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Why probabilistic?

Until now, we factored the data D in terms of factor matrices L and
R such that

D ≈ LR,

subject to certain constraints

We (somewhat) skimmed over questions like
I Which assumptions underly these factorizations?
I What is the meaning of parameters? How can we pick them?
I How can we quantify the uncertainty in the results?
I How can we deal with new rows and new columns?
I How can we add background knowledge to the factorization?

Bayesian treatments of matrix factorization models help answer these
questions
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What do probabilities mean?

Multiple interpretations of probability
Frequentist interpretation

I Probability of an event = relative frequency when repeated often
I Coin, n trials, nH observed heads

lim
n→∞

nH

n
=

1

2
=⇒ P ( H ) =

1

2

Bayesian interpretation
I Probability of an event = degree of belief that event holds
I Reasoning with “background knowledge” and “data”
I Prior belief + model + data → posterior belief

F Model parameter: θ = true “probability” of heads
F Prior belief: P ( θ )
F Likelihood (model): P ( nH, n | θ )
F Posterior belief: P ( θ | nH, n )
F Bayes theorem: P ( θ | nH, n ) ∝ P ( nH, n | θ )P ( θ )

Bayesian methods make use of a probabilistic model (priors + likelihood)
and the data to infer the posterior distribution of unknown variables.
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Probabilistic models

Suppose you want to diagnose diseases of a patient
Multiple interrelated aspects may relate to the reasoning task

I Possible diseases, hundreds of symptoms and diagnostic tests, personal
characteristics, . . .

1 Characterize data by a set of random variables
I Flu (yes / no)
I Hayfever (yes / no)
I Season (Spring / Sommer / Autumn / Winter)
I Congestion (yes / no)
I MusclePain (yes / no)

→ Variables and their domain are important design decision
2 Model dependencies by a joint distribution

I Diseases, season, and symptoms are correlated
I Probabilistic models construct joint probability space
→ 2 · 2 · 4 · 2 · 2 outcomes (64 values, 63 non-redundant)

I Given joint probability space, interesting questions can be answered

P ( Flu | Season=Spring,Congestion,¬MusclePain )

Specifying a joint distribution is infeasible in general! 5 / 46



Bayesian networks are . . .

A graph-based representation of direct probabilistic interactions
A break-down of high-dimensional distributions into smaller factors
(here: 63 vs. 17 non-redundant parameters)
A compact representation of (cond.) independence assumptions

Example (directed graphical model)

Graph representation
Season

Flu Hayfever

CongestionMusclePain

Diseases

Environment

Symptoms

Factorization P ( S ,F ,H,M,C )
= P ( S )P ( F | S )P ( H | S )P ( C | F ,H )P ( M | F )

Independencies (F ⊥ H | S), (C ⊥ S ,M | F ,H), . . .
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Independence (events)

Definition

Two events A and B are called independent if P ( A ∩ B ) = P ( A )P ( B ).

If P ( B ) > 0, implies that P ( A | B ) = P ( A ).

Example (fair die)

Two independent events:

Die shows an even number: A = { 2, 4, 6 }
Die shows at most 4: B = { 1, 2, 3, 4 }:
P ( A ∩ B ) = P ( { 2, 4 } ) = 1

3 = 1
2 ·

2
3 = P ( A )P ( B )

Not independent:

Die shows at most 3: B = { 1, 2, 3 }
P ( A ∩ B ) = P ( { 2 } ) = 1

6 6=
1
2 ·

1
2 = P ( A )P ( B )
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Conditional independence (events)

Definition

Let A,B,C be events with P ( C ) > 0. A and B are conditionally
independent given C if P ( A ∩ B | C ) = P ( A | C )P ( B | C ).

Example

Not independent:

Die shows an even number: A = { 2, 4, 6 }
Die shows at most 3: B = { 1, 2, 3 }
P ( A ∩ B ) = 1

6 6=
1
2 ·

1
2 = P ( A )P ( B )

→ A and B are not independent

Conditionally independent:

Die does not show multiple of 3: C = { 1, 2, 4, 5 }
P ( A ∩ B | C ) = 1

4 = 1
2 ·

1
2 = P ( A | C )P ( B | C )

→ A and B are conditionally independent given C
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Shortcut notation

Let X and Y be discrete random variables with domain Dom(X ) and
Dom(Y ). Let x ∈ Dom(X ) and y ∈ Dom(Y ).

