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Why probabilistic?

@ Until now, we factored the data D in terms of factor matrices L and
R such that

D = LR,
subject to certain constraints

e We (somewhat) skimmed over questions like

Which assumptions underly these factorizations?

What is the meaning of parameters? How can we pick them?
How can we quantify the uncertainty in the results?

How can we deal with new rows and new columns?

How can we add background knowledge to the factorization?

v
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@ Bayesian treatments of matrix factorization models help answer these
questions
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Outline

@ Background: Bayesian Networks
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What do probabilities mean?

@ Multiple interpretations of probability
o Frequentist interpretation
» Probability of an event = relative frequency when repeated often
» Coin, n trials, ny observed heads
. Ny 1 1
Jim Sy =5 = B(H)=3
o Bayesian interpretation
» Probability of an event = degree of belief that event holds
» Reasoning with “background knowledge” and “data”
> Prior belief + model + data — posterior belief
* Model parameter: § = true “probability” of heads
Prior belief: P(6)
Likelihood (model): P( nu,n | @)
Posterior belief: P (6 | ny, n)
Bayes theorem: P (6 | ni,n) x P(nu,n| 0)P(6)

* % o

Bayesian methods make use of a probabilistic model (priors + likelihood)
and the data to infer the posterior distribution of unknown variables.
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Probabilistic models

@ Suppose you want to diagnose diseases of a patient
o Multiple interrelated aspects may relate to the reasoning task

» Possible diseases, hundreds of symptoms and diagnostic tests, personal

characteristics, . ..

© Characterize data by a set of random variables
Flu (yes / no)
Hayfever (yes / no)
Season (Spring / Sommer / Autumn / Winter)
Congestion (yes / no)
MusclePain (yes / no)
— Variables and their domain are important design decision

© Model dependencies by a joint distribution

» Diseases, season, and symptoms are correlated

» Probabilistic models construct joint probability space

— 2-2-4.2-2 outcomes (64 values, 63 non-redundant)
» Given joint probability space, interesting questions can be answered

\4
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P ( Flu | Season=Spring, Congestion, “MusclePain)

‘Specifying a joint distribution is infeasible in general! ‘
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Bayesian networks are . ..

@ A graph-based representation of direct probabilistic interactions

@ A break-down of high-dimensional distributions into smaller factors
(here: 63 vs. 17 non-redundant parameters)

@ A compact representation of (cond.) independence assumptions

Example (directed graphical model)

Graph representation

Environment

Diseases

Symptoms

Factorization P(S,F,H,M,C)
=P(S)P(F[S)P(H|S)P(C|F,H)P(M]|F)

Independencies (FLH|S),(CLSM|F,H),...

6
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Independence (events)

Definition

Two events A and B are called independent if P(ANB)=P(A)P(B )J

If P(B) >0, impliesthat P(A| B)=P(A).

Example (fair die)
Two independent events:

@ Die shows an even number: A={2,4,6}

@ Die shows at most 4: B =1{1,2,3,4}:

o P(ANB)=P({2,4})=31=3-2=P(A)P(B)
Not independent:

@ Die shows at most 3: B =1{1,2,3}

o P(ANB)=P({2})=1#1 1 =P(A)P(B)
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Conditional independence (events)

Definition
Let A, B, C be events with P( C) > 0. A and B are conditionally
independent given CifP(ANB|C)=P(A|C)P(B|C).

Example
Not independent:
@ Die shows an even number: A={2,4,6}
@ Die shows at most 3: B={1,2,3}
o P(ANB)=3%#1.1=P(A)P(B)
— A and B are not independent
Conditionally independent:
@ Die does not show multiple of 3: C ={1,2,4,5}
o P(ANB|C)=31=1.1=P(A|C)P(B|C)
— A and B are conditionally independent given C
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Shortcut notation

Let X and Y be discrete random variables with domain Dom(X) and
Dom(Y). Let x € Dom(X) and y € Dom(Y).

