Advanced Topics in Information Retrieval

3. Efficiency & Scalability

Vinay Setty (vsetty@mpi-inf.mpg.de) Jannik Strötgen (jtroetge@mpi-inf.mpg.de)

Outline

- 3.1. Motivation
- 3.2. Index Construction & Maintenance
- 3.3. Static Index Pruning
- **3.4. Document Reordering**
- 3.5. Query Processing

Outline

3.1. Motivation

- 3.2. Index Construction & Maintenance
- 3.3. Static Index Pruning
- **3.4. Document Reordering**
- 3.5. Query Processing

3.1. Motivation

- Efficiency is about "doing things right", i.e., accomplishing a task using minimal resources (e.g., CPU, memory, disk)
- Scalability is about to be able to
 - accomplish a larger instance of a task e.g. indexing millions/ billions of documents, large number of queries
 - using additional resources (e.g., faster/more CPUs, more memory/disk)

Indexing & Query Processing

- Our focus will be on two major aspects of every IR system
 - indexing: how can we efficiently construct & maintain an inverted index that consumes little space
 - query processing: how can we efficiently identify the top-k results for a given query without having to read posting lists completely

- Other aspects which we will not cover include
 - caching (e.g., posting lists, query results, snippets)
 - modern hardware (e.g., GPU query processing, SIMD compression)

Hardware & Software Trends

- CPU speed has increased more than that of disk and memory: faster to read & decompress than to read uncompressed
- More memory is available; disks have become larger but not faster: now common to keep indexes in (distributed) memory
- Many (less powerful) instead of few (powerful) machines; platforms for distributed data processing (e.g., MapReduce, Spark)
- More CPU cores instead of faster CPUs; SSDs (fast reads, slow writes, wear out) in addition to HDDs; GPUs and FPGAs

- 3.1. Motivation
- **3.2. Index Construction & Maintenance**
- 3.3. Static Index Pruning
- **3.4. Document Reordering**
- 3.5. Query Processing

3.2. Index Construction & Maintenance

- Inverted index as widely used index structure in IR consists of
 - dictionary mapping terms to term identifiers and statistics (e.g., idf)
 - posting lists for every term recording details about its occurrences

- How to construct an inverted index from a document collection?
- How to maintain an inverted index as documents are inserted, modified, or deleted?

Index Construction

- <u>Observation</u>: Constructing an inverted index (aka. inversion) can be seen as sorting a large number of (term, did, tf) tuples
 - seen in (did)-order when processing documents
 - needed in (term, did)-order for the inverted index
- Typically, the set of all (term, did, tf) tuples does not fit into the main memory of a single machine, so that we need to sort using external memory (e.g., hard-disk drives)

Index Construction on a Single Machine

- Lester al. [5] describe the following algorithm by Heinz and Zobel to construct an inverted index on a single machine
 - let B be the number of (term, did, tf) tuples that fit into main memory
 - while not all documents have been processed
 - read (up to) B tuples from the input (documents)
 - construct in-memory inverted index by grouping & sorting the tuples
 - write in-memory inverted index as sorted run of (term, did, tf) tuples to disk
 - merge on-disk runs to obtain global inverted index

Index Construction in MapReduce

- MapReduce as a platform for distributed data processing
 - was developed at Google
 - operates on large clusters of commodity hardware
 - handles hard- and software failures transparently
 - open-source implementations (e.g., Apache Hadoop) available
 - programming model operates on key-value (kv) pairs
 - map() reads input data (k_1, v_1) and emits kv pairs (k_2, v_2)
 - platform groups and sorts kv pairs (k₂,v₂) automatically
 - reduce() sees kv pairs (k₂, list<v₂>) and emits kv pairs (k₃,v₃)

Map/Reduce Example

Index Construction in MapReduce

```
map(did, list<term>)
map<term, integer> tfs = new map<term, integer>();
// determine term frequencies
for each term in list<term>:
  tfs.adjustCount(term, +1);
// emit postings
for each term in tfs.keys():
  emit (term, (did, tfs.get(term)));
```

