
Introduction SPEERTO SPEERTO Extension Experimental Evaluation

Efficient Top-k Query Processing In Highly
Distributed Environment

Seminar on non traditional data management

Vinay Setty

Saarland University — Department of Computer Science

20/01/2009



Introduction SPEERTO SPEERTO Extension Experimental Evaluation

Contents

Introduction
Skyline
K − Skyband and Top-k Queries

SPEERTO
System Overview
Threshold-Based Top-k Algorithm

SPEERTO Extension
Parallel Processing
Reducing Skyline Cardinality

Experimental Evaluation
Experimental Setup
Experimental Results



Introduction SPEERTO SPEERTO Extension Experimental Evaluation

Find a hotel in Manhattan, cheap and near to the beach

Figure: Skyline of Manhattan
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Top-k Queries

Exact best k results based on user-defined aggregate function

Example:
User query: top-k hotels with aggregate function distance +
price

Many centralized solutions are available

Challenge is to support highly distributed environments like
P2P

Existing solutions for P2P are for vertical data distribution
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Data representation for Top-k Queries

Given set of data objects O with |O| = n

The feature space is defined by the d scoring functions sj
Feature space is d-dimensional

Each oi ∈ O is represented as a point p

p = {p[1], ..., p[d ]} where p[j ] = sj(oi ) (1 ≤ j ≤ d)
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Aggregation Function

User-defined increasingly monotone aggregate function f

Increasingly monotone: ∀i p[i ] ≤ p′[i ]⇒
f (p) = f (p[1], ..., p[d ]) ≤ f (p′[1], ..., p′[d ]) = f (p′)
Example: Weighted sum over all the features (used in
SPEERTO)

Aggregated score, score(oi ) =
∑d

j=1 wjsj(oj), wj : weight of sj
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Skyline
Given a d-dimensional feature space D and a set of objects O
A point p ∈ O with p = {p[1], ..., p[d ]} dominates a point
q ∈ O, if on each dimension di ∈ D, p[i ] ≤ q[i ] and at least
one dimension with p[i ] < q[i ]
The “Skyline” SKY ⊆ O is set of points that are not
dominated by any other points
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Property of Skyline

Observation:

The top-1 object for any increasingly monotone function f belongs
to the skyline set

Proof:

Assume q ∈ top − 1 and q /∈ SKY
f is increasingly monotone ⇒ ∀di ∈ D, ∃p ∈ SKY and p[i ] ≤ q[i ]
and at least one dj ∈ D, p[j ] < q[j ]
This is a contradiction to our assumption that q is top-1
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K − Skyband
To answer Top-k query with k ≤ K Skyline is not sufficient

Definition:

K − Skyband is the set of points which are dominated by at most
K-1 points.

Special case: 1− Skyband is Skyline

Example: 3− Skyband

K-Skyband 
area (K=3)
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Top-k Skyline Query
Given a linear top-K query defined by a vector w
Only direction of w matters, we can assume

∑d
i=1 wi = 1

In d-dimensional space, query boderline is d-1 dimensional
hyperplane
Query processing is sweeping query boderline in feature space

Example: Top-k query in 2-dimensional feature space

K-Skyband 
area (K=3)

Query borderline
0.5*x + 0.5*y = 2.5

w
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SPEERTO: System Overview

Top-k queries in P2P networks

Unstructured P2P network of Np peers

Special peers called ”super-peers”
SPi (1 ≤ i ≤ Nsp) and Nsp << Np

Each super-peer maintains DEGp links to simple peers

Also, initially a super-peer is connected to
DEGsp(DEGsp < DEGp) other super-peers

Later, at query time each super-peer can open connection to
any other super-peer
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SPEERTO: System Overview
Each peer Pi holds ni d-dimensional points, denoted as set
Oi (1 ≤ i ≤ Np)

Total data set O =
⋃

Oi with |O| = n =
∑Np

i=1 ni

K-skyband from Np simple peers are merged and stored at
each super-peer SPi

Example:
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Skyline based routing

Skyline is used as preprocessing step

Each peer computes its K-skyband

Each super-peer merges all the K-skybands from its simple
peers to get KSKYi

This merged data serves as routing table for query routing

User query can be posed at any peer

Associated super-peer handles the query routing

Top-k queries with (k ≤ K ) are accurately answered
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Solution Approach

Näıve Solutions

Broadcast the Merged Skyband of a super-peer to other
super-peers
Flood the query to all super-peers and get the Top-k results

SPEERTO Approach

Broadcast only part of merged data: Skyline
Query only those peers which contain Top-k values
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Threshold-Based Top-k

Each super-peer SPi assembles Nsp sets of skyline points
SKYi , (1 ≤ i ≤ Nsp), also called as Routing Objects

