
Advanced Topics in Information 
Retrieval

Vinay Setty  
(vsetty@mpi-inf.mpg.de) 

Jannik Strötgen 
(jtroetge@mpi-inf.mpg.de)

1

3. Efficiency & Scalability

mailto:vsetty@mpi-inf.mpg.de?subject=
mailto:jtroetge@mpi-inf.mpg.de?subject=


Outline

3.1. Motivation 

3.2. Index Construction & Maintenance 

3.3. Static Index Pruning 

3.4. Document Reordering 

3.5. Query Processing

2



Outline

3.1. Motivation 

3.2. Index Construction & Maintenance 

3.3. Static Index Pruning 

3.4. Document Reordering 

3.5. Query Processing

3



3.1. Motivation

‣ Efficiency is about “doing things right”, i.e., accomplishing  
a task using minimal resources (e.g., CPU, memory, disk)  

‣ Scalability is about to be able to

‣ accomplish a larger instance of a task e.g. indexing millions/
billions of documents, large number of queries

‣ using additional resources (e.g., faster/more CPUs, more 
memory/disk)

4



Indexing & Query Processing
‣ Our focus will be on two major aspects of every IR system

‣ indexing: how can we efficiently construct & maintain  
an inverted index that consumes little space 

‣ query processing: how can we efficiently identify the top-k 
results for a given query without having to read posting lists 
completely

‣ Other aspects which we will not cover include

‣ caching (e.g., posting lists, query results, snippets)

‣ modern hardware (e.g., GPU query processing, SIMD 
compression)

5



Hardware & Software Trends
‣ CPU speed has increased more than that of disk and memory: 

faster to read & decompress than to read uncompressed 

‣ More memory is available; disks have become larger but not 
faster: now common to keep indexes in (distributed) memory  

‣ Many (less powerful) instead of few (powerful) machines; 
platforms for distributed data processing (e.g., MapReduce, 
Spark)  

‣ More CPU cores instead of faster CPUs; SSDs (fast reads, slow 
writes, wear out) in addition to HDDs; GPUs and FPGAs

6



Outline

3.1. Motivation 

3.2. Index Construction & Maintenance 

3.3. Static Index Pruning 

3.4. Document Reordering 

3.5. Query Processing

7



3.2. Index Construction & Maintenance

‣ Inverted index as widely used index structure in IR consists of

‣ dictionary mapping terms to term identifiers and statistics (e.g., idf)

‣ posting lists for every term recording details about its occurrences 
 
 
 
 
 
 

‣ How to construct an inverted index from a document collection?

‣ How to maintain an inverted index as documents  
are inserted, modified, or deleted?

8

d123, 2 d125, 2 d227, 1

ga z
Dictionary

Posting list



Index Construction

‣ Observation: Constructing an inverted index (aka. inversion) 
can be seen as sorting a large number of (term, did, tf) 
tuples
‣ seen in (did)-order when processing documents

‣ needed in (term, did)-order for the inverted index  

‣ Typically, the set of all (term, did, tf) tuples does not fit into 
the main memory of a single machine, so that we need to 
sort using external memory (e.g., hard-disk drives)

9



Index Construction on a Single Machine

‣ Lester al. [5] describe the following algorithm by Heinz and Zobel  
to construct an inverted index on a single machine

‣ let B be the number of (term, did, tf) tuples that fit into main 
memory

‣ while not all documents have been processed

‣ read (up to) B tuples from the input (documents)

‣ construct in-memory inverted index by grouping & 
sorting the tuples

‣ write in-memory inverted index as sorted run of (term, 
did, tf) tuples to disk

‣ merge on-disk runs to obtain global inverted index

10



Index Construction in MapReduce
‣ MapReduce as a platform for distributed data processing

‣ was developed at Google

‣ operates on large clusters of commodity hardware

‣ handles hard- and software failures transparently

‣ open-source implementations (e.g., Apache Hadoop) available

‣ programming model operates on key-value (kv) pairs 

‣ map() reads input data (k1,v1) and emits kv pairs (k2,v2)

