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Link analysis

The web as a directed graph
I Set of web pages with associated textual content
I Hyperlinks between webpages (potentially with anchor text)
→ Directed graph

Our focus: Which pages are “relevant” (to a query)?
I Analysis of link structure instrumental for web search
I Assumption: incoming link is a quality signal (endorsement)
I Page has high quality ≈ links from/to high-quality pages
I (We are ignoring anchor text in this lecture.)

Gives rise to HITS and PageRank algorithms

Similarly: citations of scientific papers, social networks, . . .
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Eigenvectors and diagonalizable matrices

Denote by A an n × n real matrix
Recap eigenvectors

I v is a right eigenvector with eigenvalue λ of A if Av = λv
I v is a left eigenvector with eigenvalue λ of A if vA = λv
I If v is a right eigenvector of A, then vT is a left eigenvector of AT

(and vice versa)
A is diagonalizable if it has n linearly independent eigenvectors

I Some matrices are not diagonalizable (called defective)
I If A is symmetric (our focus), it is diagonalizable
I If A is symmetric, v1, . . . , vn can be chosen to be real and orthonormal
→ These eigenvectors then form an orthonormal basis of Rn

I Denote by λ1, . . . , λn are the corresponding eigenvalues (potentially 0)
I Then for every x ∈ Rn, there exist c1, . . . , cn such that

x = c1v1 + c2v2 + · · ·+ cnvn

I And therefore

Ax = λ1c1v1 + λ2c2v2 + · · ·+ λncnvn

I Eigenvectors “explain” effect of linear transformation A
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Example

λ1v1λ2v2
x

λ1v1λ2v2

x~

λ1 = 2, λ2 = 1 x̃ = Ax
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Power method

Simple method to determine the largest eigenvalue λ1 and the
corresponding eigenvector v1
Algorithm

1 Start at some x0
2 While not converged

1 Set x̃t+1 ← Axt

2 Normalize: xt+1 ← x̃t+1/‖x̃t+1‖
What happens here?

I Observe that xt = Atx0/C , where C = ‖Atx0‖
I Assume that A is real symmetric
I Then xt = (λt1c1v1 + λt2c2v2 + · · ·+ λtncnvn)/C
I If |λ1| > |λ2|, then

lim
t→∞

λt2c2
λt1c1

= lim
t→∞

(
λ2
λ1

)t
c2
c1

= 0

I So as t →∞, xt converges to v1
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Power method (example)

v1v2
x0

v1v2

x~1

v1v2
x1

n = 0 n = 1 n = 1 (normalized)

v1v2

x~2

v1v2
x2 v1v2

x~100

n = 2 n = 2 (normalized) n = 100
7 / 45



Discussion

Easy to implement and parallelize

We will see: useful for understanding link analysis

Convergence
I Works if A is real symmetric, |λ1| > |λ2|, and x0 6⊥ v1 (i.e., c1 6= 0)

I Speed depends on eigengap |λ1|/|λ2|
I Also works in many other settings (but not always)
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Power method and singular vectors

Unit vectors u and v are left and right singular vectors of A if

ATu = σv and Av = σu

σ is the corresponding singular value

The SVD decomposition is formed of the singular values (Σ) and
corresponding left and right singular vectors (columns of U and V)

u is an eigenvector of AAT with eigenvalue σ2 since

AATu = Aσv = σAv = σ2u

Similarly v is an eigenvector of ATA with eigenvalue σ2

Power method for principal singular vectors
1 ut+1 ← Avt / ‖Avt‖
2 vt+1 ← ATut+1 / ‖ATut+1‖

Why does it work?
I AAT and ATA are symmetric (and positive semi-definite)
I ut+2 = Avt+1 /‖Avt+1‖ = AATut+1 / ‖AATut+1‖
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Asking Google for search engines
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Asking Bing for search engines
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Searching the WWW

Some difficulties in web search
I “search engine”: many of the search engines do not contain phrase

“search engine”
I “Harvard”: millions of pages contain “Harvard”, but

www.harvard.edu may not contain it most often
I “lucky”: there is an “I’m feeling lucky” button on google.com, but

google.com is (probably) not relevant (popularity)
I “automobile”: some pages say “car” instead (synonymy)
I “jaguar”: the car or the animal? (polysemy)

