Tensors In Data
Analysis

15 May 2014

l l I I I max planck institut
informatik



Tensors In Data Analysis

1. CP and INDSCAL and some applications
2. The Tucker tensor decompositions

3. HOSVD, RESCAL, and DEDICOM

4. The non-negative variants
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CP Recap (Matrix View)
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The INDSCAL
Decomposition

- The INDSCAL decomposition decomposes a 3-
way tensor X into two factor matrices A and C
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More on INDSCAL

- First two modes of X are expect to be
symmetric

- Not mandatory, but must have same
dimensions

- Commonly computed by solving CP and
hoping A and B merge

* End by forcing A and B the same and
update C



Why INDSCAL

- INDSCAL keeps the symmetry of the modes
- Stands for Individual Differences in Scaling

- Assume K subjects ranked the similarity of
N objects

- Assume each subject is influenced by the
same factors, but with different weights

* A contains the factors, C gives the weights



INDSCAL Example

» Carroll and Chang (1970) proposed to use
INDSCAL and CANDECOMP (CP) to analyse
psychological data

- PCA has long history in psychology

- Example: 20 subjects rate the similarity of
countries

* Multi-way data

Carroll, J.D. & Chan, J.-J., 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young” decomposition.
Psychometrika 35(3), pp. 283-319


http://dx.doi.org/10.1007/BF02310791
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Fluorescence Excitation-
Emission Analysis

- Fluorescence spectroscopy analyses (typically)
organic compounds

- A beam of (UV) light excites electrons in
molecules

- The excited electrons release a photon, which is
measured

* A fluorescence landscape of a compound is a
rank-1 matrix that maps the exciter’s
wavelength to the emitted photon’s wavelength

- Lets us to identify the compounds



CP for Fluorescence
Analysis

- Samples-by-excitation wavelengths-by-emission wavelengths
tensor X

- Matrix bic;" is the landscape for the ith component

- Vector a; gives the weights of landscapes in each sample

Samples
|><

Emission

Acar, Evrim, and B Yener. 2009. “Unsupervised Multiway Data Analysis: a Literature Survey.” IEEE Transactions on Knowledge and Data Engineering 21(1). pp. 6—20.


http://dx.doi.org/10.1109/TKDE.2008.112

TOPHITS for IR

* Three-way pages-by-pages-by-anchor text
tensor T

- Element tjx = max{1+log(xjk), O} where Xj Is
the number of times page i links to pageJ
using term k

- The CP decomposition of T behaves akin to HITS
* Each rank-1 component is one topic

- A and B give the authority and hub scores, C
gives the weights for terms

Kolda, Tamara G, Brett W Bader, and J P Kenny 2005. “Higher-Order Web Link Analysis Using Multilinear Algebra.” In ICDM '05, 242—-49. IEEE. doi:10.1109/ICDM.2005.77.


http://dx.doi.org/10.1109/ICDM.2005.77

The Tucker
Decompositions

* The CP decomposition requires the factors to
have the same number of columns

 In Tucker decompositions, different number of
columns can be mixed using a core tensor

- This enables very different looking
decompositions



Tensor-Vector
Multiplication

* Vectors can be multiplied with tensors along
specific modes

* For n-th mode multiplication, the tensor’s
dimensionality in mode n must agree with the
vector’'s dimensions

- The n-mode vector product is denoted XXV
* The result is of order N-1
.« (X x NV )igein_1ins1-iy = Zin=1 Xiqiyeiy Vi,

 Inner product between mode-n fibres and
vector v



Tensor-Vector
Multiplication Example

Given tensor T and vector v,
1 3 5 7
T1=(2 4)T2=(6 8) v=(2 1)

Computing V) =7 X3V gives

7 13
V= (10 16)



Tensor-Matrix
Multiplication

- Let X be an N-way tensor of size [1X/>X... X,
and let U be a matrix of size J X/,

« The n-mode matrix product of X with U, X
Xn U is of size 1 XIxX...X[h-1 X)X [n+1X... XN
(X X0 U)igein_vfineriv = 24 =1 Xiviz-in Yjin
- Each mode-n fibre is multiplied by the
matrix U

* |n terms of unfold tensors:
YV=XxplU &< Y =UXn)



Tensor-Matrix
Multiplication Example

Given tensor 7 and matrix M,

10 0
T1=G 2) T2=(€53 273) M=| 0 100
1 1
Computing YV =7 X1 M gives

10 30 50 060
Yi=|200 400 Y, =600 800

3 7 11 15

)