‣ platform groups and sorts kv pairs (k2,v2) automatically

‣ reduce() sees kv pairs (k2, list<v2>) and emits kv pairs (k3,v3)

11



Map/Reduce Example

12

a b a c a 
a a c a b 
b b b a a 
c b a a a 
a a a a a 

a b a d a 
a a d a b 
b b b a a 
d b a a a

d1

d2

{a, <d1,16>}
{b, <d1, 6>}
{c, <d1, 3>}

{a, <d2,11>}
{b, <d2, 6>}
{d, <d2, 3>}

Mappers ReducersIntermediate
Sorting/combining

{c, <d1, 3>}

{a, <d1,16>, <d2,11>}
{b, <d1, 6>, <d2, 6>}

{d, <d2, 3>}



Index Construction in MapReduce
	 map(did, list<term>) 
	 	 map<term, integer> tfs = new map<term, integer>(); 
	 	 // determine term frequencies 
	 	 for each term in list<term>: 
	 	 	 tfs.adjustCount(term, +1);  
	 	 // emit postings 
	 	 for each term in tfs.keys(): 
	 	 	 emit (term, (did, tfs.get(term))); 
 
	 	 // platform groups & sorts output of map phase by term  
 
	 reduce(term, list<(did, tf)>)  
	 	 // emit posting list 
	 	 emit (term, list<(did, tf)>) 
	

13



Index Maintenance
‣ Document collections are not static, but documents are 

inserted, modified, or deleted as time passes; changes to the 
document collection should quickly be visible in search results  

‣ Typical approach: Collect changes in main memory

‣ deletion list of deleted documents

‣ in-memory delta inverted index of inserted and modified 
documents

‣ process queries over both the on-disk global and in-memory delta 
inverted index and filter out result documents from the deletion list  

‣ What if the available main memory has been exhausted?

14



Rebuild

‣ Rebuild the on-disk global index from scratch

‣ in a separate location; switch over to new index once 
completed

‣ attractive for small document collections

‣ attractive when document deletions are common

‣ requires re-processing of entire document collection
‣ easy to implement

15



Merge
‣ Merge the on-disk global index with the in-memory delta index

‣ in a separate location; switch over to new index once completed 

‣ for each term, read posting lists from on-disk global index and in-
memory delta index, merge them, filter out deleted documents,  
and write the merged posting list to disk

‣ requires reading entire on-disk global index   

‣ Analysis: Let B be capacity of the in-memory delta index  
(in terms of postings) and N be the total number of postings

‣ N / B merge operations each having cost O(N)


‣ total cost is in O(N2)

16



Geometric Merge
‣ Lester et al. [5] propose to partition the inverted index into 

index partitions of geometrically increasing sizes

‣ tunable by parameter r

‣ index partition P0 is in main memory and contains up to B postings

‣ index partitions P1, P2, … are on disk with capacity invariants
‣ partition Pj contains at most (r-1) r(j-1) B postings

‣ partition Pj is either empty or contains at least r(j-1) B postings

‣ whenever P0 overflows, a merge is triggered 

‣ Query processing has to access all (non-empty) partitions Pi,  
leading to higher cost due to required disk seeks

17



Geometric Merge

18

Efficient Online Index Construction for Text Databases • 19:17

Fig. 3. The merging pattern established when r = 3. The first index is placed into partition 3
only after nine bufferloads have been generated by the in-memory part of the indexing process. All
numbers listed represent multiples of b, the size of each bufferload.

and, as before, the stream of arriving documents is processed in fixed buffer-
loads of b documents. The first bufferload of pointers is placed, without change,
into partition 1. The second bufferload of pointers can be merged with the first,
still in partition 1, to make a partition of 2b pointers. But the third buffer-
load of pointers cannot be merged into partition 1, because doing so would
violate the (r − 1)b = 2b limit on partition 1. Instead, the 3b pointers that are
the result of this merge are placed in partition 2, and partition 1 is cleared. The
fourth bufferload of pointers must be placed in partition 1, because it cannot be
merged into partition 2. The fifth joins it, and then the sixth bufferload triggers
a three-way merge, to make a partition containing 6b pointers in the second
partition. Figure 3 continues this example, and shows how the concatenation of
three more bufferloads of pointers from the in-memory part of the index leads
to a single index of 9b pointers in the third partition.