Query types
1 Specific queries (“name of Michael Jackson’s dog”)
→ Scarcity problem: few pages contain required information

2 Broad-topic queries (“Java”)
→ Abundance problem: large number of relevant pages

3 Similar-page queries (“Pages similar to java.com”)

Our focus: broad-topic queries
I Goal is to find “most relevant” pages
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Hyperlink Induced Topic Search (HITS)

HITS analyzes the link structure to mitigate these challenges
I Uses links as source of exogenous information
I Key idea: If p links to q, p confers “authority” on q
→ Try to find authorities through links that point to them

I HITS aims to balance between relevance to a query (content) and
popularity (in-links)

HITS uses two notions of relevance
I Authority page directly answers information need
→ Page pointed to by many hubs for the query

I Hub page contains link to pages that answer information need
→ Points to many authorities for the query

I Note: circular definition

Algorithm
1 Create a focused subgraph of the WWW based on the query
2 Score each page w.r.t. to authority and hub
3 Return the pages with the largest authority scores
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Hubs and authorities (example)

15 / 45Manning et al., 2008

http://nlp.stanford.edu/IR-book/


Creating a focused subgraph

Desiderata
1 Should be small (for efficiency)
2 Should contain most (or many) of the strongest authorities (for recall)
3 Should be rich in relevant pages (for precision)

Using all pages that contain query may violate (1) and (2)

Construction
I Root set: the highest-ranked pages for the query (regular web search)
→ Satisfies (1) and (3), but often not (2)

I Base set: pages that point to or are pointed to from the root set
→ Increases number of authorities, addressing (2)

I Focused subgraph = induced subgraph of base set
→ Consider all links between pages in the base set
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Root set and base set

17 / 45Kleinberg, 1999

http://www.cs.cornell.edu/home/kleinber/auth.pdf


Heuristics

Retain efficiency
I Focus on t highest ranked pages for the query (e.g., t = 200)
→ Small root set

I Allow each page to bring in at most d pages pointing to it (e.g.,
d = 50)
→ Small base set (≈ 5000 pages)

Try to avoid links that serve a purely navigational function
I E.g., link to homepage
I Keep transverse links (to different domain)
I Ignore intrinsic links (to same domain)

Try to avoid links that indicate collusion/advertisement
I E.g., “This site is designed by...”
I Allow each page to be pointed to at most m times from each domain

(m ≈ 4–8)
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Hubs and authorities

Simple approach: rank pages by in-degrees in focused subgraph
I Works better than on whole web
I Still problematic: some pages are “universally popular” regardless of

underlying query topic

Key idea: weight links from different pages differently
I Authoritative pages have high in-degree and a common topic
→ Considerable overlap in sets of pages that point to authorities

I Hub pages “pull together” authorities on a common topic
→ Considerable overlap in sets of pages that are pointed to by hubs

I Mutual reinforcment
F Good hub points to many good authorities
F Good authority is pointed to by many good hubs
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Hub and authority scores

Denote by G = (V ,E ) the focused subgraph
Assign to page p

I A non-negative hub weight up
I A non-negative authority weight vp

Larger means “better”

Authority weight = sum of weights of hubs pointing to the page

vp ←
∑

(q,p)∈E

uq

Hub weight = sum of weights of authorities pointed to by the page

up ←
∑

(p,q)∈E

vp

HITS iterates until it reaches a fixed point
I Normalize vectors to length 1 after every iteration (does not affect

ranking)

20 / 45



Example

u =
(
0.63 0.46 0.55 0.29 0.00 0.00 0.00

)T
(hubs)

v =
(
0.00 0.00 0.00 0.21 0.42 0.46 0.75

)T
(authorities)

1

2

3

4

5

6

7

(0.63, 0.00)

(0.46, 0.00)

(0.55, 0.00)

(0.29, 0.21)

(0.00, 0.42)

(0.00, 0.46)

(0.00, 0.75)
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Authorities for Chicago Bulls
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Top-authority for Chicago Bulls
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Hubs for Chicago Bulls
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What happens here?