The Tucker3 Tensor

Decomposition
B
X ~| A S

P Q R
Xijk ~ Z L L JpqrQipbjqCir

p=1qg=1r=1



Tucker3 Decomposition

* The Tucker3 tensor decomposition
decomposes the tensor into three factor
matrices A, B, and C, and a core tensor G

- A has P, B has Q, and C has R columns and G Is
P-by-Q-by-R
- Many degrees of freedom: often A, B, and C are
required to be orthogonal

- If P=Q=R and core tensor G is hyper-diagonal,

then Tucker3 decomposition reduces to CP
decomposition



Solving Tucker3

- ALS-style methods are typically used

 The matricized forms are
X1)=AGH(C® B)'

X2)=BG2)(C ®A)
X3)=CG3)(B®A)"

- If factor matrices are orthogonal, we can get
GasG=X X1 A" x2 B" x3C’



HOSVD, Tucker2, RESCAL,
and DEDICOM

- There are many tensor decompositions that
are based on or similar to Tucker3

* Or merge Tucker3 and CP

- Here are few, but the list is by no means
exhaustive



Higher-Order SVD
(HOSVD)

* One method to compute the Tucker3
decomposition

* Set A as the leading P left singular vectors
of X(1)

* Set B as the leading Q left singular vectors
of X(z)

* Set C as the leading R left singular vectors
of X3)

. Settensor Gas X x1 AT x> B” x3C’



Why HOSVD?

* Can be used as is for data analysis
* E.g. TensorkFaces

 Can be used to initialize other Tucker3

algorithms
* |Instead of random A, B, and C



Tucker2 Decomposition

- The Tucker2 decomposition decomposes a 3-
way tensor into a core tensor and two factor
matrices

* Or, third factor matrix is forced to be an
identity matrix

* Core keeps that mode’s dimensionality

G B




Tucker2 Sliced and
Matricized

» The slice-wise Tucker2: X« = AGB' for each k

* Matricized forms replace C with identity
matrix I: X1) = AG(1)(I ® B)' etc.

- To compute Tucker2:
* Solve A and B using the matricized forms
- Update each frontal slice of G separately



Why Tucker??

- Use Tucker2 if you don’t want to factorize one
mode

- Too small dimension (e.g. 500-by-300-by-3)
- This mode requires separate handling

- E.qg. If third mode is time, first Tucker?2
and then time-series analysis on third
mode

- Tucker?2 is slightly simpler than Tucker3



The RESCAL
Decomposition

* The RESCAL decomposition merges
Tucker2 and INDSCAL

- Tensor X is factored into one factor matrix A
and one core tensor R

« Xt = ARA’

- Tensor X might not be symmetric on first two
modes

Nickel, M., Tresp, V., & Kriegel, H.-P. (2011). A Three-Way Model for Collective Learning on Multi-Relational Data (pp. 809-816). Presented at the 28th International
Conference on Machine Learning.


http://www.icml-2011.org/papers/438_icmlpaper.pdf

AL In Picture

j—th entity

i-th entity
®

/&
\

k-th relation

Nickel, M., Tresp, V., & Kriegel, H.-P. (2011). A Three-Way Model for Collective Learning on Multi-Relational Data (pp. 809-816). Presented at the 28th International
Conference on Machine Learning.



http://www.icml-2011.org/papers/438_icmlpaper.pdf

Computing RESCAL (1)

« Mode-1 matricization of RESCAL is
X1 = ARl ® A)'

* This Is hard as A is both left and right

» Simplify: place pairs (Xx Xx") side-by-side
and consider the right A fixed

» The X¢" guide A to fit well also in RHS



Computing RESCAL (2)

* To minimize the error, we minimize
Y — AH (I« ®AT)HF

e Y = [X1 X1TX2 XzT XKXKT]
* H=[R1 Ri"R2R>" ... Rk R("]
. For fixed A" and R, the update rule for A is

A = (ZX_, R +X[ARG) (ZF_, B+ €)™

* Here, Bx = RKA'AR" and C« = R,'/A'AR«



Computing RESCAL (3)

- Each slice R can be updated separately
* Minimize ||vec(Xk) - (A ® A)vec(Ry)|]
+ Linear regression, set vec(Ry) = (A ® A) vec(Xy)

- To avoid computing the pseudo-inverse of big
A ® A, compute the skinny QR decomposition of A

- A = QU, Q column-orthogonal, U upper-
triangular

. Now: ||Xx - ARA|| = || X« - QURU'Q|]
= ||@'X:Q - URWU'|| and update rule as (U ® U)
which is only R*-by-R’



Why RESCAL

« No factorization of the third mode

» Same as in Tucker?