Expression Shortcut notation
P(X =x) P(x)
P(X=x|Y=y) P(x]|y)
Vx.P(X =x) = f(x) P(X) = f(X)
VxVy.P(X=x|Y=y)=Ff(x,y) P(X|Y)=F(X,Y)

e P(X)and P(X | Y) are entire probability distributions

e Can be thought of as functions from Dom(X) — [0, 1] or
(Dom(X),Dom(Y)) — [0, 1], respectively

e f,(X)=P(X|y) is often referred to as conditional probability
distribution (CPD)

@ For finite discrete variables, may be represented as a table (CPT)

9 /46



Important properties

Let A, B be events, and let X, Y be discrete random variables.

Theorem
P(AUB)=P(A)+P(B)—-P(ANB) (inclusion-exclusion)
P(A%) =1-P(A)
IfB2>A, P(B)=P(A)+P(B\A)>P(A)
):Z (X,Y=y) (sum rule)
P(X,Y)= IP’y( Y| X)P(X) (product rule)
_P(B[A)P(A)
P(A|B)= P(B) (Bayes theorem)
E[aX +b]=aE[X]+b (linearity of expectation)

E[X+Y]=E[X]+E[Y]
E[E[X|Y]]=E[X] (law of total expectation)

&




Conditional independence (random variables)

Definition

Let X,) and Z be sets of discrete random variables. X and ) are said to

be conditionally independent given Z if and only if
P(X,Y|Z2)=P(X|Z2)P(V]|Z).

We write (X L Y | Z) for this conditional independence statement. If
Z =, we write (X L)) for marginal independence.

Example

@ Throw a fair coin: Z =1 if head, else Z =10
Throw again: X = Z if head, else X =0
Throw again: Y = Z if head, else Y =0
P(X=0,Y=0|Z=0)=1=P(X=0|Z=0)P(Y=0|Z=0)
P(x,y|Z=1)=1/4=P(x|Z2=1)P(y|Z=1)
Thus (X L Y | Z), but note (X L Y)

® 6 66 o o
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Properties of conditional independence

Theorem
In general, (X L)) does not imply nor is implied by (X LY | Z).

The following relationships hold:

(XLY|Z

(X LYW|Z

yLx|2) (symmetry

(XLY|Z,W) (weak union

) = )
(X LYW|Z) = (XLY|2) (decomposition)
) = )
) = )

(X LWI[ZV)AXLY]|Z

For positive distributions and mutally disjoint sets X,Y, Z, W:

(X LY, W|2Z2) (contraction

(XLY[ZWANKX LW ZY) = (X LY, W]|Z) (intersection)

v
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Bayesian network structure

Definition
A Bayesian network structure is a directed acyclic graph ¢ whose nodes
represent random variables X = { X1,..., X, }. Let

@ Pax. = set of parents of X; in ¢,

@ NonDescendantsy, = set of variables that are not descendants of X;.

% encodes the following local independence assumptions:
(Xi L NonDescendantsx. | Pax.) for all X;.

Example

Pay =0, Pax =Pay ={Z}
@ NonDescendantsxy ={Y,Z}
@ NonDescendantsy = { X,Z }
°

NonDescendantsy = ()

(X 1 Y,Z ’ Z) decomposition (X 1y | Z)
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Factorization

Definition
A distribution IP over Xi, ..., X, factorizes over ¥ if it can be written as
n
P(X1,.... %) =[P (X |Pax,). (chain rule)
i=1
Theorem

P factorizes over ¢ if and only if P satisfies the local independence
assumptions of 4.

Example
o P(X,Y,Z)=P(Z)P(X|Z)P(Y]|Z)
(XLY|2)

Holds for 3-coin example from slide 11

o
@ Holds for 3 independent coin throws
o

Doesn't hold: throw Z; throw again and set X = Y = Z if head, else 0 14/ 44




Bayesian network

Definition
A Bayesian network is a pair (¢,P), where P factorizes of 4 and P is
given as a set of conditional probability distributions (CPDs)

]P’(X,' | Pax,.) for all X,‘.