Expression Shortcut notation

P ( X = x ) P ( x )
P ( X = x | Y = y ) P ( x | y )
∀x .P ( X = x ) = f (x) P ( X ) = f (X )
∀x .∀y .P ( X = x | Y = y ) = f (x , y) P ( X | Y ) = f (X ,Y )

P ( X ) and P ( X | Y ) are entire probability distributions

Can be thought of as functions from Dom(X )→ [0, 1] or
(Dom(X ),Dom(Y ))→ [0, 1], respectively

fy (X ) = P ( X | y ) is often referred to as conditional probability
distribution (CPD)

For finite discrete variables, may be represented as a table (CPT)
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Important properties

Let A,B be events, and let X ,Y be discrete random variables.

Theorem

P ( A ∪ B ) = P ( A ) + P ( B )− P ( A ∩ B ) (inclusion-exclusion)

P ( Ac ) = 1− P ( A )

If B ⊇ A, P ( B ) = P ( A ) + P ( B \ A ) ≥ P ( A )

P ( X ) =
∑
y

P ( X ,Y = y ) (sum rule)

P ( X ,Y ) = P ( Y | X )P ( X ) (product rule)

P ( A | B ) =
P ( B | A )P ( A )

P ( B )
(Bayes theorem)

E [ aX + b ] = aE [ X ] + b (linearity of expectation)
E [ X + Y ] = E [ X ] + E [ Y ]

E [E [ X | Y ] ] = E [ X ] (law of total expectation)
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Conditional independence (random variables)

Definition

Let X ,Y and Z be sets of discrete random variables. X and Y are said to
be conditionally independent given Z if and only if

P (X ,Y | Z ) = P (X | Z )P (Y | Z ) .

We write (X ⊥ Y | Z) for this conditional independence statement. If
Z = ∅, we write (X ⊥ Y) for marginal independence.

Example

Throw a fair coin: Z = 1 if head, else Z = 0

Throw again: X = Z if head, else X = 0

Throw again: Y = Z if head, else Y = 0

P ( X = 0,Y = 0 | Z = 0 ) = 1 = P ( X = 0 | Z = 0 )P ( Y = 0 | Z = 0 )

P ( x , y | Z = 1 ) = 1/4 = P ( x | Z = 1 )P ( y | Z = 1 )

Thus (X ⊥ Y | Z ), but note (X 6⊥ Y )
11 / 46



Properties of conditional independence

Theorem

In general, (X ⊥ Y) does not imply nor is implied by (X ⊥ Y | Z).

The following relationships hold:

(X ⊥ Y | Z) ⇐⇒ (Y ⊥ X | Z) (symmetry)
(X ⊥ Y,W | Z) =⇒ (X ⊥ Y | Z) (decomposition)
(X ⊥ Y,W | Z) =⇒ (X ⊥ Y | Z,W) (weak union)

(X ⊥ W | Z,Y) ∧ (X ⊥ Y | Z) =⇒ (X ⊥ Y,W | Z) (contraction)

For positive distributions and mutally disjoint sets X ,Y,Z,W:

(X ⊥ Y | Z,W) ∧ (X ⊥ W | Z,Y) =⇒ (X ⊥ Y,W | Z) (intersection)
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Bayesian network structure

Definition

A Bayesian network structure is a directed acyclic graph G whose nodes
represent random variables X = {X1, . . . ,Xn }. Let

PaXi
= set of parents of Xi in G ,

NonDescendantsXi
= set of variables that are not descendants of Xi .

G encodes the following local independence assumptions:
(Xi ⊥ NonDescendantsXi

| PaXi
) for all Xi .

