P if ai = 1, o/w ai ∈ N
I Sets in S are defined by the columns of B: ai ∈ Sj if Bij = 1
I If set Sj is selected to C, then cj = 1 (o/w cj = 0)
I And |P \ (

⋃
C)|+ |N ∩ (

⋃
C)| = |A⊕ (Bc)| = ‖A− Bc‖2F

So while Basis Usage and Component selection look different, they
actually are essentially the same problem

I Unfortunately this is also a hard problem, making algorithm
development complicated
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Example of ±PSC and Basis Usage

+ +

++

-

-

-
-

-

- 0
0
1
1
1
1
0
0
0
0

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a B

defines 
the sign

defines 
the sets
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Computational complexity

Computing the Boolean rank is as hard as solving the Set Basis
problem, i.e. NP-hard

I Approximating the Boolean rank is as hard as approximating the
minimum chromatic number of a graph, i.e. very hard

I Compare to normal rank, which is easy save for precision issues

Finding the least-error approximate BMF is NP-hard
I And we cannot get any multiplicative approximation factors, as

recognizing the case with zero error is also NP-hard
I The problem is also hard to approximate within additive error

Solving the ±PSC problem is NP-hard and it is NP-hard to
approximate within a superpolylogarithmic factor

I Therefore, the Basis Usage and Component Selection problems are also
NP-hard even to approximate
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Two simple ideas

Idea 1: Alternating updates
I Start with random B, find new C, update B, etc. until convergence
I Guaranteed to converge in nm steps for m × n matrices
I Problem: requires solving the BU problem

F But it can be approximated

I Problem: Converges too fast
F The optimization landscape is bumpy (many local optima)

Idea 2: Find many dense submatrices (quasi-bicliques) and select
from them

I Existing algorithms find the dense submatrices
I Finding the dense submatrices is slow
I Problem: requires solving the BU problem
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Expanding tiles: the Panda algorithm

The Panda algorithm starts by finding large tiles of the matrix

These are taken one-by-one (from the largest) as a core of the next
factor

I The core is expanded by adding to it rows and columns that make it
non-monochromatic (add noise)

I After the extension phase ends, the rows and columns in the expanded
core define new component that is added to the factorization

I The next selected core is the tile that has the largest area outside the
already-covered area

Problem: when to stop the extension of the core
I Panda adds noisy rows and columns to the core as long as that

minimizes the noise plus the number of selected rows and columns
(poor man’s MDL)

37 / 44Lucchese et al. Mining Top-k Patterns from Binary Datasets in presence of Noise. SDM ’10

http://72.32.205.185/proceedings/datamining/2010/dm10_015_lucchesec.pdf


Using association accuracy: the Asso algorithm

The Asso algorithm uses the correlations between rows to define
candidate factors, from which it selects the final (column) factors

I Assume two rows of A share the same factor
I Then both of these rows have 1s in the same subset of columns

(assuming no noise)
I Therefore the probability of seeing 1 in the other row on a column

we’ve observed 1 on the other row is high

Asso computes the empirical probabilities of seeing 1 in row i if it’s
seen in row j into m ×m matrix

I This matrix is rounded to binary
I A greedy search selects a column of this matrix and its corresponding

row factor to create the next component

Problem: requires solving the BU problem
I Greedy heuristic works well in practice

Problem: introduces a parameter to round the probabilities

Problem: noisy or badly overlapping factors do not appear on the
rounded matrix

38 / 44Miettinen et al. The Discrete Basis Problem

http://www.mpi-inf.mpg.de/departments/d5/teaching/ss13/dmm/papers/miettinen08discrete.pdf


Selecting the parameters: The MDL principle

Typical matrix factorization methods require the user to pre-specify
the rank

I Also SVD is usually computed only up to some top-k factors

With BMF, the minimum description length (MDL) principle gives a
powerful way to automatically select the rank
Intuition: data consists of structure and noise

I Structure can be explained well using the factors
I Noise cannot be explained well using the factors

Goal: find the size of the factorization that explains all the structure
but doesn’t explain the noise
Idea: Quantify how well we explain the data by how well we can
compress it

I If a component explains many 1s of the data, it’s easier to compress
the factors than each of the 1s

The MDL principle

The best rank is the one that lets us to express the data with the least
number of bits
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MDL for BMF: Specifics

We compress our data by compressing the factor matrices and the
residual matrix

I The residual is the exclusive or of the data and the factorization,
R = A⊕ (B� C)

I The residual is needed because the compression must be lossless

In MDL parlance, B and C constitute the hypothesis and R explains
the data given the hypothesis

I Two-part MDL: minimize L(H) + L(D | H), where L() is the encoding
length

Question: how do we encode the matrices?
I One idea: consider each column of B separately
I Encode the number of 1s in the column, call it b (log2(m) bits when m

is already known)
I Enumerate every m-bit binary vector with b 1s in lexicographical order

and send the number
F There are

(
m
b

)
such vectors, so we can encode the number with

log2
((

m
b

))
bits

F We don’t really need to do the enumeration, just to know how many
(fractional) bits it would take

40 / 44Miettinen & Vreeken MDL4BMF: Minimum Description Length for Boolean Matrix Factorization

http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2012-5-001


MDL for BMF: An Example

MDL can be used to find all parameters for the algorithm, not just one
To use MDL, run the algorithm with different values of k and select
the one that gives the smallest description length

I Usually approximately convex, so no need to try all values of k
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Lessons learned

BMF finds binary factors for binary data yielding binary approximation
→ easier interpretation, different structure than normal algebra

Many problems associated with BMF are hard even to approximate
I Boolean rank, minimum-error BMF, Basis Usage, . . .

BMF has very combinatorial flavour
→ algorithms are less like other matrix factorization algorithms

MDL can be used to automatically find the rank of the factorization
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Suggested reading

Slides at http://www.mpi-inf.mpg.de/~pmiettin/bmf_
tutorial/material.html

Miettinen et al. The Discrete Basis Problem, IEEE Trans. Knowl.
Data Eng. 20(10), 2008.

I Explains the Asso algorithm and the use of BMF (called DBP in the
paper) in data mining

Lucchese et al. Mining Top-k Patterns from Binary Datasets in
presence of Noise. SDM ’10

I Explains the Panda algorithm

Miettinen & Vreeken MDL4BMF: Minimum Description Length for
Boolean Matrix Factorization

I Explains the use of MDL with BMF
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