Example
z|P(z2) x z|P(x]z) y z|P(y]|z)
0| 1/2 00 1 00 1
1] 12 1 0 0 1 0 0
0 1| 1,2 0 1| 1,2
1 1| 1/2 1 1| 1/2

@ redundant
@ CPDs: 5 non-redundant parameters

o Full distribution: 7 non-redundant parameters
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Generative models

@ Bayesian networks describe how to generate data: forward sampling
@ Pick S: Which season is it? (P(S))
@ Pick F: Does the patient have flu? (P(F|S))
© Pick H: Does the patient have hayfever? (P(H | S)
@ Pick M: Does the patient have muscle pain? (P (M
© Pick C: Does the patient have congestion? (P( C |
@ Hence are often called generative models
» Encode modeling assumptions (independencies, form of distributions)
@ In practice, we do not want to generate data
» Some variables are observed
» Goal is to infer properties of the other variables

)
| F))

(
C|F.H))

Environment

G @ Diseases

Symptoms
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Querying a distribution (1)
Consider a joint distribution on a set of variables X
@ Let £ C X be a set of evidence variables that takes values e
o Let W= X\ € be the set of latent variables
@ Let YV C W be a set of query variables
o Let Z =W\ Y be the set of non-query variables

Example
e X = { Season, Congestion, MusclePain, Flu, Hayfever }
o & = { Season, Congestion, MusclePain }
@ e = {Season: Spring, Congestion: Yes, MusclePain: No }
W = { Flu, Hayfever }
Y ={Flu}
Z = { Hayfever }
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Querying a distribution (2)

© Conditional probability query
» Compute the posterior distribution of the query variables
P(V]e)
@ MAP query
» Compute the most likely value of the latent variables
MAP(W | e) = argmax,, P(w | e) = argmax,, P(w,e)
© Marginal MAP query
» Compute the most likely value of the query variables
MAP(Y | e) = argmax, P(y | e) = argmax, >, P(y,z,e)

Example

P(W|e)| Flu =Flu
Hayfever | 5% 35%
—Hayfever | 40% 20%

@ P (Flu | Spring, Congestion, =MusclePain ) — Yes (45%), No (55%)
@ MAP(Flu, Hayfever | Spring, Congestion, “MusclePain) — Only flu
© MAP(Flu | Spring, Congestion, =MusclePain) — No flu (!)
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Probabilistic inference

Probabilistic inference = compute (properties of) posterior P() | e)

Example: use forward sampling (naive)
@ Sample from the BN
@ Drop sample if does not agree with evidence
© Repeat until sufficiently many samples have been retained
© Investigate the values of the latent variables in these samples

— This usually does not scale (unless evidence at “roots” only)

@ Many methods (not discussed here)

Variable elimination

» Message passing methods

» Markov-Chain Monte Carlo methods
| 4

>

v

Variational inference

Key: exploit independencies of BN — d-separation property
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Can X influence Y via Z7

Consider variables X, Y, and Z. Example model: flip coin, add result to
sum of parents.

Network Z latent Z observed
Indirect cal?:%effect Active Not active
O—@—) xXLY)  (XLY|2)
Indirect evidential effect Active Not active
V2% (XLY)  (XL1v|2)
Common cafu* Active Not active
CO—2—0) XLy (XL1vi2)
Common e% Not active active
) (XL1Y)  (xX1Y|2)
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d-separation

Definition
Let & be a BN structure and X; = ... = X, be a trail in 4. Denote by £
the set of observed variables. The trail X; = ... = X, is active given & if

@ Whenever we have a v-structure X;_; — X;j < Xj11 (common effect),
then X; or one of its descendants at in Z, and

@ no other node along the trail is in Z.

Definition

Let X, )V, and Z be three sets of vertices in 4. We say that X’ and ) are
d-separated given Z, denoted d-sep(X’; Y | Z), if there is no active trail
between any node X € X and Y € ) given Z.