Example

PaZ = ∅, PaX = PaY = {Z }
NonDescendantsX = {Y ,Z }
NonDescendantsY = {X ,Z }
NonDescendantsZ = ∅

(X ⊥ Y ,Z | Z )
decomposition
========⇒ (X ⊥ Y | Z )
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Factorization

Definition

A distribution P over X1, . . . ,Xn factorizes over G if it can be written as

P ( X1, . . . ,Xn ) =
n∏

i=1

P ( Xi | PaXi
) . (chain rule)

Theorem

P factorizes over G if and only if P satisfies the local independence
assumptions of G .

Example

P ( X ,Y ,Z ) = P ( Z )P ( X | Z )P ( Y | Z )

(X ⊥ Y | Z )

Holds for 3-coin example from slide 11

Holds for 3 independent coin throws

Doesn’t hold: throw Z ; throw again and set X = Y = Z if head, else 0
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Bayesian network

Definition

A Bayesian network is a pair (G ,P), where P factorizes of G and P is
given as a set of conditional probability distributions (CPDs)

P ( Xi | PaXi
) for all Xi .

Example

z P ( z )

0 1/2
1 1/2

x z P ( x | z )

0 0 1
1 0 0

0 1 1/2
1 1 1/2

y z P ( y | z )

0 0 1
1 0 0

0 1 1/2
1 1 1/2

redundant

CPDs: 5 non-redundant parameters

Full distribution: 7 non-redundant parameters
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Generative models

Bayesian networks describe how to generate data: forward sampling
1 Pick S : Which season is it? (P ( S ))
2 Pick F : Does the patient have flu? (P ( F | S ))
3 Pick H: Does the patient have hayfever? (P ( H | S ))
4 Pick M: Does the patient have muscle pain? (P ( M | F ))
5 Pick C : Does the patient have congestion? (P ( C | F ,H ))

Hence are often called generative models
I Encode modeling assumptions (independencies, form of distributions)

In practice, we do not want to generate data
I Some variables are observed
I Goal is to infer properties of the other variables

Season

Flu Hayfever

CongestionMusclePain

Diseases

Environment

Symptoms
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Querying a distribution (1)

Consider a joint distribution on a set of variables X
Let E ⊆ X be a set of evidence variables that takes values e

Let W = X \ E be the set of latent variables

Let Y ⊆ W be a set of query variables

Let Z =W \ Y be the set of non-query variables

Example

X = { Season,Congestion,MusclePain,Flu,Hayfever }
E = { Season,Congestion,MusclePain }
e = {Season: Spring,Congestion: Yes,MusclePain: No }
W = {Flu,Hayfever }
Y = {Flu }
Z = {Hayfever }
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Querying a distribution (2)
1 Conditional probability query

I Compute the posterior distribution of the query variables
P (Y | e )

2 MAP query
I Compute the most likely value of the latent variables

MAP(W | e) = argmaxw P ( w | e ) = argmaxw P ( w , e )
3 Marginal MAP query

I Compute the most likely value of the query variables
MAP(Y | e) = argmaxy P ( y | e ) = argmaxy

∑
z P ( y , z , e )

Example

P (W | e ) Flu ¬Flu

Hayfever 5% 35%
¬Hayfever 40% 20%

1 P ( Flu | Spring,Congestion,¬MusclePain ) → Yes (45%), No (55%)

2 MAP(Flu,Hayfever | Spring,Congestion,¬MusclePain) → Only flu

3 MAP(Flu | Spring,Congestion,¬MusclePain) → No flu (!)
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Probabilistic inference

Probabilistic inference = compute (properties of) posterior P (Y | e )

Example: use forward sampling (naive)
1 Sample from the BN
2 Drop sample if does not agree with evidence
3 Repeat until sufficiently many samples have been retained
4 Investigate the values of the latent variables in these samples

→ This usually does not scale (unless evidence at “roots” only)

Many methods (not discussed here)
I Variable elimination
I Message passing methods
I Markov-Chain Monte Carlo methods
I Variational inference
I . . .

Key: exploit independencies of BN → d-separation property

19 / 46



Can X influence Y via Z?

Consider variables X , Y , and Z . Example model: flip coin, add result to
sum of parents.

