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Introduction to Tensors

• What is a … tensor? 

• Basic Operations 

• CP Decompositions and Tensor Rank 

• Matricization and Computing the CP



Dear Tullio, 
!
I admire the elegance of your 
method of computation; it 
must be nice to ride through 
these fields upon the horse of 
true mathematics while the 
like of us have to make our 
way laboriously on foot. 
!
Cheers, Albert

Tullio Levi-Civita



What is a … tensor?
• A tensor is a multi-way extension of a matrix 

• A multi-dimensional array 

• A multi-linear map 

• In particular, the following  
are all tensors: 

• Scalars 

• Vectors 

• Matrices
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Why Tensors?
• Tensors can be used when matrices are not enough 

• A matrix can represent a binary relation 

• A tensor can represent an n-ary relation 

• E.g. subject–predicate–object data 

• A tensor can represent a set of binary relations 

• Or other matrices 

• A matrix can represent a matrix 

• A tensor can represent a series/set of matrices 

• But using tensors for time series should be approached with care



Terminology
• Tensor is N-way array 

• E.g. a matrix is a 2-way array 

• Other sources use: 

• N-dimensional 

• But is a 3-dimensional vector a 1-dimensional tensor? 

• rank-N 

• But we have a different use for the word rank 

• A 3-way tensor can be N-by-M-by-K dimensional  

• A 3-way tensor has three modes 

• Columns, rows, and tubes



Fibres and Slices
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[38], PARAFAC2 [92], CANDELINC [39], DEDICOM [93], and PARATUCK2 [100],
and their applications. Section 6 provides information about software for tensor com-
putations. We summarize our findings in §7.

2. Notation and preliminaries. In this review, we have tried to remain as consis-
tent as possible with terminology that would be familiar to applied mathematicians
and the terminology of previous publications in the area of tensor decompositions.
The notation used here is very similar to that proposed by Kiers [122]. Other stan-
dards have been proposed as well; see Harshman [94] and Harshman and Hong [96].

The order of a tensor is the number of dimensions, also known as ways or modes.3
Vectors (tensors of order one) are denoted by boldface lowercase letters, e.g., a. Matri-
ces (tensors of order two) are denoted by boldface capital letters, e.g., A. Higher-order
tensors (order three or higher) are denoted by boldface Euler script letters, e.g., X.
Scalars are denoted by lowercase letters, e.g., a.

The ith entry of a vector a is denoted by ai, element (i, j) of a matrix A is
denoted by aij , and element (i, j, k) of a third-order tensor X is denoted by xijk.
Indices typically range from 1 to their capital version, e.g., i = 1, . . . , I. The nth
element in a sequence is denoted by a superscript in parentheses, e.g., A(n) denotes
the nth matrix in a sequence.

Subarrays are formed when a subset of the indices is fixed. For matrices, these
are the rows and columns. A colon is used to indicate all elements of a mode. Thus,
the jth column of A is denoted by a:j , and the ith row of a matrix A is denoted by
ai:. Alternatively, the jth column of a matrix, a:j , may be denoted more compactly
as aj .

Fibers are the higher order analogue of matrix rows and columns. A fiber is
defined by fixing every index but one. A matrix column is a mode-1 fiber and a
matrix row is a mode-2 fiber. Third-order tensors have column, row, and tube fibers,
denoted by x:jk, xi:k, and xij:, respectively; see Figure 2.1. When extracted from the
tensor, fibers are always assumed to be oriented as column vectors.

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k
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(c) Mode-3 (tube) fibers: xij:

Fig. 2.1: Fibers of a 3rd-order tensor.

Slices are two-dimensional sections of a tensor, defined by fixing all but two
indices. Figure 2.2 shows the horizontal, lateral, and frontal slides of a third-order
tensor X, denoted by Xi::, X:j:, and X::k, respectively. Alternatively, the kth frontal

3In some fields, the order of the tensor is referred to as the rank of the tensor. In much of the
literature and this review, however, the term rank means something quite di↵erent; see §3.1.
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slice of a third-order tensor, X::k, may be denoted more compactly as Xk.
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(a) Horizontal slices: Xi::
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(b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2: Slices of a 3rd-order tensor.

