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Questions of the day 

How can we find useful patterns? 
& 

How can we use patterns? 
 



For a database db 
 a pattern language  and a set of constraints  

 
the goal is to find the set of patterns  ⊆  such that 
 each p ∊  satisfies each c ∊  on db, and  is maximal 

 
That is, find all patterns that satisfy the constraints 
 

 
 

Standard pattern mining 



Problems in pattern paradise 
The pattern explosion 
 high thresholds 

few, but well-known patterns 
 low thresholds 

a gazillion patterns 
 

Many patterns are redundant 
 
Unstable 
 small data change, 

yet different results 
 even when distribution  

did not really change 



The Wine Explosion 

the Wine dataset has 178 rows, 14 columns 



Be careful what you wish for 

The root of all evil is, 
 we ask for all patterns 

that satisfy some constraints, 
 while we want a small set that 

shows the structure of the data 
 
 

In other words, we should ask for  
a set of patterns such that 

 all members of the set satisfy the constraints 
 the set is optimal with regard to some criterion 
 
 



Intuitively 

patterns 
 

a pattern identifies 
local properties  

of the data 
 

e.g. itemsets a toy 0-1 dataset 



Intuition Bad 



Intuition Good 



Optimality and Induction 

What is the optimal set? 
 the set that generalises the data best 
 generalisation = induction 

we should employ an inductive principle 
 

So, which principle should we choose? 
 observe: patterns are descriptive for local parts of the data 
 MDL is the induction principle for descriptions 

 

Hence, MDL is a natural choice 
 
 



MD-what? 

The Minimum Description Length (MDL) principle 
 

given a set of models , the best model M ∊   
is that M  that minimises 

 
 

  in which 
 

    is the length, in bits, of the description of M 
 

         is the length, in bits, of the description of  
        the data when encoded using M 

 

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007) 



Does this make sense? 

Models describe the data 
 that is, they capture regularities 
 hence, in an abstract way, they compress it 

 
MDL makes this observation concrete: 

 
 
 

the best model gives the best lossless compression 
 



Does this make sense? 

 
MDL is related to Kolmogorov Complexity 

 

the complexity of a string is the length of the smallest  
program that generates the string, and then halts 

 
 

Kolmogorov Complexity is the ultimate compression 
 recognizes and exploits any structure 
 uncomputable, however 



Kolmogorov Complexity 

 
 

The Kolmogorov complexity of a binary string s  
is the length of the shortest program s*  

for a universal Turing Machine U  
that generates s and halts. 

   

(Kolmogorov, 1963) 



Kolmogorov Complexity 

 
 

The Kolmogorov complexity of a binary string s  
is the length of the shortest program s*  

for a universal Turing Machine U  
that generates s and halts. 

   

(Kolmogorov, 1963) 



Conditional Complexity 
 
 

The conditional Kolmogorov complexity of a string s 
is the length of the shortest program s* 

for a universal Turing Machine U  
that given string t as input  

generates s and halts. 



Two-part Complexity 

 
 

The two-part Kolmogorov complexity of a string s 
decomposes the shortest program s* into two parts 

 
length of the `algorithm’ 
length of its `parameters’ 

 
 
 

(up to a constant) 



Two-part Complexity 
 
 

The two-part Kolmogorov complexity of a string s 
decomposes the shortest program s* into two parts 

 
length of the `model’,  

length of `data given model’ 
 
 



MDL 

The Minimum Description Length (MDL) principle 
 

given a set of models , the best model M ∊   
is that M  that minimises 

 
 

  in which 
 

    is the length, in bits, of the description of M 
 

         is the length, in bits, of the description of  
        the data when encoded using M 

 

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007) 



To use MDL, we need to define 
 how many bits it takes to encode a model 
 how many bits it takes to encode the data given this model 

 
… what’s a bit? 
 

How to use MDL 



To use MDL, we need to define 
 how many bits it takes to encode a model 
 how many bits it takes to encode the data given this model 

 

Essentially… 
 defining an encoding   ↔  defining a prior 
 codes and probabilities are tightly linked: 

higher probability ↔ shorter code 
 

So, although we don’t know overall probabilities 
 we can exploit knowledge on local probabilities 

 

How to use MDL 



Model 

(Vreeken et al 2011 / Siebes et al 2006) 











Encoding a database 



Optimal codes 
For c ∊ CT define: 

 
 
 
 

 

The optimal code for the coding distribution P 
assigns a code to c ∊ CT with length: 

 

(Shannon, 1948; Thomas & Cover, 1991) 



Encoding a code table 
The size of a code table CT depends on 
 

the left column 
 length of itemsets as encoded with independence model 
 

the right column 
 the optimal code length 

 

Thus, the size of a code table, is 
 
 

 



Encoding a database 
For t ∊ D we have 
 
 

 
Hence we have 

 
 

 



The Total Size 
 
 

The total size of data D and code table CT is 
 
 
 
 

Note, we disregard Cover as it is identical for all CT 
and D, and hence is only a constant 
 
 

 



Easier said than done 
 

 the number of possible code tables is huge 
 no useful structure to exploit 

 