Network Z latent Z observed

Indirect causal effect

X Z Y
Active
(X 6⊥ Y )

Not active
(X ⊥ Y | Z )

Indirect evidential effect

Y Z X
Active
(X 6⊥ Y )

Not active
(X ⊥ Y | Z )

Common cause

X Z Y
Active
(X 6⊥ Y )

Not active
(X ⊥ Y | Z )

Common effect

X Z Y
Not active
(X ⊥ Y )

active
(X 6⊥ Y | Z )
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d-separation

Definition

Let G be a BN structure and X1 � . . .� Xn be a trail in G . Denote by E
the set of observed variables. The trail X1 � . . .� Xn is active given E if

Whenever we have a v-structure Xi−1 → Xi ← Xi+1 (common effect),
then Xi or one of its descendants at in Z, and

no other node along the trail is in Z.

Definition

Let X , Y, and Z be three sets of vertices in G . We say that X and Y are
d-separated given Z, denoted d-sep(X ;Y | Z), if there is no active trail
between any node X ∈ X and Y ∈ Y given Z.

Theorem (soundness)

If P factorizes over G and d-sep(X ;Y | Z), then (X ⊥ Y | Z).
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Plate notation

Suppose we observe the result X1, . . . ,Xn of n independent coin flips
We want to infer the probability of heads θ
Generative model

I Prior: θ ∼ Beta(α, β)
I Flips: for all i , Xi ∼ Bernoulli(θ)
I α, β are hyperparameters (fixed); θ is latent; X1, . . . ,Xn is observed

Plate notation is a shortcut for “repeated” variables/subgraphs
I Can be stacked (nested repeats)
I Can be overlapping (all combinations of multiple indices)

α β

θ

X1 X2 · · · Xn

α β

θ

Xi

i = 1, . . . , n

Standard notation Plate notation 22 / 46
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Recap: Latent factor models

m users, n items, m × n rating matrix D

Revealed entries Ω = { (i , j) | rating Dij is revealed }
User factors Lm×r , movie factors Rr×n

Objective: argminL,R

∑
(i ,j)∈Ω

[
(Dij − [LR]ij)

2 + λL‖L‖2
F + λR‖R‖2

F

]
Prediction: D̂ij = Li∗R∗j = [LR]ij

R
Avatar The Matrix Up
(2.24) (1.92) (1.18)

L

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)
Bob 3 2 ?

(1.21) (2.7) (2.3) (1.4)
Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7) D

L

R

DijLi∗

R∗j
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Recap: Normal distribution (Gaussian distribution)

Mean µ ∈ R, variance σ2 ∈ R (or precision λ = 1/σ2)
Denoted Normal(µ, σ2)

Probability density function: p(x) = 1√
2πσ2

exp(− (x−µ)2

2σ2 )

µ = 0 µ = 5

σ2 = 1
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Recap: Multivariate normal distribution

Mean µ ∈ Rk , covariance Σ ∈ Rk×k (or precision Λ = Σ−1)
Denoted Normal(µ,Σ)
Let |Σ| be the determinant of Σ. If Σ is positive definite:

p(x) =
1√

(2π)k |Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ))
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Probabilistic linear model with Gaussian noise (PMF)

Hyperparameters: σL (sd of entries of L), σR (sd of R), σ (sd of noise)
1 For each user i , draw Li∗ from Normal(0, σ2

LI)
2 For each movie j , draw R∗j from Normal(0, σ2

RI)
3 For each rating (i , j), draw Dij from Normal([LR]ij , σ

2)

σL σR

Li∗ R∗j

Dij

σ

i = 1, . . . ,m
j = 1, . . . , n
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Let’s analyze: posterior distribution

p(L,R | D, σ2, σ2
L, σ

2
R)

=
p(L,R,D | σ2, σ2

L, σ
2
R)

p(D | σ2, σ2
L, σ

2
R)

∝ p(L,R,D | σ2, σ2
L, σ

2
R)

= p(D | L,R, σ2)p(L | σL2)p(R | σ2
R)

∝
[ ∏

(i ,j)∈Ω

exp
(
−

(Dij − [LR]ij)
2

2σ2

)]