The norm of a tensor X 2 RI1⇥I2⇥···⇥IN is the square root of the sum of the
squares of all its elements, i.e.,

kX k =

vuut
I1X

i1=1

I2X

i2=1

· · ·

INX

iN=1

x

2
i1i2···iN

.

This is analogous to the matrix Frobenius norm, which is denoted kA k for a matrix
A. The inner product of two same-sized tensors X,Y 2 RI1⇥I2⇥···⇥IN is the sum of
the products of their entries, i.e.,

hX,Y i =
I1X

i1=1

I2X

i2=1

· · ·

INX

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that hX,X i = kX k

2.

2.1. Rank-one tensors. An N -way tensor X 2 RI1⇥I2⇥···⇥IN is rank one if it can
be written as the outer product of N vectors, i.e.,

X = a(1)
� a(2)

� · · · � a(N)
.

The symbol “�” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a

(1)
i1

a

(2)
i2

· · · a

(N)
iN

for all 1  in  In.

Figure 2.3 illustrates X = a � b � c, a third-order rank-one tensor.

2.2. Symmetry and tensors. A tensor is called cubical if every mode is the same
size, i.e., X 2 RI⇥I⇥I⇥···⇥I [49]. A cubical tensor is called supersymmetric (though
this term is challenged by Comon et al. [49] who instead prefer just “symmetric”) if
its elements remain constant under any permutation of the indices. For instance, a
three-way tensor X 2 RI⇥I⇥I is supersymmetric if

xijk = xikj = xjik = xjki = xkij = xkji for all i, j, k = 1, . . . , I.
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Basic Operations

• Tensors require extensions to the standard 
linear algebra operations for matrices 

• But before tensor operations, a recap on 
vectors and matrices



Basic Operations on 
Vectors

• A transpose vT transposes a row vector into a column 
vector and vice versa 

• If v, w ∈ ℝn, v + w is a vector with (v + w)i = vi + wi 

• For vector v and scalar α, (αv)i = αvi   

• A dot product of two vectors v, w ∈ ℝn is v·w = ∑i viwi  

• A.k.a. scalar product or inner product 

• Alternative notations: ⟨v, w⟩, vTw (for column 
vectors), vwT (for row vectors)



Basic Operations on 
Matrices

• Matrix transpose AT has the rows of A as its columns  

• If A and B are n-by-m matrices, then A + B is an  
n-by-m matrix with (A + B)ĳ = mĳ + nĳ  

• If A is n-by-k and B is k-by-m, then AB is an n-by-m matrix 
with  
 

• Vector outer product vwT (for column vectors) is the 
matrix product of n-by-1 and 1-by-m matrices

(AB)�j =
kX

�=1
���b�j



Intuition for Matrix 
Multiplication

• Element (AB)ĳ is the inner product of row i of 
A and column j of B

�

�

�



Intuition for Matrix 
Multiplication

• Column j of AB is the linear combination of 
columns of A with the coefficients coming 
from column j of B

� � �

�

�



Intuition for Matrix 
Multiplication

• Matrix AB is a sum of k matrices albl
T 

obtained by multiplying the l-th column of A 
with the l-th row of B

��



Tensor Basic Operations
• A multi-way vector outer product is a tensor 

where each element is the product of corresponding 
elements in vectors:  

• Tensor sum of two same-sized tensors is their 
element-wise sum 

• A tensor inner product of two same-sized tensors is 
the sum of the element-wise products of their values:
hX ,Yi =
P�

�=1

PJ
j=1 · · ·
PZ

z=1 ��j···zy�j···z

(X + Y)�jk = ��jk + y�jk

(� � b � c)�jk = ��bjck



Norms and Distances
• The Frobenius norm of a matrix M is  

||M||F = (Σi,j mĳ
2)1/2  

• Can be used as a distance between two 
matrices: d(M, N) = ||M – N||F  

• Similar Frobenius distance on tensors is  

• Equivalently 

d(X ,Y) =
ÄP

�,j,k(��jk � y�jk)2
ä1/2

p
hX � Y,X � Yi



CP Decomposition and 
Tensor Rank

• A matrix decomposition represents the given matrix as a 
product of two (or more) factor matrices 

