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- What is a ... tensor?
- Basic Operations
- CP Decompositions and Tensor Rank

- Matricization and Computing the CP
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What is a ... tensor?

- A tensor is a multi-way extension of a matrix
- A multi-dimensional array
- A multi-linear map

 In particular, the following
are all tensors:

* Scalars
* Vectors

« Matrices



Why Tensors?

» Tensors can be used when matrices are not enough
* A matrix can represent a binary relation
- A tensor can represent an n-ary relation
* E.g. subject-predicate-object data
- A tensor can represent a set of binary relations
* Or other matrices
* A matrix can represent a matrix
- A tensor can represent a series/set of matrices

- But using tensors for time series should be approached with care



Terminology

- Tensor is N-way array

- E.g. a matrix is a 2-way array

« Other sources use:

* N-dimensional
- Butis a 3-dimensional vector a 1-dimensional tensor?
* rank-N
- But we have a different use for the word rank
- A 3-way tensor can be N-by-M-by-K dimensional
- A 3-way tensor has three modes

« Columns, rows, and tubes



Fibres and Slices
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(a) Mode-1 (column) fibers: x.;; (b) Mode-2 (row) fibers: x;.x
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(a) Horizontal slices: X;..
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(b) Lateral slices: X.;.

(c) Mode-3 (tube) fibers: x;;.

(c) Frontal slices: X.., (or Xp)

Kolda & Bader 2009



Basic Operations

- Tensors reguire extensions to the standard
linear algebra operations for matrices

- But before tensor operations, a recap on
vectors and matrices



Basic Operations on
Vectors

T .
- A transpose v transposes a row vector into a column
vector and vice versa

* Ifv, we IRn, v + wis a vector with (v + w); = v; + w;

* For vector v and scalar a, (av); = av;

- A dot product of two vectors v, w € R” is v-w = >i ViW;
- Ak.a. scalar product or inner product

* Alternative notations: (v, w), v'w (for column

-
vectors), vw (for row vectors)



Basic Operations on
Matrices

T .
* Matrix transpose A has the rows of A as its columns

* If A and B are n-by-m matrices, then A + B is an

n-by-m matrix with (A + B); = m; + n;

* If A is n-by-k and B is k-by-m, then AB is an n-by-m matrix
with

K
(AB); = Z Aig by,
=1

T .
* Vector outer product vw (for column vectors) is the
matrix product of n-by-1 and 1-by-m matrices



Intuition for Matrix
Multiplication

* Element (AB); is the inner product of row / of

A and columnj of B




Intuition for Matrix
Multiplication
* Columnj of AB is the linear combination of

columns of A with the coefficients coming

from columnj of B
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Intuition for Matrix
Multiplication

- Matrix AB is a sum of kK matrices a;b,”
obtained by multiplying the /-th column of A
with the /-th row of B
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Tensor Basic Operations

- A multi-way vector outer product is a tensor
where each element is the product of corresponding
elements in vectors:

(aoboc)jx=abjck
 Tensor sum of two same-sized tensors is their

element-wise sum (X + V)ijk = Xijk + Yijk

- A tensor inner product of two same-sized tensors is
the sum of the element-wise products of their values:

I Z
(XI y) — Zl=1 Z'j=1 *e*° ZZ=1 X[j...zyij...z



Norms and Distances

* The Frobenius norm of a matrix M is
|M||F = (Zi; m®)*H?

 Can be used as a distance between two
matrices: d(M, N) = ||M - N||r

* Similar Frobenius distance on tensors Is
1/2
d(x,)) = (Zz,j,k(xijk —Yijk)z)
- Equivalently +/{x =Y, X =)




CP Decomposition and
Tensor Rank

- A matrix decomposition represents the given matrix as a
product of two (or more) factor matrices

- The rank of a matrix M is the
- Number of linearly independent rows (row rank)

- Number of linearly independent columns (column rank)

=

—NUmber of rank-1 matrices needed to be summed to get’

__(Schein rank)
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* A rank-1 matrix is an outer product of two vectori\“-\swe aene!

- They all are equivalent



Rank-1 Tensors
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The CP Tensor

Decomposition
C1 iz

~ b, by ...+
a1 a9




More on CP

* The size of the CP decomposition is the
number of rank-1 tensors involved

- The factorization can also be written using N
factor matrices (for order-N tensor)

« All column vectors are collected In one
matrix, all row vectors in other, all tube
vectors In third, etc.



CANDECOM, PARAFAC, ...

