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Questions of the day 

What is information? 
 

How can we measure correlation? 
 

and what do talking drums  
have to do with this? 

 



What is 
 information 
 a bit 
 entropy 
 information theory 
 compression 
 … 

 
 

Bits and Pieces 



Branch of science concerned  
with measuring information 

 

Field founded by Claude Shannon in 1948, 
‘A Mathematical Theory of Communication’ 
 

Information Theory is essentially about 
uncertainty in communication: 

not what you say, but what you could say 
 

Information Theory 



Communication is a series  
of discrete messages 

 
each message reduces the uncertainty  

of the recipient about  
a) the series and b) that message 

 
by how much?  

that is the amount of information 

The Big Insight 



Shannon showed that uncertainty can be quantified, 
linking physical entropy to messages 

 

Shannon defined  
the entropy of a discrete random variable 𝑋 as 

 
𝐻(𝑋)  =  −�𝑃(𝑥𝑖)log 𝑃(𝑥𝑖)

𝑖

 

 

 
 

Uncertainty 



Shannon showed that uncertainty can be quantified, 
linking physical entropy to messages 

 

A side-result of Shannon entropy is that 
 
 

− log2𝑃 𝑥𝑖  
 

gives the length in bits of  
the optimal prefix code  

for a message 𝑥𝑖 
 
 

Optimal prefix-codes 



 
 

Prefix(-free) code:   
a code 𝐶 where no code word 𝑐 ∈ 𝐶  

is the prefix of another 𝑑 ∈ 𝐶 with 𝑐 ≠ 𝑑 

 
 

Essentially, a prefix code defines a tree,  
where each code corresponds to a path  
from the root to a leaf in a decision tree 

What is a prefix code? 



Binary digit 
 smallest and most fundamental piece of information 
 yes or no 
 invented by Claude Shannon in 1948 
 name by John Tukey 
 
 

Bits have been in use for a long-long time, though 
 Punch cards (1725, 1804) 
 Morse code (1844) 
 African ‘talking drums’ 

 

 
 

What’s a bit? 



Morse code 



Punishes ‘bad’ redundancy: 
often-used words are shorter 

 
Rewards useful redundancy:  

cotxent alolws mishaireng/raeding 
 
 

African Talking Drums have used this for  
efficient, fast, long-distance communication 

mimic vocalized sounds: tonal language 
very reliable means of communication 

 

Natural language 



How much information carries a given string? 
how many bits? 

 
 

Say we have a binary string of 10000 ‘messages’ 
1) 00010001000100010001…000100010001000100010001000100010001 
2) 01110100110100100110…101011101011101100010110001011011100 
3) 00011000001010100000…001000100001000000100011000000100110 
4) 0000000000000000000000000000100000000000000000000…0000000 
 

 

obviously, they are 10000 bits long.  
But, are they worth those 10000 bits? 

 
 

Measuring bits 



So, how many bits?  
Depends on the encoding! 

 
What is the best encoding? 
 one that takes the entropy of the data into account 
 things that occur often should get short code 
 things that occur seldom should get long code 

 

An encoding matching Shannon Entropy is optimal 
 
 

 



Tell us! How many bits? Please? 
In our simplest example we have 

 

𝑃(1)  =  1/100000 
𝑃(0)  =  99999/100000 

 
|𝑐𝑐𝑐𝑐1|  =  −log (1/100000)  =  16.61 

|𝑐𝑐𝑐𝑐0|  =  −log (99999/100000)  =  0.0000144 
 

So, knowing 𝑃 our string contains 
 

1 ∗  16.61 +  99999 ∗ 0.0000144 =  18.049 bits 
 

of information 



Shannon lets us calculate optimal code lengths 
 what about actual codes? 0.0000144 bits? 
 Shannon and Fano invented a near-optimal encoding in 1948, 

within one bit of the optimal, but not lowest expected 
 
 

Fano gave students an option:  
regular exam, or invent a better encoding 

 David Huffman didn’t like exams; invented Huffman-codes (1952) 
 optimal for symbol-by-symbol encoding with fixed probs. 