·
[∏
i ,k

exp
(
− L2

ik

2σ2
L

)]

·
[∏
k,j

exp
(
− R2

ik

2σ2
R

)]
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Let’s analyze: MAP estimate

MAP(L,R | D, σ2, σ2
L, σ

2
R)

= argmax
L,R

p(L,R, | D, σ2, σ2
L, σ

2
R)

= argmin
L,R

− ln p(L,R | D, σ2, σ2
L, σ

2
R)

= argmin
L,R

1

2σ2

∑
(i ,j)∈Ω

(Dij − [LR]ij)
2 +

1

2σ2
L

∑
i ,k

L2
ik +

1

2σ2
R

∑
k,j

R2
kj

= argmin
L,R

∑
(i ,j)∈Ω

(Dij − [LR]ij)
2 +

σ2

σ2
L

∑
i ,k

L2
ik +

σ2

σ2
R

∑
k,j

R2
kj

= argmin
L,R

∑
(i ,j)∈Ω

(Dij − [LR]ij)
2 + λL‖L‖2

F + λR‖R‖2
F

PMF + MAP = latent factor model with L2 regularization
Precision λL = σ2/σ2

L relates variation of noise and factors
Similarly λR = σ2/σ2

R
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Did we achieve anything?

MAP estimate does not allow us to judge uncertainty individually for
each prediction

I Pick (i , j) /∈ Ω
I By assumption, noise is i.i.d. Normal(0, σ2) given L and R

D̂ij ∼ Normal([LR]ij , σ
2)

I With PMF, we can marginalize out L and R.

p(D̂ij | D, σ2, σ2
L, σ

2
R)

=

∫
L,R

p(D̂ij | L,R, σ2)p(L,R | D, σ2, σ2
L, σ

2
R) dL dR

=

∫
L,R

pNormal(D̂ij | [LR]ij , σ
2)p(L,R | D, σ2, σ2

L, σ
2
R) dL dR

I We obtain a “customized” distribution for D̂ij

Better understanding of latent factor models
I Probabilistic models reveal underlying assumptions
I Easier to play with assumptions or integrate additional data points
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Example: Bayesian prob. matrix factorization (BPFM)

(L = UT , R = V)

Goal: automatic complexity control
→ Model mean, variance, and covariance of factors

1 Sample precision matrix for users (ΛU) and movies (ΛV)
2 Sample factor means: e.g., µV ∼ Normal(µ0, (β0ΛV)−1)
3 Sample factors: Vj ∼ Normal(µV,Λ

−1
V )

4 Sample ratings from Normal([UTV]ij , α
−1)

31 / 46Salakhutdinov and Mnih, 2008

http://dl.acm.org/citation.cfm?id=1390267


BPMF: quality on validation data

32 / 46Salakhutdinov and Mnih, 2008

http://dl.acm.org/citation.cfm?id=1390267


BPMF: Example (1)

33 / 46Salakhutdinov and Mnih, 2008

http://dl.acm.org/citation.cfm?id=1390267


BPMF: Example (2)

(A, B, C, D have 4, 24, 319, 660 ratings, respectively) 34 / 46Salakhutdinov and Mnih, 2008

http://dl.acm.org/citation.cfm?id=1390267


Outline

1 Background: Bayesian Networks

2 Probabilistic Matrix Factorization

3 Latent Dirichlet Allocation

4 Summary
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Recap: Probabilistic latent semantic analysis (pLSA)

D is an m × n document-word matrix (normalized to sum to 1)

pLSA reveals topics by factoring D ≈ ΣLR, where
I Σ is an m ×m diagonal matrix
→ Document probabilities

I L is an m × r row-stochastic matrix (rows sum to 1)
→ Topic mixture per document

I R is an r × n row-stochastic matrix (rows sum to 1)
→ Word distribution per topic

36 / 46
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pLSA as a generative model

Generating a word
1 Select document d = di with probability P ( di ) = Σii :
2 Select topic z = zk with probability P ( zk | d ) = Ldk