Theorem (soundness)
If P factorizes over 4 and d-sep(X;Y | Z), then (X L Y | Z).
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Plate notation

@ Suppose we observe the result Xi, ..., X, of n independent coin flips
@ We want to infer the probability of heads 6
@ Generative model
» Prior: 6 ~ Beta(«, )
» Flips: for all i, X; ~ Bernoulli(9)
> «,[3 are hyperparameters (fixed); 6 is latent; Xi,..., X, is observed
e Plate notation is a shortcut for “repeated” variables/subgraphs
» Can be stacked (nested repeats)
» Can be overlapping (all combinations of multiple indices)

@ B8

Standard notation Plate notation
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Outline

@ Probabilistic Matrix Factorization
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Recap: Latent factor models

@ m users, n items, m X n rating matrix D
@ Revealed entries Q = { (/,) | rating Dj; is revealed }

@ User factors L,,«,, movie factors R,«,,

o Objective: argmin g Z(iJ)eQ [(D,-j — [LR],-J-)2 + )\LHLH% + )\RHRH%]
@ Prediction: ﬁu = Li«R,; = [LR];;

R

Avatar  The Matrix Up
(2.24) (1.92) (1.18)

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)

L Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)




Recap: Normal distribution (Gaussian distribution)

@ Mean p € R, variance 02 € R (or precision A = 1/0?)
o Denoted Normal(y, 0?)

_ )2
o Probability density function: p(x) = —st— exp(— k)
o
uw=20 #=>5
o’ =1 = =
0?2=5 " ;A ) ;
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Recap: Multivariate normal distribution

o Mean p € R¥, covariance & € R¥*k (or precision A = X1)
e Denoted Normal(u, X)
@ Let |X| be the determinant of X. If 3 is positive definite:

exp(— 2 (x — 1) TR x — )

1
VenFs 2

p(x) =

(1 o (1 0\
#=(0)2= (0 D= w=1)

(spherical) diagonal)

—



Probabilistic linear model with Gaussian noise (PMF)

Hyperparameters: o (sd of entries of L), og (sd of R), o (sd of noise)
@ For each user i, draw L;. from Normal(0, o?1)
@ For each movie j, draw R,; from NormaI(O,a%I)
© For each rating (i,j), draw D;; from Normal([LR];;, o2)

oL OR

|
A

@
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Let's analyze: posterior distribution

p(L,R | D,o? of,0R)

_ p(L,R,D | 0%, 0},03)
FCIEA

xp(L,R.D | 0% 0t, 07)

= p(D | L,R,02)p(L | o,2)p(R | 03)

<[ T eo(- @B

(ij)eq
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Let's analyze: MAP estimate

MAP(L,R | D, 02,02, 03)
2

= argmax p(L,R, | D, 02,02, 03)
LR

= argmin —Inp(L,R | D, o2, 0,02)

7

1
= argmln 2 Z — [LR];)? 2 2 Z L + 20% Z Rij
ki

(ij)eQ
= argmin Z — [LR];)? - Z o ZR%
LR (ijea LK IR “ij
_ 2
= argmin 3 (D~ [LRI;)? + LR+ wlRI

(ig)eQ

o PMF + MAP = latent factor model with L2 regularization

e Precision AL = 02 /0 relates variation of noise and factors
e Similarly A\g = 02/03
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Did we achieve anything?

@ MAP estimate does not allow us to judge uncertainty individually for

each prediction
- Pick (i,]) ¢ Q
» By assumption, noise is i.i.d. Normal(0,c?) given L and R

D;; ~ Normal([LR];, 02)
» With PMF, we can marginalize out L and R.
P(f)u | D,CT2,0'E,O'|2-\|)

— [ p(Bs | LR.o)p(L.R| D.o% o} oF) dL dR
R

)

:/ pNormaI(Ijij | [LR]U,UZ)P(L, R ‘ D,O’{UE,U%) dL dR
R

)

» We obtain a “customized” distribution for If),J

@ Better understanding of latent factor models
» Probabilistic models reveal underlying assumptions
» Easier to play with assumptions or integrate additional data points
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Example: Bayesian prob. matrix factorization (BPFM)

VO’WO VI)’WO

Goal: automatic complexity control

— Model mean, variance, and covariance of factors
@ Sample precision matrix for users (Ay) and movies (Ay)