• The rank of a matrix M is the  

• Number of linearly independent  rows (row rank) 

• Number of linearly independent columns (column rank) 

• Number of rank-1 matrices needed to be summed to get M 
(Schein rank) 

• A rank-1 matrix is an outer product of two vectors 

• They all are equivalent
This we generalize



Rank-1 Tensors

X = a�b

X

a

b

=

X = a�b� c

X

a

b

c

=



The CP Tensor 
Decomposition

xijk ⇡
RX

r=1

airbjrckr

⇡X

a1 a2 aR

bRb2b1

c1 c2 cR

+ + · · ·+



More on CP
• The size of the CP decomposition is the 

number of rank-1 tensors involved 

• The factorization can also be written using N 
factor matrices (for order-N tensor) 

• All column vectors are collected in one 
matrix, all row vectors in other, all tube 
vectors in third, etc.



CANDECOM, PARAFAC, ...
Tensor Decompositions and Applications 9

Name Proposed by
Polyadic Form of a Tensor Hitchcock, 1927 [105]
PARAFAC (Parallel Factors) Harshman, 1970 [90]
CANDECOMP or CAND (Canonical decomposition) Carroll and Chang, 1970 [38]
Topographic Components Model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

Table 3.1: Some of the many names for the CP decomposition.

where R is a positive integer, and ar ⌃ RI , br ⌃ RJ , and cr ⌃ RK , for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk ⇧
R⇤

r=1

air bjr ckr, for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

This is illustrated in Figure 3.1.

X

c1 c2

aR

b1

a1

b2

a2

bR

cR

≈ + + · · ·+

Fig. 3.1: CP decomposition of a three-way array.

The factor matrices refer to the combination of the vectors from the rank-one
components, i.e., A =

�
a1 a2 · · · aR

⇥
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see §2.4):

X(1) ⇧ A(C⇥B)T, (3.2)

X(2) ⇧ B(C⇥A)T,

X(3) ⇧ C(B⇥A)T.

Recall that ⇥ denotes the Khatri-Rao product from §2.6. The three-way model is
sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk ⇧ AD(k)BT where D(k) ⌅ diag(ck:) for k = 1, . . . ,K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slice-wise expressions do not easily extend beyond three dimensions. Follow-
ing Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed
as

X ⇧ JA,B,CK ⌅
R⇤

r=1

ar ⇤ br ⇤ cr.
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Tensor Rank

X

a1 a2 aR

bRb2b1

c1 c2 cR

+ + · · ·+=

• The rank of a tensor is the minimum number of 
rank-1 tensors needed to represent the tensor exactly 

• The CP decomposition of size R  

• Generalizes the matrix Schein rank



Tensor Rank Oddities #1
• The rank of a (real-valued) 

tensor is different over 
reals and over complex 
numbers. 

• With reals, the rank can 
be larger than the largest 
dimension 

• rank(X) ≤ min{Ĳ, IK, JK} 
for I-by-J-by-K tensor

X =

✓✓
1 0
0 1

◆
,

✓
0 1
�1 0

◆◆

A =
1p
2

✓
1 1
�i i

◆
,

B =
1p
2

✓
1 1
i �i

◆
,

C =

✓
1 1
i �1

◆

A =

✓
1 0 1
0 1 �1

◆
,

B =

✓
1 0 1
0 1 1

◆
,

C =

✓
1 1 0
�1 1 1

◆



Tensor Rank Oddities #2
• There are tensors of rank R that can be approximated 

arbitrarily well with tensors of rank R’ for some R’ < R. 

• That is, there are no best low-rank approximation for 
such tensors. 

• Eckart–Young-theorem shows this is impossible 
with matrices. 