// platform groups & sorts output of map phase by term

```
reduce(term, list<(did, tf)>)
  // emit posting list
  emit (term, list<(did, tf)>)
```


Index Maintenance

- Document collections are not static, but documents are inserted, modified, or deleted as time passes; changes to the document collection should quickly be visible in search results
- <u>Typical approach</u>: Collect changes in main memory
 - deletion list of deleted documents
 - in-memory delta inverted index of inserted and modified documents
 - process queries over both the on-disk global and in-memory delta inverted index and filter out result documents from the deletion list
- What if the available main memory has been exhausted?

Rebuild

- Rebuild the on-disk global index from scratch
 - in a separate location; switch over to new index once completed
 - attractive for small document collections
 - attractive when document deletions are common
 - requires re-processing of entire document collection
 - easy to implement

Merge

- Merge the on-disk global index with the in-memory delta index
 - in a separate location; switch over to new index once completed
 - for each term, read posting lists from on-disk global index and inmemory delta index, merge them, filter out deleted documents, and write the merged posting list to disk
 - requires reading entire on-disk global index
- <u>Analysis</u>: Let B be capacity of the in-memory delta index (in terms of postings) and N be the total number of postings
 - N / B merge operations each having cost O(N)
 - total cost is in O(N²)

Geometric Merge

- Lester et al. [5] propose to partition the inverted index into index partitions of geometrically increasing sizes
 - tunable by parameter r
 - index partition P_0 is in main memory and contains up to B postings
 - index partitions P₁, P₂, ... are on disk with capacity invariants
 - partition P_j contains at most (r-1) r^(j-1) B postings
 - partition P_j is either empty or contains at least $r^{(j-1)}B$ postings
 - whenever P₀ overflows, a merge is triggered
- Query processing has to access all (non-empty) partitions P_i, leading to higher cost due to required disk seeks

Geometric Merge

r=3

Geometric Merge

- Analysis: Let B be the capacity of the in-memory partition P₀ and N be the total number of postings
 - there are at most 1 + $\lceil \log_r(N/B) \rceil$ partitions
 - each posting merged at most once into each partition
 - total cost is O(N log N/B)

Logarithmic Merge

- Logarithmic merge is a simplified variant of geometric merge
 - partition P₀ is in main memory and contains B postings
 - partition P₁ is on disk and contains up to 2B postings
 - partition P₂ is on disk and contains up to 4B postings
 - partition P_j is on disk and contains up to 2^jB postings
 - whenever P₀ overflows, a cascade of merges is triggered
- Log-structured merge tree (LSM-Tree) prominent in database systems (e.g., to manage logs) is based on the same principle

Index Maintenance for Microblogs

Wu et al. [9] use the log-structured inverted index to support high update rates when indexing social media

Index Management in Elasticsearch

- Indexes are stored as shards
- contained horizontal partition of index Each index has a fixed number of shards
 - By default 5 shards per index primary shards
- Shards are replicated
 - Each primary shard is replicated
 - Replication factor is a parameter
- Why shards?

A shard is a fully

Index Management in Elasticsearch

Elasticsearch Shards

- Shards are immutable
- Insert only!
- New documents are added to smaller segments
- When segments grow they are merged

Elasticsearch Shards

Lucene Dynamic Indexing

- Segments in Lucene are immutable
 - Cannot be changed
 - Can be created, merged and deleted
- When new documents are added
 - Small segments are created
 - When number of segments grow
 - Some merging technique is used such as logarithmic merging

Dynamic Indexing

Lucene Segment Merging (Insert only)

1 GB
500 1
0 sec 4.1 MB 1 segs; _0 0.0 MB merging 0.0 MB merged
100 M
50 MB

10 MB

Source: <u>http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html</u> 28

Lucene Dynamic Indexing

- How do deletes work?
- When documents are deleted
 - They are marked deleted in the segments
- When are they purged?