Adjacency matrix A (Apq = 1 if p links to q)
I vp ←

∑
(q,p)∈E uq = (A∗p)Tu

I Thus: v← ATu
I Similarly u← Av

This is the power method for principal singular vectors
I u and v correspond to principal left and right singular vectors of A
I u is principal eigenvector of AAT (co-citation matrix)
I v is principal eigenvector of ATA (bibliographic coupling matrix)

1

2

3

4

5

6

7
A =



0 0 0 0 1 1 1
0 0 0 0 1 0 1
0 0 0 1 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Discussion

Hub and authority weights depend on query
→ Scores need to be computed online

HITS can find relevant pages regardless of content
I Pages in base set often do not contain query keywords
I Once base set is constructed, we only do link analysis

Potential topic drift
I Pages in base set may not be relevant to the topic
I May also return Japanese pages for English query (if appropriately

connected)

Sensitive to manipulation
I E.g., adversaries can create densely coupled hub and authority pages
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Markov chains

A stochastic process is family of random variables {Xt : t ∈ T }
I Here: T = { 1, 2, . . . } and t is called time
I Thus we get sequence X1,X2, . . .
I Instance of a discrete-time stochastic process

{Xt } is Markov chain if it is memory-less

P(Xt+1 = j | X1 = i1, . . . ,Xt−1 = it−1,Xt = i) = P(Xt+1 = j | Xt = i)

If Xt = i , we say that Markov chain is in state i at time t
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X1 X2 X3 X4 X5 X6 X7 X8 Properties
Coin flips 0 1 1 0 1 1 1 0 MC

Invert 0 1 0 1 0 1 0 1 MC
First-one 0 1 1 1 1 1 1 1 MC

1 on odd time 0 0 1 0 1 0 1 0 MC
Sum 0 1 2 2 3 4 5 5 MC

Sum (2-window) 0 1 2 1 1 2 2 1 ¬MC



Finiteness and time-homogeneity

Markov chain is finite if it has a finite number of states

Markov chain is time-homogeneous if

P(Xt+1 = j | Xt = i) = P(X1 = j | X0 = i)

We assume finite, time-homogeneous Markov chains from now on
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X1 X2 X3 X4 X5 X6 X7 X8 Properties
Coin flips 0 1 1 0 1 1 1 0 MC, F, TH

Invert 0 1 0 1 0 1 0 1 MC, F, TH
First-one 0 1 1 1 1 1 1 1 MC, F, TH

1 on odd time 0 0 1 0 1 0 1 0 MC, F, ¬TH
Sum 0 1 2 2 3 4 5 5 MC, ¬F, TH

Sum (2-window) 0 1 2 1 1 2 2 1 ¬MC



Markov chains and graphs

Markov chains can be represented as graph

V = set of states

(i , j) ∈ E if P(X1 = j | X0 = i) > 0

wij = P(X1 = j | X0 = i)
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Coin flips Invert First-one

X1 X2 X3 X4 X5 X6 X7 X8 Properties
Coin flips 0 1 1 0 1 1 1 0 MC, F, TH

Invert 0 1 0 1 0 1 0 1 MC, F, TH
First-one 0 1 1 1 1 1 1 1 MC, F, TH



Irreducibility and aperiodicity

A Markov chain is

irreducible: for all i , j ∈ V , there is a path from i to j

aperiodic: for all i , gcd { t : P(Xt = i | X0 = i) > 0 } = 1
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Coin flips Invert First-one

X1 X2 X3 X4 X5 X6 X7 X8 Properties
Coin flips 0 1 1 0 1 1 1 0 MC, F, TH, I, A

Invert 0 1 0 1 0 1 0 1 MC, F, TH, I, ¬A
First-one 0 1 1 1 1 1 1 1 MC, F, TH, ¬I



Transition matrix

Consider the graph of a Markov chain

Associated adjacency matrix P is called transition matrix
I P is row-stochastic (rows sum to 1)
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0.1

0.1

0.3

0.6
0.5

0.5

P =

 0 0.9 0.1
0.3 0.1 0.6
0.5 0.5 0





Surfing the chain

pt =
(
pt,1 · · · pt,n

)
= distribution of states after t steps

I I.e., pt,i = P(Xt = i)
I p0 is initial distribution

After one step, we have

pt+1,j =
∑
i

P(Xt = i)P(Xt+1 = j | Xt = i) =
∑
i

pt,iPij = ptP∗j

pt+1 = ptP

After k steps, we have pt+k = ptP
k
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1 2