Name Proposed by

Polyadic Form of a Tensor Hitchcock, 1927 [105]
PARAFAC (Parallel Factors) Harshman, 1970 [90]
CANDECOMP or CAND (Canonical decomposition)  Carroll and Chang, 1970 [38]
Topographic Components Model Mocks, 1988 [166]

CP (CANDECOMP /PARAFAC) Kiers, 2000 [122]

Table 3.1: Some of the many names for the CP decomposition.

Kolda & Bader 2009



Tensor Rank

 The rank of a tensor is the minimum number of

rank-1 tensors needed to represent the tensor exactly
* The CP decomposition of size R

 Generalizes the matrix Schein rank

C1 Co CR

// // /7

X _ b1_|_ by ...+ br




Tensor Rank Oddities #1

 The rank of a (real-valued) X — ( 1 0 < 0 1
tensor is different over ’
reals and over complex

numbers. A 1 /01 11
- -1/’

« With reals, the rank can i
be larger than the largest B — % (% ]171)‘) ,
dimension

C— 11 11\ O
. rank(X) = min{J, IK, JK} - \+1-—-1/1
for I-by-/-by-K tensor




Tensor Rank Oddities #2

here are tensors of rank R that can be approximated
arbitrarily well with tensors of rank R’ for some R’ < R.

- That is, there are no best low-rank approximation for
such tensors.

- Eckart-Young-theorem shows this is impossible
with matrices.

he smallest such R’ is called the border rank of

the tensor.



Tensor Rank Oddities #3

* The rank-R CP decomposition of a rank-R tensor is
essentially unigue under mild conditions.

- Essentially unique = only scaling and permuting
are allowed.

« Does not contradict #2, as this is the rank
decomposition, not low-rank decomposition.

» Again, not true for matrices (unless orthogonality
etc. Is required).



Tensor Matricization and
New Matrix Products

- Tensor matricization unfolds an N-way tensor into a matrix

- Mode-n matricization arranges the mode-n fibers as

columns of a matrix, denoted X,
- As many rows as Is the dimensionality of the nth mode

- As many columns as is the product of the dimensions of

the other modes

» If X'is an N-way tensor of size I, x/,%...xly, then X,, maps

element x;, i, ... i Into (iy, j) where

lllll

N k—1
j=1+ > (= 1Ylk #n] with Ji = | [ Im[m # n]
k=1 m=1



Matricization Example



Another matricization
example

I 3 S
w=(ed) xe=(od)

1 3 5 7
XW:(Q 4 6 8)
1 2 5 6
X(Q):(s 4 7 8>
1 2 3 4
X(3)2<5 6 7 8)



Hadamard Matrix Product

- The element-wise matrix product

- Two matrices of size n-by-m, resulting matrix
of size n-by-m

(A1,101,1 a1,201,2 -+ A1,mbim)
a1b2,1 Qz2b22 -+ QA2,mb2m

\an,lbn,l an2bpnz2 - an,mbn,m)



Kronecker Matrix Product

- Element-per-matrix product
* n-by-m and j-by-k matrices A and B give
nj-by-mk matrix A®B

a;, 1B a; 2B --- ai;mB

ai1B azB --- amB
A®B =

an,]_B an,ZB °c e an,mB



Khatri-Rao Matrix Product

- Element-per-column product

 Number of columns must match

* n-by-m and k-by-m matrices A and B give
nk-by-m matrix A©B

(ai,ibi aizbz -+ aimbm)
azi1by azoby - azmbm
AoB=

\an,lbl an2by --- an,mbm]



Some identities

(A B)(C®D)=AC®BD
(A B)" =AT ®B"
AoeBoC=(AeoeB)oC=Ao0(Bo ()
(AeB) (AeB)=A"A *xB'B
(AeB)* =((ATA) * (B'B))" (Ae B)’

A" is the Moore-Penrose pseudo-inverse



Another View on the CP

- Using matricization and Khatri-Rao, we can
re-write the CP decomposition

- One equation per mode

X1y=A(CeB)"
X2)y=B(CeoA)
X3 =C(Bo A)'



Solving CP: The ALS
Approach

1.Fix B and C and solve A

2.50lve B and C similarly

3.Repeat until convergence

A = X(1)(Co B(C'C * B'B)®

N

R-by-R matrix



Wrap-up

- Tensors generalize matrices

- Many matrix concepts generalize as well
- But some don't
- And some behave very differently

- We’'ve only started with the basic of tensors...
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