Efficient Top-k Query Processing In Highly Distributed Environment

Seminar on non traditional data management

Vinay Setty

Saarland University — Department of Computer Science

20/01/2009

Contents

Introduction

Skyline

K – Skyband and Top-k Queries

SPEERTO

System Overview Threshold-Based Top-k Algorithm

SPEERTO Extension

Parallel Processing Reducing Skyline Cardinality

Experimental Evaluation

Experimental Setup **Experimental Results**

Find a hotel in Manhattan, cheap and near to the beach

Figure: Skyline of Manhattan

Find a hotel in Manhattan, cheap and near to the beach

Figure: Skyline of Manhattan

Top-k Queries

- Exact best k results based on user-defined aggregate function
- Example:
 User query: top-k hotels with aggregate function distance + price
- Many centralized solutions are available
- Challenge is to support highly distributed environments like P2P
- Existing solutions for P2P are for vertical data distribution

Data representation for Top-k Queries

- Given set of data objects O with |O| = n
- The feature space is defined by the d scoring functions s_i
- Feature space is d-dimensional
- Each $o_i \in O$ is represented as a point p
- $p = \{p[1], ..., p[d]\}$ where $p[j] = s_j(o_i) \ (1 \le j \le d)$

Aggregation Function

- User-defined increasingly monotone aggregate function f
- Increasingly monotone: $\forall i \ p[i] \leq p'[i] \Rightarrow$ $f(p) = f(p[1], ..., p[d]) \le f(p'[1], ..., p'[d]) = f(p')$
- Example: Weighted sum over all the features (used in SPEERTO)
- Aggregated score, $score(o_i) = \sum_{i=1}^{d} w_i s_i(o_i), w_i$: weight of s_i

Introduction 0000000

- Given a d-dimensional feature space D and a set of objects O
- A point $p \in O$ with $p = \{p[1], ..., p[d]\}$ dominates a point $q \in O$, if on each dimension $d_i \in D$, $p[i] \leq q[i]$ and at least one dimension with p[i] < q[i]
- The "Skyline" $SKY \subseteq O$ is set of points that are not dominated by any other points

Property of Skyline

Observation:

The top-1 object for any increasingly monotone function f belongs to the skyline set

Proof:

Assume $q \in top - 1$ and $q \notin SKY$ f is increasingly monotone $\Rightarrow \forall d_i \in D, \exists p \in SKY \text{ and } p[i] \leq q[i]$ and at least one $d_i \in D, p[j] < q[j]$

This is a contradiction to our assumption that q is top-1

K — Skyband

ullet To answer Top-k query with $k \leq K$ Skyline is not sufficient

Definition:

K-Skyband is the set of points which are dominated by at most K-1 points.

• Special case: 1 - Skyband is Skyline

Example: 3 - Skyband

Top-k Skyline Query

- Given a linear top-K query defined by a vector w
- Only direction of w matters, we can assume $\sum_{i=1}^d w_i = 1$
- In d-dimensional space, query boderline is d-1 dimensional hyperplane
- Query processing is sweeping query boderline in feature space

Example: Top-k query in 2-dimensional feature space

SPEERTO: System Overview

- Top-k queries in P2P networks
- Unstructured P2P network of N_p peers
- Special peers called "super-peers" $SP_i(1 \le i \le N_{sp})$ and $N_{sp} << N_{p}$
- Each super-peer maintains *DEG_p* links to simple peers
- Also, initially a super-peer is connected to $DEG_{sp}(DEG_{sp} < DEG_p)$ other super-peers
- Later, at query time each super-peer can open connection to any other super-peer

SPEERTO: System Overview

- Each peer P_i holds n_i d-dimensional points, denoted as set $O_i(1 \leq i \leq N_p)$
- Total data set $O = \bigcup O_i$ with $|O| = n = \sum_{i=1}^{N_p} n_i$
- K-skyband from N_p simple peers are merged and stored at each super-peer SPi

Example:

Skyline based routing

- Skyline is used as preprocessing step
- Each peer computes its K-skyband
- Each super-peer merges all the K-skybands from its simple peers to get KSKY_i
- This merged data serves as routing table for query routing
- User query can be posed at any peer
- Associated super-peer handles the query routing
- Top-k queries with $(k \le K)$ are accurately answered

