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Evaluation Forms 
1. Hand forms out (me) 
2. Fill forms out (you) 
3. Collect forms (you) 
4. Put forms in envelop (you) 
5. Bring envelop back to Evelyn (one ‘volunteer’ and me) 

Service Announcement #1 



The Exam 
type:  oral 
when:  September 11th 
time:  individual 
where: E1.3 room 0.16 
what: all material discussed in the lectures, plus  
 one assignment (your choice) per topic  
 

The Re-Exam 
type:  oral 
when:  October 1st 
time:  individual 
where: E1.3 room 001 

Service Announcement #2 



Master thesis projects 
 in principle:  yes! 
 in practice:  depending background, motivation, interests,  

  and grades --- plus, on whether I have time 
 interested? mail me and/or Pauli 

 
 

Student Research Assistant (HiWi) positions 
 in principle: maybe! 
 in practice: depends on background, grades, and in 

  particular your motivation and interests 
 interested? mail me and/or Pauli, include CV and grades 

Service Announcement #3 



 

Service Announcement #4 

Introduction 
 

- Is DM science? 
- DM in action 

Tensors 
 

- Introduction to tensors 
- Tensors in DM 

- Special topics in tensors 

Information Theory 
 

- MDL + patterns 
- Entropy + correlation 
- MaxEnt + iterative DM 

Mixed Grill 
 

- Influence Propagation 
- Redescription Mining 
- <special request> 



 

Service Announcement #4 

Introduction 
 

- Is DM science? 
- DM in action 

Tensors 
 

- Introduction to tensors 
- Tensors in DM 

- Special topics in tensors 

Information Theory 
 

- MDL + patterns 
- Entropy + correlation 
- MaxEnt + iterative DM 

Mixed Grill 
 

- Influence Propagation 
- Redescription Mining 
- <special request> 

<special request>? 
 

Let us know (asap, mail) 
what topic you would  
like to see discussed 
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Service Announcement #5 
Introduction 

Tensors 

Information Theory 

Mixed Grill 

Wrap-up + <ask-us-anything> 

<ask-us-anything>? 
 

Yes!  
Prepare questions on 

anything* you’ve always  
wanted to ask Pauli and/or me.  

We’ll answer on the spot 
 
 

* preferably related to  
TADA, data mining, machine learning, science, the world, etc. 



Good Reads 

The Information 
James Gleick 

(great light reading) 

Elements of Information Theory 
Thomas Cover & Joy Thomas 

(very good textbook) 

Data Analysis: a Bayesian Tutorial 
D.S. Sivia & J. Skilling 

(very good, but skip the MaxEnt stuff) 
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Question of the day 

How can we find things  
that are interesting with regard to  

what we already know? 
 

How can we measure  
subjective interestingness? 

 
 



What is interesting? 
 

 
something that 

increases our knowledge 
about the data 



What is a good result? 
 

 
something that 

reduces our uncertainty 
about the data 

(ie. increases the likelihood of the data) 



What is really good? 
 
 

something that, 
in simple terms, 

strongly reduces our uncertainty 
about the data 

(maximise likelihood, but avoid overfitting) 



universe of possible datasets 

Let’s make this visual 

our dataset D 



all possible 
datasets 

Given what we know 

our dataset D 

possible datasets, 
given current knowledge 

dimensions, margins 



all possible 
datasets 

More knowledge... 

our dataset D 

dimensions, margins, 
pattern P1  



all possible 
datasets 

Fewer possibilities... 

our dataset D 

dimensions, margins, 
patterns P1 and P2 

 



Less uncertainty. 

our dataset D all possible 
datasets 

dimensions, margins,  
the key structure 



all possible 
datasets 

Maximising certainty 

our dataset D 

dimensions, margins, 
patterns P1 and P2 

 

knowledge 
added by P2 



How can we define 
 

‘uncertainty’ and ‘simplicity’? 
 

interpretability and informativeness  
are intrinsically subjective 



Measuring Uncertainty 

We need access to the likelihood  
of data D given background knowledge B 

 
 

such that we can calculate the gain for X 
 
 
 
 

…which distribution should we use? 
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X that have a low likelihood, 

that are surprising 
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 1.  Mine original data 
 2.  Mine random data  
 3.  Determine probability 

 
 
 

Approach 1: Randomization 

Original 
data 

Random 
data #1 

Random 
data #2 

Random 
data #N ... 

score(X | D) 
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Approach 1: Randomization 

Original 
data 

Random 
data #1 

Random 
data #2 

Random 
data #N ... 

score(X | D) 

The fraction of better ‘randoms’ is the 
empirical p-value  

of result X 



 
So, we need data that  
 maintains our background knowledge, and 
 is otherwise completely random 

 

How can we get our hands on that? 