Lucene Segment Merging with Deletions

	5 GB
0 se 0.0 1 se 0.0 0.0	C MB gs; _0 MB merging MB merged
	1 GB
	500 MB
	100 MB
	100 Mb
	50 MB
	10 MB

Source: http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html 30

E CD

Query Processing in Elasticsearch

Query Processing

Segments

Outline

- 3.1. Motivation
- 3.2. Index Construction & Maintenance
- **3.3. Static Index Pruning**
- **3.4. Document Reordering**
- 3.5. Query Processing

3.3. Static Index Pruning

- Static index pruning is a form of lossy compression that
 - removes postings from the inverted index
 - allows for control of index size to make it fit, for instance, into main memory or on low-capacity device (e.g., smartphone)

• **Dynamic index pruning**, in contrast, refers to query processing methods (e.g., WAND or NRA) that avoid reading the entire index

Term-Centric Index Pruning

- Carmel et al. [3] propose term-centric static index pruning
- Idea: Remove postings from posting list for term V that are unlikely to contribute to top-k result of query including V
- Algorithm: For each term V
 - determine k-th highest score z_v of any posting in posting list for v
 - remove all postings having a score less than $\varepsilon \cdot z_v$
- Despite its simplicity the method guarantees for any query Q consisting of $|q| < 1 / \epsilon$ terms a "close enough" top-k result

Document-Centric Index Pruning

- Büttcher and Clarke [2] propose document-centric index pruning
- Idea: Remove postings for document d corresponding to nonimportant terms for which it is unlikely to be in the query result
- Importance of term v for document d is measured using its contribution to the KL divergence from background model D

$$\mathbf{P}\left[v \mid \theta_{d}\right] \log \left(\frac{\mathbf{P}\left[v \mid \theta_{d}\right]}{\mathbf{P}\left[v \mid \theta_{D}\right]}\right)$$

- DCP_{Const} selects constant number k of postings per document
- DCP_{Rel} selects a percentage λ of postings per document

Term-Centric vs. Document-Centric

- Büttcher and Clarke [3] compare term-centric (TCP) and document-centric (DCP) index pruning on TREC Terabyte
 - Okapi BM25 as baseline retrieval model
 - on-disk inverted index: 12.9 GBytes, 190 ms response time
 - pruned in-memory inverted index: | GByte, |8 ms
 response time
 [TREC 2004 Terabyte queries (topics 701-750)]

	BM25 Baseline	$\mathrm{DCP}_{\mathrm{Rel}}^{(\lambda=0.062)}$	$\mathrm{DCP}_{\mathrm{Const}}^{(\mathrm{k}=21)}$	$TCP_{(n=16000)}^{(k=24500)}$
P@5	0.5224	0.5020	0.4735	0.4490*
P@10	0.5347	0.4837	0.4755	0.4347^{*}
P@20	0.4959	0.4490	0.4224	0.4163
MAP	0.2575	0.1963	0.1621**	0.1808

[TREC 2005 Terabyte queries (topics 751-800)]				
	BM25 Baseline	$\mathrm{DCP}_{\mathrm{Rel}}^{(\lambda=0.062)}$	$\mathrm{DCP}_{\mathrm{Const}}^{(\mathrm{k}=21)}$	$TCP_{(n=16000)}^{(k=24500)}$
P@5	0.6840	0.6760	0.6000**	0.5640**
P@10	0.6400	0.5980	0.5300^{*}	0.5380**
P@20	0.5660	0.5310	0.4560^{**}	0.4630**
MAP	0.3346	0.2465	0.1923**	0.2364

Outline

- 3.1. Motivation
- 3.2. Index Construction & Maintenance
- 3.3. Static Index Pruning
- **3.4. Document Reordering**
- 3.5. Query Processing