 
 

(arithmetic coding is overall optimal, Rissanen 1976) 
 
 
 

Optimal…. 



To encode optimally, we need optimal probabilities 
 

What happens if we don’t? 
Kullback-Leibler divergence, 𝐷(𝑝 || 𝑞),  

measures bits we ‘waste’ when  
we use 𝑝 while 𝑞 is the ‘true’ distribution 

 

𝐷 𝑝 ‖ 𝑞 = � log
𝑝 𝑖
𝑞 𝑖 𝑝(𝑖)

𝑖

 

 
 

Optimality 



So far we’ve been thinking about 
a single sequence of messages 

 
How does entropy work for  

multivariate data? 
 

Simple! 
 
 

Multivariate Entropy 



 
Entropy, for when we, like, know stuff 

 

𝐻 𝑋 𝑌 = �𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥)
𝑥∈X

 

 
When is this useful? 

Conditional Entropy 



Mutual Information 
the amount of information shared between two variables 𝑋 and 𝑌 

 
𝐼 𝑋,𝑌  

= 𝐻 𝑋 − 𝐻 𝑋 𝑌  
= 𝐻 𝑌 − 𝐻 𝑌 𝑋  

= ��𝑝 𝑥,𝑦 log
𝑝 𝑥,𝑦
𝑝 𝑥 𝑝 𝑦

𝑥∈𝑋𝑦∈𝑌

 

 

high ↔ correlation  low ↔ independence 
 

Mutual Information and Correlation 



(small aside) 

 
Entropy and KL are used in decision trees 

 

What is the best split in a tree? 
one that results in as homogeneous label distributions  

in the sub-nodes as possible: minimal entropy  
 
 

How do we compare over multiple options? 
𝐼𝐼 𝑇,𝑎 = 𝐻 𝑇 − 𝐻(𝑇|𝑎) 

 

Information Gain 



Theory of 
Computation 

Probability 
Theory 1 

No No 1887 
Yes No 156 
No Yes 143 
Yes yes 219 

Low-Entropy Sets 

(Heikinheimo et al. 2007) 



Maturity Test Software 
Engineering 

Theory of 
Computation 

No No No 1570 
Yes No No 79 
No Yes No 99 
Yes Yes No 282 
No No Yes 28 
Yes No Yes 164 
No Yes Yes 13 
Yes Yes Yes 170 

Low-Entropy Sets 

(Heikinheimo et al. 2007) 



Low-Entropy Trees 

Scientific Writing 

Maturity Test 

Software  
Engineering  

Project 

Theory of  
Computation 

Probability 
Theory 1 

(Heikinheimo et al. 2007) 



So far we only considered  
discrete-valued data 

 
Lots of data is continuous-valued 

(or is it) 
 

What does this mean for entropy? 

Entropy for Continuous-valued data 



 
 
 
 

ℎ 𝑋 = −�𝑓 𝑥 log𝑓 𝑥 𝑑𝑑
𝐗

 

Differential Entropy 

(Shannon, 1948) 



 
 

How about… the entropy of Uniform(0,1/2)  ? 
 
 

−� −2 log 2 𝑑𝑑 = − log 2
1
2

0
 

 
 

   Hm, negative? 

Differential Entropy 



 
 

In discrete data step size ‘dx’ is trivial.  
What is its effect here? 

 
 

ℎ 𝑋 = −�𝑓 𝑥 log𝑓 𝑥 𝑑𝑑
𝐗

 

Differential Entropy 

(Shannon, 1948) 



Cumulative Distributions 



 
 

We can define entropy for cumulative distribution functions! 
 
 

ℎ𝐶𝐶 𝑋 = −� 𝑃 𝑋 ≤ 𝑥 log𝑃 𝑋 ≤ 𝑥 𝑑𝑑
𝑑𝑑𝑑 𝑋

 

 
 

As 0 ≤ 𝑃 𝑋 ≤ 𝑥 ≤ 1 we obtain ℎ𝐶𝐶 𝑋 ≥ 0 (!) 
 

