
MDL for Pattern Mining
Jilles Vreeken

4 June 2014 (TADA)

Questions of the day

How can we find useful patterns?
&

How can we use patterns?

For a database db
 a pattern language  and a set of constraints 

the goal is to find the set of patterns  ⊆  such that
 each p ∊  satisfies each c ∊  on db, and  is maximal

That is, find all patterns that satisfy the constraints

Standard pattern mining

Problems in pattern paradise
The pattern explosion
 high thresholds

few, but well-known patterns
 low thresholds

a gazillion patterns

Many patterns are redundant

Unstable
 small data change,

yet different results
 even when distribution

did not really change

The Wine Explosion

the Wine dataset has 178 rows, 14 columns

Be careful what you wish for

The root of all evil is,
 we ask for all patterns

that satisfy some constraints,
 while we want a small set that

shows the structure of the data

In other words, we should ask for
a set of patterns such that

 all members of the set satisfy the constraints
 the set is optimal with regard to some criterion

Intuitively

patterns

a pattern identifies
local properties

of the data

e.g. itemsets a toy 0-1 dataset

Intuition Bad

Intuition Good

Optimality and Induction

What is the optimal set?
 the set that generalises the data best
 generalisation = induction

we should employ an inductive principle

So, which principle should we choose?
 observe: patterns are descriptive for local parts of the data
 MDL is the induction principle for descriptions

Hence, MDL is a natural choice

MD-what?

The Minimum Description Length (MDL) principle

given a set of models , the best model M ∊ 
is that M that minimises

 in which

 is the length, in bits, of the description of M

 is the length, in bits, of the description of
 the data when encoded using M

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007)

Does this make sense?

Models describe the data
 that is, they capture regularities
 hence, in an abstract way, they compress it

MDL makes this observation concrete:

the best model gives the best lossless compression

Does this make sense?

MDL is related to Kolmogorov Complexity

the complexity of a string is the length of the smallest
program that generates the string, and then halts

Kolmogorov Complexity is the ultimate compression
 recognizes and exploits any structure
 uncomputable, however

Kolmogorov Complexity

The Kolmogorov complexity of a binary string s
is the length of the shortest program s*

for a universal Turing Machine U
that generates s and halts.

(Kolmogorov, 1963)

Kolmogorov Complexity

The Kolmogorov complexity of a binary string s
is the length of the shortest program s*

for a universal Turing Machine U
that generates s and halts.

(Kolmogorov, 1963)

Conditional Complexity

The conditional Kolmogorov complexity of a string s
is the length of the shortest program s*

for a universal Turing Machine U
that given string t as input

generates s and halts.

Two-part Complexity

The two-part Kolmogorov complexity of a string s
decomposes the shortest program s* into two parts

length of the `algorithm’
length of its `parameters’

(up to a constant)

Two-part Complexity

The two-part Kolmogorov complexity of a string s
decomposes the shortest program s* into two parts

length of the `model’,

length of `data given model’

MDL

The Minimum Description Length (MDL) principle

given a set of models , the best model M ∊ 
is that M that minimises

 in which

 is the length, in bits, of the description of M

 is the length, in bits, of the description of
 the data when encoded using M

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007)

To use MDL, we need to define
 how many bits it takes to encode a model
 how many bits it takes to encode the data given this model

… what’s a bit?

How to use MDL

To use MDL, we need to define
 how many bits it takes to encode a model
 how many bits it takes to encode the data given this model

Essentially…
 defining an encoding ↔ defining a prior
 codes and probabilities are tightly linked:

higher probability ↔ shorter code

So, although we don’t know overall probabilities
 we can exploit knowledge on local probabilities

How to use MDL

Model

(Vreeken et al 2011 / Siebes et al 2006)

Encoding a database

Optimal codes
For c ∊ CT define:

The optimal code for the coding distribution P
assigns a code to c ∊ CT with length:

(Shannon, 1948; Thomas & Cover, 1991)

Encoding a code table
The size of a code table CT depends on

the left column
 length of itemsets as encoded with independence model

the right column
 the optimal code length

Thus, the size of a code table, is

Encoding a database
For t ∊ D we have

Hence we have

The Total Size

The total size of data D and code table CT is

Note, we disregard Cover as it is identical for all CT
and D, and hence is only a constant

Easier said than done

 the number of possible code tables is huge
 no useful structure to exploit

Hence, we resort to heuristics

And now, the optimal code table…

 mine candidates from D

 iterate over candidates

 Standard Candidate Order

 covers data greedily
 no overlap
 Standard Code Table Order

 select by MDL

 better compression?
candidates may stay,
reconsider old elements

KRIMP

SLIM – smarter KRIMP

(Smets & Vreeken, SDM’12)

KRIMP in Action

Dataset |  | |  | | CT\ | L%

Accidents 340183 2881487 467 55.1

Adult 48842 58461763 1303 24.4

Letter Recog. 20000 580968767 1780 35.7

Mushroom 8124 5574930437 442 24.4

Wine 178 2276446 63 77.4

KRIMP in Action

KRIMP in Action

At first glance, yes

 the code tables are characteristic in the MDL-sense

 they compress well

 the code tables are small
 consist of few patterns

 the code tables are specific

 contain relatively long itemsets

But, are these patterns useful?