5.2 Analysis

Within each partition the index sizes follow a cyclic pattern that is determined
by the radix r. For example, in Figure 3, the “Partition 2” column cycles through
sizes 0, 3, 6, and then repeats. In general, the j th partition of an index built
with radix r cycles through the sequence 0, r j−1, 2r j−1, . . . , (r − 1)r j−1. Over

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

r=3



Geometric Merge

‣ Analysis: Let B be the capacity of the in-memory partition P0  
and N be the total number of postings

‣ there are at most 1 + ⎡logr(N/B)⎤partitions

‣ each posting merged at most once into each partition

‣ total cost is O(N log N/B) 

19



Logarithmic Merge
‣ Logarithmic merge is a simplified variant of geometric 

merge

‣ partition P0 is in main memory and contains B postings

‣ partition P1 is on disk and contains up to 2B postings

‣ partition P2 is on disk and contains up to 4B postings

‣ partition Pj is on disk and contains up to 2jB postings

‣ whenever P0 overflows, a cascade of merges is triggered

‣ Log-structured merge tree (LSM-Tree) prominent in 
database systems (e.g., to manage logs) is based on the same 
principle

20



Index Maintenance for Microblogs

21

‣ Wu et al. [9] use the log-structured inverted index to support 
high update rates when indexing social media



Index Management in Elasticsearch

‣ Indexes are stored as shards

‣ Each index has a fixed number of shards

‣ By default 5 shards per index - primary shards

‣ Shards are replicated

‣ Each primary shard is replicated 

‣ Replication factor is a parameter

‣ Why shards?

22

Load balance 

Distribution  

Fault tolerance

A shard is a fully 

contained horizontal 

partition of index



Index Management in Elasticsearch

23

Node 1 Node 2

Elasticsearch 
cluster

P0R1

Node 3

P1 R0

R0 R1

D1

D2



Elasticsearch Shards

‣ Shards are immutable 

‣ Insert only!

‣ New documents are 
added to smaller 
segments 

‣ When segments grow 
they are merged

24

Shard
P0Lucene Index 

Segments



Elasticsearch Shards

25

d123, 2 d125, 2 d227, 1

ga z
Dictionary

Posting list

Segment



Lucene Dynamic Indexing

‣ Segments in Lucene are immutable

‣ Cannot be changed

‣ Can be created, merged and deleted

‣ When new documents are added 

‣ Small segments are created 

‣ When number of segments grow 

‣ Some merging technique is used such as logarithmic 
merging 

26



Dynamic Indexing

27

D1 D2 D3 D4 D5 D6 D7

Main Memory Buffer



Lucene Segment Merging (Insert only) 

28Source: http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html


Lucene Dynamic Indexing
‣ How do deletes work?

‣ When documents are deleted

‣ They are marked deleted in the segments

‣ When are they purged?

29

Marked deleted



Lucene Segment Merging with Deletions

30Source: http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html


Query Processing in Elasticsearch

31

Node 1 Node 2

Elasticsearch 
cluster

P0R1

Node 3

P1 R0

R0 R1

Query



Query Processing

32

ResultQuery

Segments



Outline

3.1. Motivation 

3.2. Index Construction & Maintenance 

3.3. Static Index Pruning 

3.4. Document Reordering 

3.5. Query Processing

33



3.3. Static Index Pruning
‣ Static index pruning is a form of lossy compression that

‣ removes postings from the inverted index 
‣ allows for control of index size to make it fit, for instance, 

into main memory or on low-capacity device (e.g., smartphone) 
 
 
 
 
 
 

‣ Dynamic index pruning, in contrast, refers to query processing 
methods (e.g., WAND or NRA) that avoid reading the entire index 