• The smallest such R’ is called the border rank of 
the tensor.



Tensor Rank Oddities #3
• The rank-R CP decomposition of a rank-R tensor is 

essentially unique under mild conditions. 

• Essentially unique = only scaling and permuting 
are allowed. 

• Does not contradict #2, as this is the rank 
decomposition, not low-rank decomposition. 

• Again, not true for matrices (unless orthogonality 
etc. is required).



Tensor Matricization and 
New Matrix Products

• Tensor matricization unfolds an N-way tensor into a matrix 

• Mode-n matricization arranges the mode-n fibers as 
columns of a matrix, denoted X(n)  

• As many rows as is the dimensionality of the nth mode 

• As many columns as is the product of the dimensions of 
the other modes 

• If     is an N-way tensor of size I1×I2×…×IN, then X(n) maps 
element                 into (iN, j) where 
X

��1,�2,...,�N

j = 1 +
NX

k=1
(�k � 1)Jk[k 6= n] with Jk =

k�1Y

m=1
�m[m 6= n]



X(3) =

✓
1 0 0 1
0 -1 1 0

◆

✓
0 1
-1 0

◆

Matricization Example
✓
1 0
0 1

◆
X =

X(1) =

✓
1 0 0 1
0 1 �1 0

◆

X(2) =

✓
1 0 0 �1
0 1 1 0

◆



X1 =

✓
1 3
2 4

◆
X2 =

✓
5 7
6 8

◆

X(1) =

✓
1 3 5 7
2 4 6 8

◆

X(2) =

✓
1 2 5 6
3 4 7 8

◆

X(3) =

✓
1 2 3 4
5 6 7 8

◆

Another matricization 
example



Hadamard Matrix Product

• The element-wise matrix product 

• Two matrices of size n-by-m, resulting matrix 
of size n-by-m

A�B =

0
BB@

�1,1b1,1 �1,2b1,2 · · · �1,mb1,m
�2,1b2,1 �2,2b2,2 · · · �2,mb2,m

...
...

. . .
...

�n,1bn,1 �n,2bn,2 · · · �n,mbn,m

1
CCA



Kronecker Matrix Product
• Element-per-matrix product 

• n-by-m and j-by-k matrices A and B give  
nj-by-mk matrix A⊗B 

A ⌦ B =

0
BB@

�1,1B �1,2B · · · �1,mB
�2,1B �2,2B · · · �2,mB

...
...

. . .
...

�n,1B �n,2B · · · �n,mB

1
CCA



Khatri–Rao Matrix Product
• Element-per-column product 

• Number of columns must match 

• n-by-m and k-by-m matrices A and B give  
nk-by-m matrix A⊙B 

A � B =

0
BB@

�1,1b1 �1,2b2 · · · �1,mbm
�2,1b1 �2,2b2 · · · �2,mbm

...
...

. . .
...

�n,1b1 �n,2b2 · · · �n,mbm

1
CCA



Some identities

A+ is the Moore–Penrose pseudo-inverse

(A ⌦ B)(C ⌦ D) = AC ⌦ BD
(A ⌦ B)+ = A+ ⌦ B+
A � B � C = (A � B) � C = A � (B � C)

(A � B)T (A � B) = ATA�BTB

(A � B)+ =
�
(ATA)� (BTB)

�+(A � B)T



Another View on the CP
• Using matricization and Khatri–Rao, we can 

re-write the CP decomposition 

• One equation per mode

X(1) = A(C � B)T

X(2) = B(C � A)T

X(3) = C(B � A)T



Solving CP: The ALS 
Approach

1.Fix B and C and solve A  

2.Solve B and C similarly 

3.Repeat until convergence

R-by-R matrix

min
A

��X(1) � A(C � B)T
��
F

A = X(1)
�
(C � B)T
�+

A = X(1)(C � B)(CTC�BTB)+



Wrap-up

• Tensors generalize matrices 

• Many matrix concepts generalize as well 

• But some don’t 

• And some behave very differently 

• We’ve only started with the basic of tensors…
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