3

0.9

0.1

0.1

0.3

0.6
0.5

0.5

P =

 0 0.9 0.1
0.3 0.1 0.6
0.5 0.5 0


p0 =

(
1 0 0

)
p1 =

(
0 0.9 0.1

)
p2 =

(
0.32 0.13 0.54

)
p3 =

(
0.31 0.57 0.12

)



Stationary distribution

Distribution π satisfying π = πP is called stationary distribution
→ Distribution does not change if we make more steps

Unique stationary distribution exists if chain is irreducible

If additionally aperiodic, limk→∞ p0Pk = π for any distribution p0
I This is just the power method
I π is the principal eigenvector of P
I Corresponding eigenvalue is 1 and has multiplicity 1
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P =

 0 0.9 0.1
0.3 0.1 0.6
0.5 0.5 0


p0 =

(
1 0 0

)
p1 =

(
0 0.9 0.1

)
p2 =

(
0.32 0.13 0.54

)
p3 =

(
0.31 0.57 0.12

)
π =

(
0.27 0.44 0.29

)
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A surfer
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Random surfer (1)

Consider a random surfer who
1 Starts at a random web page
2 Repeatedly clicks a random link to move to next web page

PageRank is steady-state distribution of the random surfer
I High PageRank = page frequently visited
I Low PageRank = page infrequently visited
I PageRank thus captures the “importance” of each webpage

When is a page frequently visited?
I When it has many in-links from frequently visited pages

Still a circular definition, but now well-defined

v1

v2

v3

v4

v5
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Random surfer (2)

Random surfer as a Markov chain
I States = web pages
I Transitions = normalized adjacency matrix (s.t. rows sum to 1)
I Called walk matrix = D−1W
I Note Lrw = I−D−1W

Pitfalls
I How to handle dead ends? (there are many of them on the web)
I How to avoid getting stuck in subgraphs?

v1

v2

v3

v4

v5

W =


0 0 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0



D−1W =


? ? ? ? ?

1/3 0 1/3 1/3 0
0 1 0 0 0
0 1/2 1/2 0 0
0 0 0 1 0
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A surfer with a problem
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A surfer without a problem
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Teleportation

A teleporting surfer
I If no outgoing links, go to random site (handles dead ends)
I With probability α, teleport to a random site (handles subgraphs)
→ Can be thought of as typing URL into address bar

I With probability 1− α, follow random link

Teleportation ensures irreducibility and aperiodicity
PageRank of page i = πi

v1

v2

v3

v4

v5

W =


0 0 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0



P0.1 =


0.20 0.20 0.20 0.20 0.20
0.32 0.02 0.32 0.32 0.02
0.02 0.92 0.02 0.02 0.02
0.02 0.47 0.47 0.02 0.02
0.02 0.02 0.02 0.92 0.02

 π =


0.15
0.36
0.24
0.20
0.05


T
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Discussion

PageRank is query-independent
→ Static, global ordering

For web search, PageRank is one component of many
I E.g., only pages satisfying the query are of interest

Walks and teleportation can be done non-uniformly
I Topic-specific PageRank
I Personalized PageRank
I Do not teleport to “dubious” websites (e.g., link farms)
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Lessons learned

Link analysis exploits links structure for relevance assessment
→ We discussed HITS and PageRank

Relevance score related to principal eigenvectors
I HITS: of co-citation and bibliographic coupling matrix
I PageRank: of walk matrix of a random, teleporting surfer
I Power method is simple way to compute these eigenvectors

HITS PageRank

Distinguishes hubs and authorities Single relevance score
Query dependent Query independent
Computed online Computed offline
Mutual reinforcement Random surfer
No normalization Out-degree normalization
(Was?) used by ask.com google.com etc.
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Suggested reading

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze
Introduction to Information Retrieval (Chapter 21)
Cambridge University Press, 2008
http://nlp.stanford.edu/IR-book/

Jon Kleinberg
Authoritative sources in a hyperlinked environment
Journal of the ACM, 46(5), pp. 604–632, 1999
http://www.cs.cornell.edu/home/kleinber/auth.pdf

Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd
The PageRank Citation Ranking: Bringing Order to the Web.
Technical Report, Stanford InfoLab, 1999
http://ilpubs.stanford.edu:8090/422/
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