So, are KRIMP code tables good?

We tested the quality of the KRIMP code tables by

 classification (ECML PKDD’06)

 measuring dissimilarity (KDD’07)

 generating data (ICDM’07)

 concept-drift detection (ECML PKDD’08)

 estimating missing values (ICDM’08)

 clustering (ECML PKDD’09)

 sub-space clustering (CIKM’09)

 one-class classification/anomaly detection (SDM’11, CIKM’12)

 characterising uncertain 0-1 data (SDM’11)

 tag-recommendation (IDA’12)

The proof of the pudding

Let’s assume
 two databases, db1 and db2 over
 two corresponding code tables, CT1 and CT2

Then, for an arbitrary transaction t

Hence, the Bayes-optimal choice is to assign t to that

database that gives the best compression.

Compression and Classification

(Vreeken et al 2011 / Van Leeuwen et al 2006)

The KRIMP Classifier
 split database on class
 find code tables
 classify by compression

The Goal
 validation of KRIMP

The Results
 expected ‘ok’
 on par with top classifiers

KRIMP for Classification

Two transactions encoded by two code tables
 can you spot the true class labels?

Classification by Compression

Partition D into 1 ... n

such that

is minimal

Clustering transaction data

k=6, MDL optimal

(Van Leeuwen, Vreeken & Siebes 2009)

One-Class Classification (aka anomaly detection)

 lots of data for normal situation – insufficient data for target

Compression models the norm
 anomalies will have high description length

Very nice properties
 performance high accuracy
 versatile no distance measure needed
 characterisation this part of t can’t be compressed well

The Odd One Out

(Smets & Vreeken, 2011)

Given a stream of itemsets

STREAMKRIMP

(Van Leeuwen & Siebes, 2008)

Find the point where the distribution changed

STREAMKRIMP

Useful?
Yup! with Krimp we can do:
 Classification
 Dissimilarity Measurement and Characterisation
 Clustering
 Missing Value Estimation
 Anonymizing Data
 Detect concept drift
 Find similar tags (subspace clusters)
 and lots more...

And, better than the competition
 thanks to patterns! (and compression!) (yay!)

SQS - Selected Results

PRES. ADDRESSES

unit[ed] state[s]
take oath
army navy
under circumst.
econ. public expenditur

JMLR

support vector machine
machine learning
state [of the] art
data set
Bayesian network

(Tatti & Vreeken, KDD’12)

Information Theory offers more than MDL

Modelling by Maximum Entropy (Jaynes 1957)

 principle for choosing probability distributions

Subjective Significance Testing
 is result X surprising with regard to what we know?
 binary matrices (De Bie 2010, 2011) real-valued matrices (ICDM’11)

Subjective Interestingness
 the most informative itemset: the one that helps most to

predict the data better (MTV) (KDD’11)

Beyond MDL…

MDL is great for picking important and useful patterns

KRIMP approximates the MDL ideal very well
 vast reduction of the number of itemsets
 works for other pattern types equally well:

itemsets, sequences, trees, streams, low-entropy sets

Local patterns and information theory
 naturally induce good classifiers, clusterers, distance measures
 with instant characterisation and explanation,
 and, without (explicit) parameters

Conclusions

MDL is great for picking important and useful patterns

KRIMP approximates the MDL ideal very well
 vast reduction of the number of itemsets
 works for other pattern types equally well:

itemsets, sequences, trees, streams, low-entropy sets

Local patterns and information theory
 naturally induce good classifiers, clusterers, distance measures
 with instant characterisation and explanation,
 and, without (explicit) parameters

Thank you!

	MDL for Pattern Mining
	Questions of the day
	Standard pattern mining
	Problems in pattern paradise
	The Wine Explosion
	Be careful what you wish for
	Intuitively
	Intuition Bad
	Intuition Good
	Optimality and Induction
	MD-what?
	Does this make sense?
	Does this make sense?
	Kolmogorov Complexity
	Kolmogorov Complexity
	Conditional Complexity
	Two-part Complexity
	Two-part Complexity
	MDL
	How to use MDL
	How to use MDL
	Model
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Encoding a database
	Optimal codes
	Encoding a code table
	Encoding a database
	The Total Size
	And now, the optimal code table…
	Krimp
	Slim – smarter Krimp
	Krimp in Action
	Krimp in Action
	Krimp in Action
	So, are KRIMP code tables good?
	The proof of the pudding
	Compression and Classification
	Krimp for Classification
	Classification by Compression
	Clustering transaction data
	The Odd One Out
	StreamKrimp
	StreamKrimp
	Useful?
	Sqs - Selected Results
	Beyond MDL…
	Conclusions
	Thank you!