34

a

b

c

d1, 2 d3, 5 d7, 2 d9, 1 d11, 3 d13, 2

d5, 3 d7, 2 d8, 9 d11, 4 d15, 2

d5, 3 d8, 1 d11, 7 d15, 2d5, 3 d11, 7

d5, 3 d8, 9 d11, 4

d3, 5 d11, 3



 Term-Centric Index Pruning
‣ Carmel et al. [3] propose term-centric static index pruning 

‣ Idea: Remove postings from posting list for term v that are 
unlikely to contribute to top-k result of query including v 

‣ Algorithm: For each term v

‣ determine k-th highest score zv of any posting in posting list for v 

‣ remove all postings having a score less than ε ∙zv 

‣ Despite its simplicity the method guarantees for any query q consisting 
of |q| < 1 / ε terms a “close enough” top-k result  

35



 Document-Centric Index Pruning
‣ Büttcher and Clarke [2] propose document-centric index pruning 

‣ Idea: Remove postings for document d corresponding to non-
important terms for which it is unlikely to be in the query result  

‣ Importance of term v for document d is measured using its 
contribution to the KL divergence from background model D 
 
 

‣ DCPConst selects constant number k of postings per document

‣ DCPRel selects a percentage λ of postings per document

36

P [ v | ✓d ] log
✓
P [ v | ✓d ]
P [ v | ✓D ]

◆



Term-Centric vs. Document-Centric
‣ Büttcher and Clarke [3] compare term-centric (TCP) and 

document-centric (DCP) index pruning on TREC Terabyte

‣ Okapi BM25 as baseline retrieval model

‣ on-disk inverted index: 12.9 GBytes, 190 ms response time

‣ pruned in-memory inverted index: 1 GByte, 18 ms 
response time

37

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

 200  400  600  800  1000  1200  1400  1600

R
et

rie
va

l e
ffe

ct
iv

en
es

s

Size of the in-memory index (MB)

(a) Document-centric pruning: Impact of index size on effectiveness

Precision at 20 for DCP-relative
Precision at 20 for DCP-constant

Average precision for DCP-relative
Average precision for DCP-constant

0.60

0.50

0.40

0.30

0.20

0.10
 80 56 40 28 20 14 10

R
et

rie
va

l e
ffe

ct
iv

en
es

s

Average time per query (ms)

(b) DCP and TCP: Efficiency vs. effectiveness

Precision at 20 for DCP-relative
Precision at 20 for TCP (1024 MB)

Precision at 20 for DCP-constant

Figure 4: Trade-offs: (a) Space vs. effectiveness and (b) efficiency vs. effectiveness. Even with small amounts
of main memory, DCPRel produces good search results and clearly outperforms TCPk

n.

[ TREC 2004 Terabyte queries (topics 701-750) ]

BM25 Baseline DCP(λ=0.062)
Rel DCP(k=21)

Const TCP(k=24500)
(n=16000)

P@5 0.5224 0.5020 0.4735 0.4490*
P@10 0.5347 0.4837 0.4755 0.4347*
P@20 0.4959 0.4490 0.4224 0.4163
MAP 0.2575 0.1963 0.1621** 0.1808

[ TREC 2005 Terabyte queries (topics 751-800) ]

BM25 Baseline DCP(λ=0.062)
Rel DCP(k=21)

Const TCP(k=24500)
(n=16000)

P@5 0.6840 0.6760 0.6000** 0.5640**
P@10 0.6400 0.5980 0.5300* 0.5380**
P@20 0.5660 0.5310 0.4560** 0.4630**
MAP 0.3346 0.2465 0.1923** 0.2364

Table 4: Comparing DCPRel, DCPConst, and TCP(1024MB) for the title-only queries derived from the TREC
ad-hoc topics 701-800. For the same response time (18 ms), DCPRel outperforms the other two strategies at
most recall levels.