Random Data 



Let there be data 

Swap Randomization 

(swap randomization, Gionis et al. 2005) 

1 1 1 0 1 1 1

0 1 1 0 1 0 1

1 1 1 1 0 0 0

1 1 1 1 0 0 1

0 1 1 1 0 0 0

0 1 1 1 0 1 0

0 0 0 0 1 0 0



Say we only know overall density.  
How to sample random data? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Swap Randomization 

(swap randomization, Gionis et al. 2005) 

1 1 1 0 1 1 1

0 1 1 0 1 0 1

1 1 1 1 0 0 0

1 1 1 1 0 0 1

0 1 1 1 0 0 0

0 1 1 1 0 1 0

0 0 0 0 1 0 0

27



Didactically, let us instead consider a 
Monte-Carlo Markov Chain 
 
Very simple scheme 
 
1. select two cells at random,  
2. swap values,  
3. repeat until convergence. 
 
 
 
 
 
 
 
 
 
 

 

Swap Randomization 

(swap randomization, Gionis et al. 2005) 

1 1 1 0 1 1 1

0 1 1 0 1 0 1

1 1 1 1 0 0 0

1 1 1 1 0 0 1

0 1 1 1 0 0 0

0 1 1 1 0 1 0

0 0 0 0 1 0 0

27



Margins are easy understandable for binary data, 
how can we sample data with same margins?  

Swap Randomization 

(swap randomization, Gionis et al. 2005) 

1 1 1 0 1 1 1 6

0 1 1 0 1 0 1 4

1 1 1 1 0 0 0 4

1 1 1 1 0 0 1 5

0 1 1 1 0 0 0 3

0 1 1 1 0 1 0 4

0 0 0 0 1 0 0 1

3 6 6 4 3 2 3 27



By MCMC! 

 
1. randomly find submatrix  
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By MCMC! 

 
1. randomly find submatrix  
 
   
 
  
 

2. swap values 
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By MCMC! 

 
1. randomly find submatrix  
 
   
 
  
 

2. swap values  
3. repeat until convergence 
 
 
 
 
 
 
 
 
 

 
 

Swap Randomization 

(swap randomization, Gionis et al. 2005) 

1 1 1 0 1 1 1 6

1 0 1 1 0 1 0 4

1 1 1 1 0 0 0 4

1 1 1 1 1 0 0 5

0 1 1 0 0 0 1 3

0 1 1 1 0 1 0 4

0 0 0 0 0 0 1 1

3 6 6 4 3 2 3 27

1 1 1 0 1 1 1 6

0 1 1 1 0 0 1 4

1 1 1 0 1 0 0 4

1 1 1 1 0 0 1 5

0 1 1 1 0 0 0 3

0 1 1 1 0 1 0 4

0 0 0 0 1 0 0 1

3 6 6 4 3 2 3 27



 
Many ways to test static null hypothesis 

assuming distribution,  
swap-randomization, MaxEnt 

 
 

What can we use this for? 
ranking based on static significance 

mining the top-k most significant patterns, 
but not suited for iterative mining 

 
 
 
 

Static Models 



 

For iterative data mining,  
we need models that can maintain  

the type of information (eg. patterns) 
that we mine 

 
 

Randomization is powerful 
 variations exists for many data types (Ojala ‘09, Henelius et al ’13) 

 can be pushed beyond margins (see Hanhijärvi et al 2009) 

 but… has key disadvantages 

Dynamic Models 



Approach 2: Maximum Entropy 
 

‘the best distribution      satisfies the background 
knowledge, but makes no further assumptions’ 

 
 

very useful for data mining: 
unbiased measurement of  
subjective interestingness 

 

 
 

(Jaynes 1957; De Bie 2009) 



Let 𝐵 be our set of constraints 
𝐵 = {𝑓1, … , 𝑓𝑛} 

 
Let 𝐶 be the set of admissible distributions 

𝐶 =  𝑝 ∈ 𝐏  𝑝 𝑓𝑖 = 𝑝� 𝑓𝑖  for 𝑓𝑖 ∈ 𝐵} 
 

We need the  
most uniformly distributed 𝑝 ∈ 𝐏 

Constraints and Distributions 



 
Uniformity  ↔  Entropy 

 