Solution Approach

- Naïve Solutions
 - Broadcast the Merged Skyband of a super-peer to other super-peers
 - Flood the query to all super-peers and get the Top-k results
- SPEERTO Approach
 - Broadcast only part of merged data: Skyline
 - Query only those peers which contain Top-k values

• Each super-peer SP_i assembles N_{sp} sets of skyline points

- SKY_i , $(1 \le i \le N_{sp})$, also called as Routing Objects
- A threshold value is defined as the score of the k-th point
- In 2-dimensional space, query borderline is sweeped to get top-k results

Example: A top-4 query with weights w = (0.5, 0.5)

Threshold-based Top-k algorithm

 SPEERTO Extension

perimental Evaluation

Top-3 Query Example

SP_A			
Х	Υ	Score	
4	3	3.5	
0.5	7	3.75	
8	1.5	4.75	
5	4	4.5	
2	8	5	
3	8	5.5	
7	4	5.5	

CD

SP_C			
X	Υ	Score	
2	6	4	
6	0.5	3.25	
1.5	10	5.25	
8	1	4.5	
5	6	5.5	
4	8	6	
3	10	6.5	

SP_B			
Х	Υ	score	
3	2	2.5	
9	1	5	
1	9	5	
4	2.5	3.25	
7	3	5	
5	7	6	
4	9	6.5	

e

SP_D			
Х	Υ	score	
4.5	10	7.25	
6	8	7	
8	6	7	
10	4	7	
7	10	8.5	
8	9	8.5	
9	8	8.5	
10	7	8.5	

Top-3 Query Example

SP_A			
Х	Y	Score	
4	3	3.5	
0.5	7	3.75	
8	1.5	4.75	
5	4	4.5	
2	8	5	
3	8	5.5	
7	4	5.5	

SP_C			
Х	Υ	Score	
2	6	4	
6	0.5	3.25	
1.5	10	5.25	
8	1	4.5	
5	6	5.5	
4	8	6	
3	10	6.5	

	SP_B		
	score	Υ	Х
e	2.5	2	3
g	5	1	9
n	5	9	1
j	3.25	2.5	4
	5	3	7
	6	7	5
	6.5	9	4

е g

SP_D			
Х	Υ	score	
4.5	10	7.25	
6	8	7	
8	6	7	
10	4	7	
7	10	8.5	
8	9	8.5	
9	8	8.5	
10	7	8.5	

Top-3 Query Example

SP_A			
Х	Υ	Score	
			į
0.5	7	3.75	
8	1.5	4.75	ı
5	4	4.5	
2	8	5	
3	8	5.5	
7	4	5.5	

CD

SP_C			
Х	Υ	Score	
2	6	4	
6	0.5	3.25	
1.5	10	5.25	
8	1	4.5	
5	6	5.5	
4	8	6	
3	10	6.5	

SP_B		
Х	Υ	score
3	2	2.5
9	1	5
1	9	5
4	2.5	3.25
7	3	5
5	7	6
4	9	6.5

SP_D			
Х	Υ	score	
4.5	10	7.25	
6	8	7	
8	6	7	
10	4	7	
7	10	8.5	
8	9	8.5	
9	8	8.5	
10	7	8.5	

Correctness and Optimality of SPEERTO

Correctness

Use of skyline at each super-peer guarantees correct result

Number of queried super-peers

- A super-peer SP is gueried only if next best object o in sorted list
- o is next best match so there is at least one object in SP which is part of Top-k result

Data transfer

 Only objects with score less than threshold value are transferred

SPEERTO Extensions

Parallel processing

- Linear processing of object list is blocking
- We can guery more than one peers in an iteration
- Results in inaccuracy of result

Reduced Skyline cardinality

- |SKY| is very high
- Solution is to find an approximation of the skyline
- Approximate skyline is robust to data updates

① Compute mean score $m = \frac{t - score(o_1)}{N_r}$, t - Threshold value, $score(o_1)$ - score of top-1 object, N_r - number of retrieved objects

- Compute mean score $m=\frac{t-score(o_1)}{N_r}$, t Threshold value, $score(o_1)$ - score of top-1 object, N_{r-} number of retrieved objects
- 2 If next object o_2 is routing object then compute $\overline{N_{r2}} = \frac{score(o_2) - score(o_1)}{core(o_1)}$