3 Generate word w = wj with probability P ( wj | z ) = Rzj

Alternative way to write this
1 d ∼ Multinomial(diag(Σ), 1)
2 z ∼ Multinomial(Ld∗, 1)
3 w ∼ Multinomial(Rz∗, 1)
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Problems with pLSA

Not a well-defined generative model of documents
I Learns m mixtures (=rows of L) → m possible values for d
I Not clear how handle documents outside of the training set
→ A “fold-in” heuristic is often used

I Number of parameters grows linearly with number of documents
(mr + nr mixture parameters)
→ Leads to overfitting (reduced via “tempering”)

“No” priors on document-topic (L) or topic-word distributions (R)
I One can show: pLSA related to MAP estimate of LDA with uniform

Dirichlet prior

Latent Dirichlet allocation (LDA) addresses these problems

Σ d z

L

w

R

Nd

m

38 / 46



Dirichlet distribution (1)

Conjugate prior for the multinomial distribution over K categories
Distribution over vectors p ∈ RK

+ satisfying ‖p‖1 =
∑

k pk = 1
p can be seen as parameters of a multinomial distribution:

pk = probability to select category k (in one trial)
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p
1
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Dirichlet distribution (2)

Parameterized by vector α ∈ RK
+ with αk > 0 (“concentration

parameters”)
p(x | α) = 1

B(α)

∏K
k=1 xαk−1

k

Special case: symmetric Dirichlet distribution
I Single concentration parameter α; set αk = α
I α� 1: multinomials concentrate around single category (sparse)
I α� 1: multinomials spread uniformly over categories (dense)
I α = 1: uniform distribution over multinomials
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Latent Dirichlet Allocation (LDA)

Parameters
I ξ ∈ R+: mean number of words per document
I α ∈ Rr

+: concentration parameter for topic mixture (usually α� 1)
I β ∈ Rr×n

+ : word distribution for each topic

For each document:
1 Choose number of words N ∼ Poisson(ξ)
2 Choose topic mixture θ ∼ Dirichlet(α)
3 For each of the N words:

1 Choose a topic zn ∼ Multinomial(θ, 1)
2 Choose a word wn ∼ Multinomial(βzn∗, 1)

α θ z w

β

N

m
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Is this better than pLSA?

One way to measure: generalization performance on new documents
Perplexity is a often used to measure generalization performance
Test set Dtest of mtest previously unseen documents

perplexity(Dtest) = exp

(
−
∑mtest

d=1 log p(wd)∑mtest
d=1 Nd

)
Higher likelihood of test data → lower perplexity

5225 scientific abstracts (90% train, 10% test)
42 / 46Blei et al., 2003.

http://dl.acm.org/citation.cfm?id=944937


LDA example
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β

z

Blei et al., 2003.

http://dl.acm.org/citation.cfm?id=944937


Outline

1 Background: Bayesian Networks

2 Probabilistic Matrix Factorization

3 Latent Dirichlet Allocation

4 Summary
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Lessons learned

Bayesian networks
I Models direct probabilistic interaction via a directed acyclic graph
I Priors + model + data → posterior (via probabilistic inference)
I Posterior captures belief about the values of latent variables

Probabilistic matrix factorization (for collaborative filtering)
I PMF + MAP inference = latent factor models with L2 regularization
I Can be customized in various ways
I Allows quantifying the uncertainty of each prediction

Latent dirichlet allocation (for topic modelling)
I Widely used generative model for text corpora
I Addresses some limitations of pLSI
I Many extensions exist (e.g., to add supervision or n-gram modelling)
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Suggested reading

Daphne Koller, Nir Friedman
Probabilistic Graphical Models: Principles and Techniques (Ch. 3)
The MIT Press, 2009

Ruslan Salakhutdinov, Andriy Mnih
Probabilistic Matrix Factorization
Advances in Neural Information Processing Systems (NIPS), 2008
http://machinelearning.wustl.edu/mlpapers/paper_files/

NIPS2007_1007.pdf

David M. Blei, Andrew Y. Ng, Michael I. Jordan
Latent Dirichlet Allocation
Journal of Machine Learning Research 3, 2003
http://dl.acm.org/citation.cfm?id=944937
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