Hence, we resort to heuristics 
 

 
 

 
 

And now, the optimal code table… 



 mine candidates from D 
 
 iterate over candidates 

 Standard Candidate Order 
 

 covers data greedily 
 no overlap 
 Standard Code Table Order 

 
 select by MDL 

 better compression?  
candidates may stay, 
reconsider old elements  
 
 

 
 
 
 
 

KRIMP 



SLIM – smarter KRIMP 

(Smets & Vreeken, SDM’12) 



KRIMP in Action 

Dataset |  | |  | | CT\ | L% 

Accidents 340183 2881487 467 55.1 

Adult 48842   58461763 1303 24.4 

Letter Recog. 20000 580968767 1780 35.7 

Mushroom 8124 5574930437 442 24.4 

Wine 178 2276446 63 77.4 



KRIMP in Action 



KRIMP in Action 



At first glance, yes 
 
 the code tables are characteristic in the MDL-sense 

 they compress well 
 

 the code tables are small 
 consist of few patterns 

 
 the code tables are specific 

 contain relatively long itemsets 
 

But, are these patterns useful? 
 

So, are KRIMP code tables good? 



We tested the quality of the KRIMP code tables by 
 

 classification (ECML PKDD’06) 

 measuring dissimilarity (KDD’07) 

 generating data (ICDM’07) 

 concept-drift detection (ECML PKDD’08) 

 estimating missing values (ICDM’08) 

 clustering (ECML PKDD’09) 

 sub-space clustering (CIKM’09) 

 one-class classification/anomaly detection (SDM’11, CIKM’12) 

 characterising uncertain 0-1 data (SDM’11) 

 tag-recommendation (IDA’12) 

The proof of the pudding 



Let’s assume 
 two databases, db1 and db2 over  
 two corresponding code tables, CT1 and CT2 

 

Then, for an arbitrary transaction t  
 
 
 

 
Hence, the Bayes-optimal choice is to assign t to that 

database that gives the best compression. 
 

 

Compression and Classification 

(Vreeken et al 2011 / Van Leeuwen et al 2006) 



The KRIMP Classifier 
 split database on class 
 find code tables 
 classify by compression 

 

The Goal 
 validation of KRIMP 

 

The Results 
 expected ‘ok’ 
 on par with top classifiers 

 
 
 
 

KRIMP for Classification 



Two transactions encoded by two code tables 
 can you spot the true class labels? 

Classification by Compression 



Partition D into 1 ... n 

such that 

is minimal 

Clustering transaction data 

k=6, MDL optimal 

(Van Leeuwen, Vreeken & Siebes 2009) 



One-Class Classification (aka anomaly detection) 

 lots of data for normal situation – insufficient data for target 
 

Compression models the norm 
 anomalies will have high description length 

 
 

Very nice properties 
 performance         high accuracy 
 versatile                 no distance measure needed 
 characterisation     this part of t can’t be compressed well 

 
 

The Odd One Out 

(Smets & Vreeken, 2011) 



 
Given a stream of itemsets 

STREAMKRIMP 

(Van Leeuwen & Siebes, 2008) 



 
Find the point where the distribution changed 

STREAMKRIMP 



Useful? 
Yup! with Krimp we can do: 
 Classification 
 Dissimilarity Measurement and Characterisation 
 Clustering 
 Missing Value Estimation 
 Anonymizing Data 
 Detect concept drift 
 Find similar tags (subspace clusters) 
 and lots more... 

 
 

And, better than the competition 
 thanks to patterns! (and compression!) (yay!) 

 
 

 



SQS - Selected Results 

PRES. ADDRESSES 
 

unit[ed] state[s] 
take oath 
army navy 
under circumst. 
econ. public expenditur 

JMLR 
 

support vector machine 
machine learning 
state [of the] art 
data set 
Bayesian network 

(Tatti & Vreeken, KDD’12) 



Information Theory offers more than MDL 
 

Modelling by Maximum Entropy (Jaynes 1957) 

 principle for choosing probability distributions 
 

Subjective Significance Testing 
 is result X surprising with regard to what we know?  
 binary matrices (De Bie 2010, 2011) real-valued matrices (ICDM’11) 

 

Subjective Interestingness 
 the most informative itemset: the one that helps most to 

predict the data better (MTV) (KDD’11) 

Beyond MDL… 



MDL is great for picking important and useful patterns 
 
KRIMP approximates the MDL ideal very well 
 vast reduction of the number of itemsets 
 works for other pattern types equally well: 

itemsets, sequences, trees, streams, low-entropy sets 
 

Local patterns and information theory 
 naturally induce good classifiers, clusterers, distance measures 
 with instant characterisation and explanation,  
 and, without (explicit) parameters 

Conclusions 



MDL is great for picking important and useful patterns 
 
KRIMP approximates the MDL ideal very well 
 vast reduction of the number of itemsets 
 works for other pattern types equally well: 

itemsets, sequences, trees, streams, low-entropy sets 
 

Local patterns and information theory 
 naturally induce good classifiers, clusterers, distance measures 
 with instant characterisation and explanation,  
 and, without (explicit) parameters 

Thank you! 
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