- Compute mean score $m=\frac{t-score(o_1)}{N_r}$, t Threshold value, $score(o_1)$ score of top-1 object, N_r number of retrieved objects
- ② If next object o_2 is routing object then compute $\overline{N_{r2}} = \frac{score(o_2) score(o_1)}{m}$
- \odot else if o_2 is data object, then process super-peers found so far

- Compute mean score $m=\frac{t-score(o_1)}{N_r}$, t Threshold value, $score(o_1)$ score of top-1 object, N_r number of retrieved objects
- ② If next object o_2 is routing object then compute $\overline{N_{r2}} = \frac{score(o_2) score(o_1)}{m}$
- \odot else if o_2 is data object, then process super-peers found so far
- If next object o_3 is routing object then compute $\overline{N_{r3}} = \frac{score(o_3) score(o_2)}{m}$

- Compute mean score $m=\frac{t-score(o_1)}{N_r}$, t Threshold value, $score(o_1)$ - score of top-1 object, N_r - number of retrieved objects
- 2 If next object o₂ is routing object then compute $\overline{N_{r2}} = \frac{score(o_2) - score(o_1)}{c}$
- \odot else if o_2 is data object, then process super-peers found so far
- If next object o₃ is routing object then compute $\overline{N_{r3}} = \frac{score(o_3) - score(o_2)}{m}$
- **5** repeat 1 to 4 until $\overline{N_{r2}} + \overline{N_{r3}} > (k-c)$

- Compute mean score $m = \frac{t score(o_1)}{N_r}$, t Threshold value, $score(o_1)$ - score of top-1 object, N_r - number of retrieved objects
- 2 If next object o₂ is routing object then compute $\overline{N_{r2}} = \frac{score(o_2) - score(o_1)}{c}$
- \odot else if o_2 is data object, then process super-peers found so far
- If next object o₃ is routing object then compute $\overline{N_{r3}} = \frac{score(o_3) - score(o_2)}{m}$
- **5** repeat 1 to 4 until $\overline{N_{r2}} + \overline{N_{r3}} > (k-c)$
- **6** A new mean is computed $m' = \frac{m + m_1 + m_2}{3}$, $m_2 = \frac{t score(o_2)}{M_2}$ and $m_3 = \frac{t-score(o_1)}{N_{r2}}$

SPEERTO Extension

- Compute mean score $m = \frac{t score(o_1)}{N_r}$, t Threshold value, $score(o_1)$ - score of top-1 object, N_r - number of retrieved objects
- 2 If next object o₂ is routing object then compute $\overline{N_{r2}} = \frac{score(o_2) - score(o_1)}{m}$
- \odot else if o_2 is data object, then process super-peers found so far
- If next object o₃ is routing object then compute $\overline{N_{r3}} = \frac{score(o_3) - score(o_2)}{m}$
- \bullet repeat 1 to 4 until $\overline{N_{r2}} + \overline{N_{r3}} > (k-c)$
- **1** A new mean is computed $m' = \frac{m + m_1 + m_2}{3}$, $m_2 = \frac{t score(o_2)}{N_2}$ and $m_3 = \frac{t-score(o_1)}{N_{r2}}$
- A new Threshold t' is computed

- Compute mean score $m = \frac{t score(o_1)}{N_r}$, t Threshold value, $score(o_1)$ - score of top-1 object, N_r - number of retrieved objects
- 2 If next object o₂ is routing object then compute $\overline{N_{r2}} = \frac{score(o_2) - score(o_1)}{m}$
- \odot else if o_2 is data object, then process super-peers found so far
- If next object o₃ is routing object then compute $\overline{N_{r3}} = \frac{score(o_3) - score(o_2)}{m}$
- \bullet repeat 1 to 4 until $\overline{N_{r2}} + \overline{N_{r3}} > (k-c)$
- **1** A new mean is computed $m' = \frac{m + m_1 + m_2}{3}$, $m_2 = \frac{t score(o_2)}{N_2}$ and $m_3 = \frac{t-score(o_1)}{N_{r2}}$
- A new Threshold t' is computed
- Repeat until k objects are found

Reducing skyline cardinality

•00

Given an upper limit U, abstract the skyline aSKY with at most U points (U < |SKY|)

- each point $p \in SKY$ is either dominated by or equal to at least one point $q \in aSKY$
- |aSKY| < U < |SKY|
- It only slightly influences the routing power of the skyline
- There are many ways to find aSKY

How to Abstract The Skyline?