Figure 4 combines the results we obtained for the 3 differ-
ent pruning methods and compares their retrieval effective-
ness at different efficiency levels. While DCPConst performs
slightly worse than TCP, the DCPRel pruning strategy out-
performs the two other strategies at every efficiency level we
tested. At an average response time of 13.5 ms (λ = 0.05),
for example, its P@20 (0.4790) is 14% higher than that
of TCP (0.4190) and 27% higher than that of DCPConst

(0.3780). In addition, Figure 4(a) shows that even for a
relatively small in-memory index (about 700 MB), DCPRel

achieves respectable precision (P@20 = 0.5130).

Statistical Significance

We fixed the amount of main memory available for the in-
memory index to 1024 MB. With an in-memory index of this
size, DCPConst (k = 21) and DCPRel (λ = 0.062) both lead
to an average query response time of 18 ms for the TREC
2005 Terabyte efficiency queries. With TCP, the same re-
sponse time can be achieved by building an index containing
the k = 24500 best postings for each of the n = 16000 most
frequent terms (TCP24500

16000). We analyzed all three prun-
ing techniques at this efficiency level, using the ad-hoc top-
ics from the 2004 and 2005 TREC Terabyte tracks as test
queries. Table 4 provides precision values at several retrieval
points for each pruning method. It shows that DCPRel de-
classes DCPConst and TCP at virtually every recall level.
Stars indicate significantly worse retrieval effectiveness for
DCPConst and TCP, compared with DCPRel, according to

a paired t-test (one star: 95% confidence; two stars: 99%
confidence).

Similarity to Original Search Results

Another interesting question is how close the search results
produced by DCPRel are to those produced by the BM25
baseline – in other words, to find out whether DCPRel

achieves such high precision because it actually produces
the similar search results as the baseline, or because it re-
turns different documents which, however, also turn out to
be relevant. To evaluate the similarity between the baseline
results and the DCPRel results, we employ the methodol-
ogy also used by Fagin et al. [6]. Table 5 shows that, for
the TREC 2005 Terabyte ad-hoc topics, the search results
produced from the pruned indices are in fact very similar to
those produced from the unpruned index. For λ = 0.1, the
similarity level, as measured by the symmetrical difference
between the search results, i.e., the ratio of the intersection
and the union of the top 20 documents produced from the
pruned and from the unpruned index, is 67%. On average,
77% of the top 20 doc’s produced from the unpruned index
appear in the top 20 doc’s produced from the pruned index.

TREC Terabyte

We compared the performance of our pruning method to
other retrieval systems that participated in the efficiency
task of the TREC 2005 Terabyte track (as reported by
Clarke et al. [8]). Figure 5 shows that document-centric



Outline

3.1. Motivation 

3.2. Index Construction & Maintenance 

3.3. Static Index Pruning 

3.4. Document Reordering 

3.5. Query Processing

38



Index Compression
‣ Sequences of non-decreasing integers (here: document identifiers) in 

posting lists are compressed using

‣ delta encoding representing elements as difference to predecessor 
 

‣ Variable-byte encoding: (aka. 7-bit encoding) represents integers 
(e.g., deltas of term offsets) as sequences of 1 continuation + 7 
data bits 

‣ Gamma encoding: unary code to represent length followed by offset 
binary of an integer but with leading 1 removed 
‣ e.g. 13 = 1101 = 1110101

39

⟨ 1, 7, 11, 21, 42, 66 ⟩ ⟨ 1, 6, 4, 10, 21, 24 ⟩

docIDs      624                                    629                914 
gaps          0                                         5                     285 
VB Code   00000100 11110000   10000101     00000100 10011101 



3.4 Document Reordering
‣ Document reordering methods seek to improve 

compression effectiveness by assigning document 
identifiers  so as to obtain small gaps 

‣ Content based document reordering 

‣ K-means clustering 

‣ similar documents get closer document ids 

‣ K-Scan 

‣ Single scan k-means 

‣ URL-based document id assignment

40



Content-Based Document Reordering

‣ Silvestri et al. [7] develop methods for the scenario when only 
document contents are available but no meta-data (e.g., 
URL)  