* Only one factor matrix

* We assume some kind of symmetry (INDSCAL)
* E.g. subjects and objects

* Provides "Iinformation flow” between the
modes

- Each frontal slice has a separate "mixing
matrix” for the interactions between factors



The DEDICOM Decomposition:
Matrix Version

- The DEDICOM decomposition is a matrix
decomposition for an asymmetric relation
between entities

- What is the value of export from country / to
country j?

- How many emails person / sent to person j?
- X = ARA’

- A factors the entities

* R explains the asymmetric relation



The DEDICOM Decomposition:
Tensor Version

* The three-way DEDICOM adds weights for
each factor’s participation in each position In
the third mode

- E.g. how much country factor r acts as a
seller or buyer at time k?

- X. = AD.RD.A’

- A and R as before, D is R-by-R-by-K tensor
such that each frontal slice Dk Is diagonal

* (Dk)rr Is the weight for factor r at time k



DEDICOM In Picture

Fig. 5.2: Three-way DEDICOM model.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455-500.


http://epubs.siam.org/doi/abs/10.1137/07070111X?journalCode=siread

Computing DEDICOM:
ASALSAN (1)

+ We want to minimize S« || X< — ADxRDA’|]

- ASALSAN (Alternating Simultaneous
Approximation, Least Squares, and Newton)
IS one way

- Stack pairs (Xk X«'): Y=[X1 X1 ... XkXK']

+ We get ||[Y - AH (I« ® AT)|| with
H = [D.:RD, D:R'D; ... DkRD« D«R' D]

Bader, B. W., Harshman, R. A., & Kolda, T. G. (2007). Temporal Analysis of Semantic Graphs Using ASALSAN (pp. 33—42). Presented at the 7th IEEE International Conference on

Mining, IEEE. doi:10.1109/ICDM.2007.54

Data


http://dx.doi.org/10.1109/ICDM.2007.54

Computing DEDICOM:
ASALSAN (2)

. To update A, fix right A and update the left
A=(XF_ (XkADR"D + XTAD(RDy)) (> _, (Bk + ck))
+ By = DKRD(A"A)DR'D\ and
C« = DiR'D«(A’A)DRDy
- To update R, we use vectors:
(vec(Xl)\ (ADl ®AD1\
mRin ; — . vec(R)
\vec(Xx)) \ADx® AD¢)
- To update D, use Newton’s method for each slice
D




DEDICOM vs. RESCAL vs.
INDSCAL vs. Tucker?2

« RESCAL is a relaxed version of DEDICOM

* Mixing matrix R is different for each slice
- Easier to compute as there’s no tensor D

- Algorithm similar to ASALSAN, but
simpler

« RESCAL iIs to Tucker2 what INDSCAL is to CP

- Share’s INDSCAL's equal factor matrix
» Uses Tucker2’s core



The Non-Negative Variants

- Sometimes having non-negative factors is
beneficial for data analysis

* Improved interpretability
- E.g. physical measurements
- Sparsity

« All of the discussed methods can be cast into
non-negative variants



Non-Negative CP

- The simplest way to compute non-negative
CP iIs to use non-negative least-squares
solver with the matricized equations

‘ minAeRlJ\r/xR ||X(1) —A(Co B)TH
Also multiplicative updates are possible

o9 with Z = (€ © B)

* Also other methods exist

* Air = Ajr




Non-Negative Others

- Also non-negative Tucker[2]|3] can be solved
using multiplicative update rules

- Non-negative ASALSAN yields non-negative
DEDICOM

- Similar algorithm will work for RESCAL



Summary

- Many, many different tensor decomposition

- User’s responsibility to choose the correct
one

- How do the results look like?
- What's the time complexity?

- Most algorithms are geared towards dense
data

- But many data analysis data are sparse



Suggested Reading

* |In addition to those from last time:

* Acar, E., & Yener, B. (2009). Unsupervised
Multiway Data Analysis: A Literature Survey.
IEEE Transactions on Knowledge and Data
Engineering, 21(1), 6-20. doi:10.1109/TKDE.
2008.112

- Shorter and more focused on applications
than Kolda & Bader (2009)