- Consider an example with q, p, m, k as skyline
- Given an upper limit U=3
- Suppose we decide to replace q, p with one point r
- To ensure accuracy the super-peers will also be contacted based on abstraction

Heuristic to Abstract Skyline

00

- 1 Choose a point p with largest entropy value $E(p) = argmax_{\forall t \in SKY_i} (\sum_{1 < i < d} ln(p[i] + 1))$
- 2 Choose another point q with minimum distance $dist = min_{1 \le i \le d}(|p[i] - q[i]|), \forall t \in SKY_i$
- **3** Then replace p and q with r with $r[i] = min(p[i], q[i]), (1 \le i \le d)$
- 4 Iterate and terminate when U < |SKY|

- Experiments were done on simulator running on single machine
- Data was horizontally partitioned, evenly among peers
- Uniform data: random points in a space $[0, L]^d$
- Clustered data:
 - Super-peer picks cluster centroids randomly
 - All associated peers obtain points based on Gaussian distribution
- Default values:

$$d = 4, K = 50, 10 \le k \le 50, n = 10^6, n_p = 2000, N_{sp} = 0.1 N_p$$

SPEERTO Performance - Response Time

- Response time increases with dimensionality
- Initial results are returned immediately

Response time with d

Response time for first 10 objects

Effectiveness of Threshold Based Algorithm

- Number of contacted super-peers increase slightly with d
- Gain in number of transferred objects is around 21.9 for k=50

Number of contacted SPs

Improvement in number of objects transferred

Scalability With Data Cardinality and Response Rime With Clustered Data

- For n = 1M to 2.5M response time slightly increases
- SPEERTO performs better for clustered data

d=10 ----20 30 40 50 top-k

Scalability with cardinality

Clustered dataset

Top-k with k > K

- Relative recall: $\frac{|ReturnedTop-k \in TrueTop-k|}{|TrueTop-k|}$
- with K = 10, k = 100 and d = 2 relative recall is around 40%
- Scalable for varying data even with k > K

Recall for uniform data

Recall for varying data

- Parallel variant: Response time is improved by 20%, with only small increase in objects transferred
- Abstract variant: with d=2, 2% of dataset update and 50% abstraction, only 4% super-peers need to update skyline

Improvement in response time with parallel version

Data updates for d=2

Conclusions

- A novel approach for answering top-k queries in a P2P network based on super-peer architecture
- A threshold-based algorithm which forwards the top-k query requests among super-peers efficiently
- A variant of SPEERTO that queries in parallel
- An extension that restricts the cardinality of the skyline
- SPEERTO scales well to bigger systems
- SPEERTO performs considerably good even with k > K

Thank You!

References

- Akrivi Vlachou, Christos Doulkeridis, Kjetil N, Michalis Vazirgiannis: On efficient top-k query processing in highly distributed environments. SIGMOD 2008, pp. 753-764
- S. B orzs onyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of IEEE Int. Conf. on Data Engineering (ICDE), pages 421-430, 2001.
- D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems. ACM Transactions on Database Systems, 30(1):41-82, 2005

Backup slides

Updates

- Periodic updates of skyline suffices
- Broadcast the skyline updates, when either the skyline has significantly changed or the validity time has expired.
- K-skyband update at each super-peer is done more frequently

Churn

- The skyline entry of the departed super-peer is removed at the querying super-peer
- When a super-peer joins the network, its skyline is broadcast
- Churn of simple peers is handled by recomputing the super-peer K-skyband

Top-k with k > K: More results

- Clustered datasets result in similar recall values as uniform data
- By varying cardinality the skyband size is hardly inluenced

Recall for clustered data

Size for varying n

Top-k with k > K: More results

- Recall values increase with dimensionality because the size of the K-skyband also increases
- For d = 2 recall is low since the skyline consists of only 13 points

Recall for varying K

Size for varying K

Abstract Skyline Performance

- In abstract variant The number of transferred objects increases rapidly, since the threshold is not used
- For d = 3 the number of modified super-peers increases, but again the gain of abstraction is significant

Variant with abstract skyline

Data updates for d = 3