𝐻 𝑝 = −�𝑝(𝑋 = 𝑥)log 𝑝(𝑋 = 𝑥)
𝑥∈𝐗

 

 
tells us the entropy of a (discrete) distribution 𝑝 

 

Uniformity and Entropy 



We want access to the  
distribution 𝑝∗ with maximum entropy 

 
𝑝𝐵∗ = argmax𝑝∈𝐶𝐻(𝑝) 

 
better known as the  

maximum entropy model 
 

It can be shown that 𝑝∗ is well defined  
there always* exist a unique 𝑝∗ with  

maximum entropy for any constrained set 𝐶 

Maximum Entropy 

* that’s not completely true, some esoteric exceptions exist 



Mean and 
 interval? uniform 
 variance?  Gaussian 
 positive? exponential 
 discrete? geometric 
 … 

 
 

But… what about distributions 
for like data, patterns, and stuff? 

Some examples 



MaxEnt Theory 

To use MaxEnt, we need theory for modelling 
data given background knowledge 

Real-valued Data 
 margins (Kontonasios et al. ‘11) 

 sets of cells (Kontonasios et al. ‘13) 

 
 
 

Patterns 
 itemset frequencies  (Tatti ’06, Mampaey et al. ’11) 

 
Binary Data 
 margins (De Bie ‘09) 

 tiles (Tatti & Vreeken, ‘12) 



Let 𝑝 be a probability density satisfying the constraints 
 
 
 
 
 
Then  we can write the MaxEnt distribution as 
 
 
 
 
 
where we choose the lambdas to satisfy the constraints 

Exponential Form 

(Csizar 1975) 



The problem is convex – yay! 
 

This means we can use  
any convex optimization strategy. 

 

Standard approaches include 
iterative scaling, 

gradient descent, 
conjugate gradient descent, 

Newton’s method, 
etc. 

Inferring the Model 



Optimization requires calculating p 
 

for datasets and tiles 
this is easy 

 
for itemsets and frequencies, however, 

this is PP-hard 
 

Inferring the Model 



MaxEnt Theory 

To use MaxEnt, we need theory for modelling 
data given background knowledge 

 
 

 
 
 
 

Real-valued Data 
 margins (Kontonasios et al. ‘11) 

 arbitrary sets of cells (now) 

 
 
 

allow for iterative mining 

Binary Data 
 margins (De Bie, ‘09) 

 tiles (Tatti & Vreeken, ‘12) 



MaxEnt for Real-Valued Data 
Current state of the art can incorporate 

 
means, variance, and higher order moments,  

as well as histogram information 
 

over arbitrary sets of cells 

(Kontonasios et al. 2013) 



MaxEnt for Real-Valued Data 
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.3 .6 .9 .8 .3 .8 .3

.2 .1 .3 .4 .5 .3 .2
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Pattern 3 
 {5-7} x {3-5} 
 mean 0.3 
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(Kontonasios et al., 2011) 
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Simplicity? 
Likelihood alone is insufficient 
does not take size, or complexity into account 

 

as practical example of our model: 
 

Information Ratio 
for tiles in real valued data 



Information Ratio 



Results 

It 1 It 2 It 3 It 4 It 5 Final 
1. A2 B3 A3 B2 C3 A2 
2. A4 B4 B2 C3 C4 B3 
3. A3 B2 C3 C4 C2 A3 
4. B3 A3 C4 C2 D2 B2 
5. B4 C3 C2 B4 D4 C3 
6. B2 C4 B4 D2 D3 C2 
7. C3 C2 D2 D4 D1 D2 
8. C4 D2 D4 D3 A5 D3 
9. C2 D4 D3 D1 21 A5 
10. D2 D3 B1 A5 B5 B5 

Synthetic Data 
 random Gaussian 
 4 ‘complexes’ (ABCD) of 

5 overlapping tiles 
 (x2 + x3 big with low overlap) 

 

Patterns 
 real + random tiles 
 

Task 
 Rank on InfRatio,  

add best to model, 
iterate 
 



Results 

Real Data 
 gene expression 

 

Patterns 
 Bi-clusters from  

external study 
 
 
Legend: 
  solid line          histograms 
  dashed line      means/var 



Conclusions 

Significance testing is important 
 choosing a good model (and test) is difficult 

 
Randomization 
 simple yet powerful – difficult to extend – empirical p-values 

 
Maximum Entropy modelling 
 complex yet powerful –inferring can be NP-hard –  exact p-values 
 can be defined for anything …if you can derive the model… 
 
Iterative Data Mining 
 mine most informative thingy, update model, repeat. 
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Thank you! 
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