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Data i1s Not Static

« Data Is not static

- New transactions, new friends, stop
following somebody In Twitter, ...

- But most data mining algorithms assume
static data

- Even a minor change requires a full-blown
re-computation



Types of Changing Data

1. New observations are added
* New items are bought, new movies are rated
* The existing data doesn’t change

2. Only part of the data is seen at once

3. Old observations are altered

» Changes in friendship relations



Types of Changing-Data
Algorithms

* On-line algorithms get new data during their execution
 Good answer at any given point

 Usually old data is not altered

* Streaming algorithms can only see a part of the data at
once

* Single-pass (or limited number of passes), limited memory

* Dynamic algorithms’ data is changed constantly

* More, less, or altered



Measures of Goodness

« Competitive ratio is the ratio of the (non-static)

answer to the optimal off-line answer
* Problem can be NP-hard in off-line
 What's the cost of uncertainty

 Insertion and deletion times measure the time it
takes to update a solution

 Space complexity tells how much space the
algorithm needs



Concept Drift

- Over time, users’ opinions and preferences
change

* This is called concept drift
- Mining algorithms need to counter it

- Typically data observed earlier weights less
when computing the fit



On-Line vs. Streaming

On-line

- Must give good answers at
all times

- Can go back to already-
seen data

« Assumes all data fits to

memory

Streaming

 Can wait until the end of

the stream

- Cannot go back to already-

seen data

- Assumes data is too big to

fit to memory



On-Line vs. Dynamic

On-line

- Already-seen data doesn’t
change

 More focused on

competitive ratio

- Cannot change already-
made decisions

Dynamic

- Data is changed all the

time

 More focused on efficient

addition and deletion

» Can revert already-made

decisions



Example: Matrix
Factorization

 On-line matrix factorization: new rows/columns are

added and the factorization needs to be updated
accordingly

- Streaming matrix factorization: factors need to be
build by seeing only a small fraction of the matrix at a
time

- Dynamic matrix factorization: matrix’s values are
changed (or added/removed) and the factorization
needs to be updated accordingly



On-Line Examples

- Operating systems’ cache algorithms
- Ski rental problem
- Updating matrix factorizations with new rows

* |.e. LSI/pLSI with new documents



Streaming Examples

- How many distinct elements we've seen?

- What are the most frequent items we’ve
seen?

- Keep up the cluster centroids over a stream



Dynamic Examples

- After insertion and deletion of edges of a
graph, maintain its parameters:

- Connectivity, diameter, max. degree,
shortest paths, ...

- Maintain clustering with insertions and
deletion



Streaming




Sliding Windows

- Streaming algorithms work either per

element or with sliding windows
- Window = last k items seen
- Window size = memory consumption

* “What is X in the current window?”



Example Algorithm: The
Oth Moment

* Problem: How many distinct elements are in the
stream?

 Too many that we could store them all, must

estimate

 |dea: store a value that lets us estimate the
number of distinct elements

* Store many of the values for improved estimate



The Flajolet-Martin
Algorithm

« Hash element a with hash function h and let R
be the number of trailing zeros in h(a)

- Assume h has large-enough range (e.qg. 64
bits)

+ The estimate for # of distinct elements is 2°
» Clearly space-efficient

- Need to store only one integer, R

Flajolet, P., & Nigel Martin, G. (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2), 182—-209. doi:

10.1016/0022-0000(85)90041-8


http://dx.doi.org/10.1016/0022-0000(85)90041-8

Does Flajolet-Martin
Work?

« Assume the stream elements come u.a.r.

- Let trail(h(a)) be the number of trailing Os
—r

* Prltrail(h(a)) = r] = 2

» |f stream has m distinct elements, Pr[“For all distinct

—r,m

elements, trail(h(a)) = r"]=(1-2 )
- Approximately exp(—m2_r) for large-enough r
- Hence: Pr[“We have seen a s.t. trail(h(a)) = r"]

- approaches 1 ifm>» 2 and approaches 0 if m « 2



Many Hash Functions

- Take average?

- A single r that's too high at least doubles the estimate
= the expected value is infinite

« Take median?
« Doesn’t suffer from outliers

- But it's always a power of two
= adding hash functions won’t get us closer than that

- Solution: group hash functions in small groups, take their average
and the median of the averages

» Group size preferably = logm



Example Dynamic
Algorithm



Users and Tweets

« Users follow tweets

- A bipartite graph

« We want to know

(approximate) bicligues
of users who follow
similar tweeters
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Fully Dynamic Setup

 Can handle both addition and deletion of

vertices and edges
- Deletion is harder to handle
» Can adjust the number of bicliques

- Based on the MDL principle

Miettinen, P. (2012). Dynamic Boolean Matrix Factorizations (pp. 519-528). Presented at the 12th IEEE International Conference on Data Mining. doi:10.1109/ICDM.2012.118

Miettinen, P. (2013). Fully dynamic quasi-biclique edge covers via Boolean matrix factorizations (pp. 17—24). Presented at the 2013 Workshop on Dynamic Networks Management and Mining,
ACM. do0i:10.1145/2489247.2489250


http://dx.doi.org/10.1109/ICDM.2012.118
http://dx.doi.org/10.1145/2489247.2489250

This Ain’t Prediction

- The goal is not to predict new edges, but to
adapt to the changes

- The quality iIs computed on observed edges

- Being good at predicting helps adapting,
though



First Attempt

- Re-compute the factorization after every
addition

* Too slow

- Too much effort given the minimal change
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One Factor Too Many?

| 0 0 0 O

o I 1 1 1

] 0 0 0O O

o 1 I 1 1

0

0

0
0
0
0

| 0 0 0 O

| 1 1 1 O

O 01l 0 I

o I 1 1 1

o I I 1 I

o I 1 1 1

o I I 1 1

O 00 0O

O 00 0O



Adjusting the rank

» Use the MDL principle: Best rank is the one that
ets us encode the data with least number of bits

* Encode the data matrix using the factors and the

residual (error) matrix

- Remove a factor if doing so reduces the overall

encoding length

- Adding a factor is harder: need to have a new
candidate factor to add



Adding a new factor

- Checking if we should remove a factor is easy

 But how to decide should we add a factor?

 We need to decide what kind of a factor to
add

- Simple heuristic: build candidates based on
not-yet covered 1s and select the one with
largest area



Making global updates

- The basic algorithm makes only somewhat local
updates

- Fro global updates, we iteratively update B and C
* Fix B, update C; fix C, update B; etc.

* The problem is (still) NP-hard — we use a
heuristic

- Computationally expensive
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Empirical Competitiviness
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Rank Over Time
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Description Length Over
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Conclusions

* Not all data is available when you need it

* On-line and dynamic methods try to adapt
the results to the new data

- Not all data fits into memory
» Streaming methods try to address that

- Doing data mining in dynamic or streaming
environments iIs even harder than usual
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