Index Compression

- Sequences of non-decreasing integers (here: document identifiers) in posting lists are compressed using
 - delta encoding representing elements as difference to predecessor

 $\langle 1, 7, 11, 21, 42, 66 \rangle$ ----- $\langle 1, 6, 4, 10, 21, 24 \rangle$

 Variable-byte encoding: (aka. 7-bit encoding) represents integers (e.g., deltas of term offsets) as sequences of 1 continuation + 7 data bits

docIDs	624	629	914
gaps	0	5	285
VB Code	00000100 11110000	10000101	00000100 10011101

- Gamma encoding: unary code to represent length followed by offset binary of an integer but with leading 1 removed
 - e.g. 13 = 1101 = 1110101

3.4 Document Reordering

- Document reordering methods seek to improve compression effectiveness by assigning document identifiers so as to obtain small gaps
- Content based document reordering
- K-means clustering
 - similar documents get closer document ids
- K-Scan
 - Single scan k-means
- URL-based document id assignment

Content-Based Document Reordering

- Silvestri et al. [7] develop methods for the scenario when only document contents are available but no meta-data (e.g., URL)
- Intuition: Similar documents, having many terms in common, should be assigned numerically close document identifiers
- Documents are modeled as sets (not bags) of terms
- Document similarity is measured using the Jaccard coefficient $J(d_i, d_j) = \frac{|d_i \cap d_j|}{|d_i \cup d_j|}$

Top-Down Bisecting

- <u>Algorithm</u>:TDAssign(document collection D) // split D into equal-sized partitions D_L and D_R pick representatives d_L and d_R (e.g., randomly) if $(|D_L| \ge |D| / 2) \lor (|D_R| \ge |D| / 2)$ assign d to smaller partition else if $J(d, d_L) > J(d, d_R)$ assign d to D_L else assign d to D_R return TDAssign(D_L) \oplus TDAssign(D_R)
- ► TDAssign has time complexity in O(|D| log |D|)

kScan

- Algorithm: kScan(document collection D)
 // split D into k equal-sized partitions D_i
 n = |D|
 for i = 1 ... k
 d_i = longest document from D
 assign n/k documents with highest similarity J(d, d_i) to D_i
 D = D \ D_i
 return < d from D₁> ⊕ ... ⊕ <d from D_k>
- kScan has time complexity in O(k |D|)
- kScan outperforms TDAssign in terms of compression effectiveness (bits per posting) in experiments on collections of web documents

URL-Based Document Reordering

- Silvestri [8] examines the effectiveness of URL-based document reordering when compressing collections of web documents
- Intuition: Documents with lexicographically close URLs tend to have similar contents (e.g., <u>www.x.com/a</u> and <u>www.x.com/b</u>)
- <u>Algorithm</u>:
 - sort documents lexicographically according to their URL
 - ► **assign** consecutive document identifiers (1 ... |D|)

Content-Based vs. URL-Based

 Silvestri [8] reports experiments conducted on a largescale crawl of the Brazilian Web (about 6 million documents)

	VByte	Gamma	Delta
Random	11.40	12.72	12.71
URL	9.72	7.72	7.69
kScan	9.81	8.82	8.80

 URL-based document ordering outperforms content-based document ordering (kScan), requiring fewer bits per posting on average

Outline

- 3.1. Motivation
- 3.2. Index Construction & Maintenance
- 3.3. Static Index Pruning
- **3.4. Document Reordering**
- **3.5. Query Processing**

Query Processing

- Query processing methods operate on inverted index
 - holistic query processing methods determine the full query results (e.g., document-at-a-time and term-at-a-time)
 - top-k query processing methods (aka. dynamic index pruning) determine only the top-k query result and avoid reading posting lists completely
 - Fagin's TA and NRA for score-ordered posting lists
 - WAND and Block-Max WAND for documentordered posting lists