‣ Intuition: Similar documents, having many terms in common, 
should be assigned numerically close document identifiers 

‣ Documents are modeled as sets (not bags) of terms 

‣ Document similarity is measured using the Jaccard 
coefficient

41

J(di, dj) =
|di \ dj |
|di [ dj |



Top-Down Bisecting
‣ Algorithm: TDAssign(document collection D)  

// split D into equal-sized partitions DL and DR 

pick representatives dL and dR (e.g., randomly)  
if (|DL| ≥ |D| / 2) ∨ (|DR| ≥ |D| / 2)  

assign d to smaller partition  
else if J(d, dL) > J(d, dR) 

assign d to DL  
else 

assign d to DR 

return TDAssign(DL) ⊕ TDAssign(DR)

‣ TDAssign has time complexity in O(|D| log |D|)
42



kScan
‣ Algorithm: kScan(document collection D)  

// split D into k equal-sized partitions Di  
n = |D| 
for i = 1 … k 

di = longest document from D  
assign n/k documents with highest similarity J(d, di) to Di  
D = D \ Di  

return < d from D1> ⊕ … ⊕ <d from Dk>

‣ kScan has time complexity in O(k |D|) 

‣ kScan outperforms TDAssign in terms of compression 
effectiveness (bits per posting) in experiments on  
collections of web documents

43



URL-Based Document Reordering
‣ Silvestri [8] examines the effectiveness of URL-based 

document reordering when compressing collections of 
web documents 

‣ Intuition: Documents with lexicographically close URLs 
tend to have similar contents (e.g., www.x.com/a and 
www.x.com/b)   

‣ Algorithm: 
‣ sort documents lexicographically according to their URL 

‣ assign consecutive document identifiers (1 … |D|)
44

http://www.x.com/a
http://www.x.com/b


Content-Based vs. URL-Based
‣ Silvestri [8] reports experiments conducted on a large-

scale crawl of the Brazilian Web (about 6 million 
documents)

‣ URL-based document ordering outperforms content-based 
document ordering (kScan), requiring fewer bits per 
posting on average

45

VByte Gamma Delta
Random 11.40 12.72 12.71

URL 9.72 7.72 7.69
kScan 9.81 8.82 8.80



Outline

3.1. Motivation 

3.2. Index Construction & Maintenance 

3.3. Static Index Pruning 

3.4. Document Reordering 

3.5. Query Processing

46



Query Processing
‣ Query processing methods operate on inverted index

‣ holistic query processing methods determine the full 
query results 
(e.g., document-at-a-time and term-at-a-time)

‣ top-k query processing methods (aka. dynamic index 
pruning) determine only the top-k query result and  
avoid reading posting lists completely

‣ Fagin’s TA and NRA for score-ordered posting lists 

‣ WAND and Block-Max WAND for document-
ordered posting lists

47



WAND
‣ Broder et al. [1] describe WAND (weak AND) as a top-k query processing 

method for document-ordered posting lists

‣ DAAT-style traversal of posting lists in parallel

‣ assumes that the maximum score max(i) per posting list is known

‣ pivoted cursor movement based on current top-k result

‣ let mink denote the worst score in the current top-k result (1)

‣ sort cursors for posting lists based on their current document identifier 
cdid(i) (2)

‣ pivot document identifier p is the smallest cdid(j) such that (3)

‣ move all cursors i with cdid(i) < p up to pivot p

48

mink <
X

ij

max(i)



WAND

‣ Example: Pivoted cursor movement based on top-1 result

‣ It is safe to move the cursor  
for posting lists a and b  
forward to d9 

49

a d3, 1

b d2, 3

c d9, 3

max(a) = 3

max(b) = 3

max(c) = 3

Top-1 
d1 : 8

d1, 2

d1, 3

d1, 3

…

…

…

…

…

…

mink = 8

(1)

d3, 1

d2, 3

d9, 3

3

6

9

Ủcdid

(2)

p = d9

(3)