@ Sample factor means: e.g., juy ~ Normal(po, (BoAv) ™)
© Sample factors: V; ~ Normal(uy, Ay?)
@ Sample ratings from Normal([UV];;,a™1)

Salakhutdinov and Mnih, 2008 31/46
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BPMF: quality on validation data

0.97

0.96:| | Netflix
'\ Baseline Score

0.91; _ Logistic PMF
0.9/ _Bayesian PMF
0 10 20 30 40 50 60
Epochs

Salakhutdinov and Mnih, 2008
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BPMF: Example (1)

User A (4 ratings)

Dimension3
(=]

-20 -10 [ 10 20
Dimension1

Movie X (5 ratings)

Dimension2
o

04 02 0 02 04
Dimension1

Salakhutdinov and Mnih, 2008

Frequency Count Frequency Count

Frequency Count

Frequency Count

w

,s

n

"

0

p

]

P

p

x

"

"

5

n

m..

w

w

w \
J \

u

4 05 o 05

o
Dimensiont

Dimension1

Dimension2

User C (319 ratings)

0.4

0.2

-20 -10 0

0 1
Dimension5

Movie Y (142 ratings) «

-04 -0.2 0 0.2
Dimension1

Froquency Count

Frequency Count

T
Dimensions

Frequency Count

o
Dimensionz

R ra—— o
Dimensiont

Froquency Count
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BPMF: Example (2)

5- - — ]
45 | ]
% 4 i T —+
535 [ | | ==
: L~ B3
T 3r n | B
8 I ‘
Q T 1
5 2.5¢ ! R
o |
a ol ! _
1.5/ i
1k E: _
A B C D
Users

A, B, C, D have 4, 24, 319, 660 ratings, respectively)

Salakhutdinov and !\/Igwh. b008 34 /46
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Outline

© Latent Dirichlet Allocation
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Recap: Probabilistic latent semantic analysis (pLSA)

@ D is an m x n document-word matrix (normalized to sum to 1)
@ pLSA reveals topics by factoring D ~ LR, where
» X is an m x m diagonal matrix
— Document probabilities
» L is an m x r row-stochastic matrix (rows sum to 1)
— Topic mixture per document
» R is an r x n row-stochastic matrix (rows sum to 1)
— Word distribution per topic

air wat pol dem rep air wat pol dem rep

004 | 003 [ 012 | 0 0 o19| o | 0o | 0o | 0 o |1 o | o | o |053|o047

001 | 006 [ 017 | 0 0 o |ozs| 0o | 0| o0 o |1 015 | 021|064 | 0 | ©

0 | o |0 | o016 o | olo3| oo 10

0 0o | o |02 | o0 o | o | o |ow| o 10

001 | oo | 001 | 001 | 001 o | o o] o |oo7 04 | 06

D

Q
™
-
)
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pLSA as a generative model

o Generating a word
@ Select document d = d; with probability P(d;) = Xj:
@ Select topic z = z, with probability P (zx | d) = Lak
© Generate word w = w; with probability P(w; | z) = R

o Alternative way to write this
@ d ~ Multinomial(diag(X), 1) L R
@ z ~ Multinomial(Lg., 1)
© w ~ Multinomial(R;.,1)

@@

Ng

air wat pol dem rep air wat pol dem rep

001 | 0.06 | 017 0 o 0 0.25 o o 0 0 1 0.15 | 0.21 | 0.64 [ o
0 0 0.14 | 0.16 o o 03 [ o 1 o
001 | 001 [ 001 | 0.01 [ 0.01 o o 0 [ 0.07 0.4 06
D ~ p) L R
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Problems with pLSA

@ Not a well-defined generative model of documents
» Learns m mixtures (=rows of L) — m possible values for d
» Not clear how handle documents outside of the training set
— A “fold-in" heuristic is often used

» Number of parameters grows linearly with number of documents
(mr + nr mixture parameters)