WAND

- Broder et al. [1] describe WAND (weak AND) as a top-k query processing method for document-ordered posting lists
 - DAAT-style traversal of posting lists in parallel
 - assumes that the maximum score max(i) per posting list is known
 - pivoted cursor movement based on current top-k result
 - let min_k denote the worst score in the current top-k result (1)
 - sort cursors for posting lists based on their current document identifier cdid(i) (2)
 - pivot document identifier p is the smallest cdid(j) such that (3)

$$\min_{\mathbf{k}} < \sum_{i \le j} \max(i)$$

move all cursors i with cdid(i)

WAND

Example: Pivoted cursor movement based on top-1 result

 It is safe to move the cursor for posting lists a and b forward to d₉

Block-Max WAND

- Ding and Suel [4] propose the block-max inverted index
 - store posting list as sequence of compressed posting blocks
 - each block contains a fixed number of postings (e.g., 64)
 - keep minimum document identifier and maximum score per block

these are available without having to decompress the block

Block-Max WAND

- Pivoted cursor movement considering per-block maximum scores
 - determine **pivot** p according to WAND
 - perform shallow cursor movement for all cursors i with cdid(i) < p(i.e., do not decompress if a new posting block is reached)
 - if any document from current blocks can make it into top-k, i.e.:

 $\min_{\mathbf{k}} < \sum \operatorname{block}_{\max(i)}$ $i:cdid(i) \le p$

perform deep cursor movement (i.e., decompress posting blocks) and continue as in WAND

else move cursor with minimal cdid(i) to $\min\left(\min_{i: cdid(i) \le p} \text{next_block_mdid(i)}, cdid(p+1)\right)$

Block-Max WAND

Example: Pivoted cursor movement based on top-1 result

Summary

- Inverted indexes can be efficiently constructed offline by using external memory sort or MapReduce
- Inverted indexes can be efficiently maintained by using logarithmic/geometric partitioning
- Index maintenance and query processing in elasticsearch
- Static index pruning methods reduce index size by systematically removing postings
- Document reordering methods reduce index size by assigning document identifiers so as to yield smaller gaps
- Query processing on document-ordered inverted indexes can be greatly sped up by pivoted cursor movement as part of WAND and Block-Max WAND

References

[1] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, J. Zien: Efficient Query Evaluation using a Two-Level Retrieval Process, CIKM 2003

[2] S. Büttcher and C. L. A. Clarke: A Document-Centric Approach to Static Index Pruning in Text Retrieval Systems, CIKM 2006

[3] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. S. Maarek, A. Soffer: Static Index Pruning for Information Retrieval Systems, SIGIR 2001

- [4] S. Ding and T. Suel: Faster Top-k Retrieval using Block-Max Indexes, SIGIR 2011
- [5] N. Leser, A. Moffat, J. Zobel: Efficient Online Index Construction for Text Databases ACM TODS 33(3), 2008
- [6] N. Lester, J. Zobel, H. Williams: Efficient Online Index Maintenance for Inverted Lists, IP&M 42, 2006
- [7] F. Silvestri, S. Orlando, R. Perego: Assigning Identifiers to Documents to Enhance the Clustering Property of Fulltext Indexes, SIGIR 2004

References

[8] F. Silvestri: Sorting Out the Document Identifier Assignment Problem, ECIR 2007

[9] L. Wu, W. Lin, X. Xiao, Y. Xu: LSII: An Indexing Structure for Exact Real-Time Search on Microblogs, ICDE 2013

For more on index compression refer to the slides from IRDM 2015 <u>http://resources.mpi-inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch11-handout.pdf</u>

For query processing like top-k NRA and TA algorithms refer to <u>http://resources.mpi-inf.mpg.de/departments/d5/teaching/ws15_16/irdm/slides/irdm2015-ch12-</u> <u>queryprocessing.pdf</u>

Additionally you can also refer to Chapter 5 in Introduction to Information retrieval by Christopher D. Manning et.al.

Some slides were borrowed from Prof. Klaus Berberich