Cumulative Entropy 

(Rao et al, 2004, 2005) 



 

How do we compute it in practice? 
Easy.  

 
 

Let 𝑋1 ≤ ⋯ ≤ 𝑋𝑛 be i.i.d. random samples of 
continuous random variable X  

 

ℎ𝐶𝐶 𝑋 = −� 𝑋𝑖+1 − 𝑋𝑖
𝑖
𝑛 log

𝑖
𝑛

𝑛−1

𝑖=1

 

 
 

 

Cumulative Entropy 

(Rao et al, 2004, 2005) 



 
 

 
 

Tricky. 
Very tricky. 

 
Too tricky for now. 

 

Multivariate Cumulative Entropy? 

(Nguyen et al, 2013, 2014) 



 
 

Given continuous valued data  
over a set of attributes 𝑋 we want to identify 

 
𝑌 ⊂ 𝑋 

 
such that Y has high mutual information. 
Can we do this with cumulative entropy? 

Cumulative Mutual Information 



Identifying Interacting Subspaces 



First things first. We need 
 

ℎ𝐶𝐶 𝑋 | 𝑦 = ∫ ℎ𝐶𝐶 𝑋  𝑦 𝑝 𝑦 𝑑𝑑 
 

which, in practice, means 
 

ℎ𝐶𝐶 𝑋 | 𝑌 = �ℎ𝐶𝐶 𝑋  𝑦 𝑝(𝑦) 
𝑦∈𝑌

 

with 𝑦 just some datapoints, and 𝑝 𝑦 = 𝑦
𝑛

 

 
How do we choose 𝑦?  

such that ℎ𝐶𝐶 𝑋 𝑌  is minimal 
 

 

Multivariate Cumulative Entropy 



We cannot (realistically) calculate  
ℎ𝐶𝐶 𝑋1, … ,𝑋𝑚  

in one go 
 

but… 
 Mutual Information has this  
nice factorization property… 

so, what we can do is 
 

�ℎ𝐶𝐶 𝑋𝑖 −
𝑖=2

�ℎ𝐶𝐶(𝑋𝑖|𝑋1, … ,𝑋𝑖−1)
𝑖=2

 

Entrez, CMI 



 
 
 
 

super simple: 
a priori-style 

 
 

The CMI algorithm 



 
 
 
 
 
 
 
 
 
 
 

 

CMI in action 



Information is about uncertainty of what you could say 
 
Entropy is a core aspect of information theory 
 lots of nice properties 
 optimal prefix-code lengths, mutual information, etc 

 

Entropy for continuous data is… more tricky 
 differential entropy is a bit problematic 
 cumulative distributions provide a way out, 

but are mostly unchartered territory 
 

Conclusions 



Information is about uncertainty of what you could say 
 
Entropy is a core aspect of information theory 
 lots of nice properties 
 optimal prefix-code lengths, mutual information, etc 

 

Entropy for continuous data is… more tricky 
 differential entropy is a bit problematic 
 cumulative distributions provide a way out, 

but are mostly unchartered territory 
 

Thank you! 


	Information & Correlation
	Questions of the day
	Bits and Pieces
	Information Theory
	The Big Insight
	Uncertainty
	Optimal prefix-codes
	What is a prefix code?
	What’s a bit?
	Morse code
	Natural language
	Measuring bits
	So, how many bits? 
	Tell us! How many bits? Please?
	Optimal….
	Optimality
	Multivariate Entropy
	Conditional Entropy
	Mutual Information and Correlation
	Information Gain
	Low-Entropy Sets
	Low-Entropy Sets
	Low-Entropy Trees
	Entropy for Continuous-valued data
	Differential Entropy
	Differential Entropy
	Differential Entropy
	Cumulative Distributions
	Cumulative Entropy
	Cumulative Entropy
	Multivariate Cumulative Entropy?
	Cumulative Mutual Information
	Identifying Interacting Subspaces
	Multivariate Cumulative Entropy
	Entrez, CMI
	The CMI algorithm
	CMI in action
	Conclusions
	Thank you!