Block-Max WAND
‣ Ding and Suel [4] propose the block-max inverted index

‣ store posting list as sequence of compressed posting 
blocks

‣ each block contains a fixed number of postings (e.g., 64)

‣ keep minimum document identifier and maximum 
score per block  
 
 
 
 
these are available without having to decompress the block

50

a d1, 2 d3, 5 d7, 2 d9, 1 d11, 3 d13, 2

(1, 5) (7, 2) (11, 3)

max(a) = 5



Block-Max WAND
‣ Pivoted cursor movement considering per-block maximum scores

‣ determine pivot p according to WAND 

‣ perform shallow cursor movement for all cursors i with 
cdid(i) < p 
(i.e., do not decompress if a new posting block is reached)

‣ if any document from current blocks can make it into top-k, i.e.:  
 
 
 
perform deep cursor movement (i.e., decompress posting 
blocks) and continue as in WAND

‣ else move cursor with minimal cdid(i) to

51

mink <
X

i:cdid(i)p

block max(i)

min

✓
min

i:cdid(i)p
next block mdid(i), cdid(p+ 1)

◆



Block-Max WAND
‣ Example: Pivoted cursor movement based on top-1 result

52

a d3, 1

b d2, 3

c d9, 3

max(a) = 3

max(b) = 3

max(c) = 3

Top-1 
d1 : 8

d1, 2

d1, 3

d1, 3

…

…

…

…

…

…

d d2, 3 … …d11, 3

(5, 1) (11, 3)

(4, 1) (10, 2)

(2, 1)

(2, 3)

(7, 3)

max(d) = 3

(14, 1) (17, 2)

shallow

shallow



Summary
‣ Inverted indexes can be efficiently constructed offline  

by using external memory sort or MapReduce

‣ Inverted indexes can be efficiently maintained  
by using logarithmic/geometric partitioning

‣ Index maintenance and query processing in elasticsearch

‣ Static index pruning methods reduce index size  
by systematically removing postings

‣ Document reordering methods reduce index size  
by assigning document identifiers 
so as to yield smaller gaps

‣ Query processing on document-ordered inverted indexes 
can be greatly sped up by pivoted cursor movement 
as part of WAND and Block-Max WAND

53



References
[1] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, J. Zien: Efficient Query 

Evaluation using a Two-Level Retrieval Process, CIKM 2003

[2] S. Büttcher and C. L. A. Clarke: A Document-Centric Approach to Static Index 
Pruning in Text Retrieval Systems, CIKM 2006

[3] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. S. Maarek, A. 
Soffer: Static Index Pruning for Information Retrieval Systems, SIGIR 2001

[4] S. Ding and T. Suel: Faster Top-k Retrieval using Block-Max Indexes,  
SIGIR 2011

[5] N. Leser, A. Moffat, J. Zobel: Efficient Online Index Construction for Text Databases  
ACM TODS 33(3), 2008

[6] N. Lester, J. Zobel, H. Williams: Efficient Online Index Maintenance for Inverted 
Lists, IP&M 42, 2006

[7] F. Silvestri, S. Orlando, R. Perego: Assigning Identifiers to Documents to 	 	
		 	 Enhance the Clustering Property of Fulltext Indexes, SIGIR 2004

54



References

[8] F. Silvestri: Sorting Out the Document Identifier Assignment Problem,  
ECIR 2007

[9] L. Wu, W. Lin, X. Xiao, Y. Xu: LSII: An Indexing Structure for Exact Real-Time 
Search on Microblogs, ICDE 2013

For more on index compression refer to the slides from IRDM 2015 http://resources.mpi-
inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch11-handout.pdf

For query processing like top-k NRA and TA algorithms refer to http://resources.mpi-
inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch12-
queryprocessing.pdf

Additionally you can also refer to Chapter 5 in Introduction to Information retrieval by 
Christopher D. Manning et.al.

55

http://resources.mpi-inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch11-handout.pdf
http://resources.mpi-inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch12-queryprocessing.pdf


‣ Some slides were borrowed from Prof. Klaus Berberich

56