— Leads to overfitting (reduced via “tempering”)
@ “No" priors on document-topic (L) or topic-word distributions (R)
» One can show: pLSA related to MAP estimate of LDA with uniform
Dirichlet prior

o Latent Dirichlet allocation (LDA) addresses these problems

L R
o0 N N N
>—1@——(—@
Ny

38 /46



Dirichlet distribution (1)

@ Conjugate prior for the multinomial distribution over K categories
o Distribution over vectors p € R¥ satisfying [|p|l1 = Y, px = 1
@ p can be seen as parameters of a multinomial distribution:

p, = probability to select category k (in one trial)

o C1only
-
g 2 C1/C3 (uniform)
o
C1/C2/C3 (unif.)
o_| ®
s} C3only C2 only
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i

Dirichlet distribution (2)

o Parameterized by vector o € R with cy > 0 (“concentration
parameters” )
o p(x | @) = gl [Ty <
@ Special case: symmetric Dirichlet distribution
» Single concentration parameter «; set oy = «
» « < 1: multinomials concentrate around single category (sparse)
» «a > 1: multinomials spread uniformly over categories (dense)
» « = 1: uniform distribution over multinomials
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Latent Dirichlet Allocation (LDA)

o Parameters
» & € Ri: mean number of words per document
» a € R’.: concentration parameter for topic mixture (usually a < 1)
» e R word distribution for each topic
@ For each document:
@ Choose number of words N ~ Poisson(¢)

@ Choose topic mixture 6 ~ Dirichlet(a)
© For each of the N words:

@ Choose a topic z, ~ Multinomial(6, 1)
@ Choose a word w, ~ Multinomial(3;,+, 1)

B

- O-O—@
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Is this better than pLSA?

@ One way to measure: generalization performance on new documents
o Perplexity is a often used to measure generalization performance
@ Test set Dyest Of myest previously unseen documents

. Zd——teit IOg[J(Wd)>
erplexity(D = eX —
perp Y( test) P ( detest Nd

@ Higher likelihood of test data — lower perplexity

34001
— Smoothed Unigram
x: Smoothed Mixt. Unigrams

Lx
32001% - LDA

N -%- Fold in pLSI
3000 %
2800-  'x,
> 26000 % XX x
=2 e x
@ 2400
[S3 -~
O 2200~ T
o .-
2000~ -
-x
1800
1600+
1400, . . . . . ,
0 10 2 30 40 50 60 70 8 90 100

Number of Topics

5225 scientific abstracts (90% train, 10% test)

Blei et al., 2003 42 /46
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LDA example

Blei et al., 2003.

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH /8
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITT

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch. education
and the social scrvices” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants.  Lincoln Center’s share will be 5200.000 for its new building., which
will house young artists and provide new public facilitics. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000
donation, too.

4346


http://dl.acm.org/citation.cfm?id=944937

Outline

@ Summary
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Lessons learned

o Bayesian networks

» Models direct probabilistic interaction via a directed acyclic graph
» Priors + model + data — posterior (via probabilistic inference)
» Posterior captures belief about the values of latent variables

@ Probabilistic matrix factorization (for collaborative filtering)

» PMF + MAP inference = latent factor models with L2 regularization
» Can be customized in various ways
> Allows quantifying the uncertainty of each prediction

o Latent dirichlet allocation (for topic modelling)

» Widely used generative model for text corpora
» Addresses some limitations of pLSI
» Many extensions exist (e.g., to add supervision or n-gram modelling)
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Suggested reading

@ Daphne Koller, Nir Friedman
Probabilistic Graphical Models: Principles and Techniques (Ch. 3)
The MIT Press, 2009

@ Ruslan Salakhutdinov, Andriy Mnih
Probabilistic Matrix Factorization
Advances in Neural Information Processing Systems (NIPS), 2008
http://machinelearning.wustl.edu/mlpapers/paper_files/
NIPS2007_1007.pdf

@ David M. Blei, Andrew Y. Ng, Michael |. Jordan
Latent Dirichlet Allocation
Journal of Machine Learning Research 3, 2003
http://dl.acm.org/citation.cfm?id=944937
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