A threshold value is defined as the score of the k-th point

In 2-dimensional space, query borderline is sweeped to get
top-k results

Example: A top-4 query with weights w = (0.5, 0.5)
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Threshold-based Top-k algorithm

list = KSKYq
threshold = min(list)

count=0

if count < k

next_obj = list.pop()

if next_obj
is a routing 

object 

temp = 
next_obj.query

list.append(temp)

return next_obj
count++

threshold = 
min(list)

stop
No

No

Yes

Yes
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Top-3 Query Example
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Correctness and Optimality of SPEERTO

Correctness

Use of skyline at each super-peer guarantees correct result

Number of queried super-peers

A super-peer SP is queried only if next best object o in sorted
list

o is next best match so there is at least one object in SP
which is part of Top-k result

Data transfer

Only objects with score less than threshold value are
transferred
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SPEERTO Extensions

Parallel processing

Linear processing of object list is blocking

We can query more than one peers in an iteration

Results in inaccuracy of result

Reduced Skyline cardinality

|SKY | is very high

Solution is to find an approximation of the skyline

Approximate skyline is robust to data updates



Introduction SPEERTO SPEERTO Extension Experimental Evaluation

SPEERTO: Parallel Query processing

1 Compute mean score m = t−score(o1)
Nr

, t - Threshold value,
score(o1)- score of top-1 object, Nr - number of retrieved
objects

2 If next object o2 is routing object then compute
Nr2 = score(o2)−score(o1)

m

3 else if o2 is data object, then process super-peers found so far

4 If next object o3 is routing object then compute
Nr3 = score(o3)−score(o2)

m

5 repeat 1 to 4 until Nr2 + Nr3 > (k − c)

6 A new mean is computed m′ = m+m1+m2
3 , m2 = t−score(o2)

Nr2

and m3 = t−score(o1)
Nr3

7 A new Threshold t′ is computed

8 Repeat until k objects are found
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Reducing skyline cardinality

Given an upper limit U, abstract the skyline aSKY with at
most U points (U < |SKY |)

each point p ∈ SKY is either dominated by or equal to at
least one point q ∈ aSKY

|aSKY | ≤ U < |SKY |
It only slightly influences the routing power of the skyline

There are many ways to find aSKY
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How to Abstract The Skyline?
Consider an example with q, p, m, k as skyline
Given an upper limit U = 3
Suppose we decide to replace q, p with one point r
To ensure accuracy the super-peers will also be contacted
based on abstraction
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Heuristic to Abstract Skyline

1 Choose a point p with largest entropy value
E (p) = argmax∀t∈SKYi

(
∑

1≤i≤d ln(p[i ] + 1))

2 Choose another point q with minimum distance
dist = min1≤i≤d(|p[i ]− q[i ]|), ∀t ∈ SKYi

3 Then replace p and q with r with
r [i ] = min(p[i ], q[i ]), (1 ≤ i ≤ d)

4 Iterate and terminate when U < |SKY |
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Experimental Setup

Experiments were done on simulator running on single
machine

Data was horizontally partitioned, evenly among peers

Uniform data: random points in a space [0, L]d

Clustered data:

Super-peer picks cluster centroids randomly
All associated peers obtain points based on Gaussian
distribution

Default values:
d = 4, K = 50, 10 ≤ k ≤ 50, n = 106, np = 2000, Nsp = 0.1Np
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SPEERTO Performance - Response Time

Response time increases with dimensionality

Initial results are returned immediately
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Figure 7: Performance of SPEERTO (Nsp = 200, Np = 2000, K = 50)

super-peers (Figure 7(h)) remains practically the same for
a given top-k query. In the next experiment, we study the
performance on clustered data. Figure 7(i) depicts the re-
sponse time for clustered data distribution while varying the
dimensionality of the dataset. The clustered dataset leads
to much smaller response time than the uniform distribu-
tion, because only a few super-peers are contacted during
query processing. Therefore, SPEERTO performs better for
the clustered dataset in terms of response time, contacted
super-peers, and transferred data objects.
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In the next experiments we evaluate the effectiveness of
SPEERTO for top-k queries with k > K. We compare the
actual top-k results with the ones retrieved from the K-
skyband, by measuring the relative recall, i.e., the fraction of
the produced top-k results that are in the true top-k results.

In Figure 8(a), we show the recall achieved for uniform
distribution and cardinality 0.5M, while varying d from 2 to
4. The K parameter of the skyband is set to 10, which en-
sures us the exact results at least for any top-10 query. We

evaluate the performance of our approach for 10 ≤ k ≤ 200.
As expected recall decreases as k increases, but notice that
the errors in the top-k list occur in the lower positioned ob-
jects, which are less important to the user. The skyband size
is manageable and less than 1% of the dataset in any case.
For d = 2 the skyband contains less than 100 points, thus
recall decreases rapidly. For d = 4 the skyband size grows to
less than 3500 data objects, and recall decreases less rapidly.
Figure 8(a) shows that using the 10-skyband we can answer
top-100 queries with recall around 40% for d = 2, while for
d = 4 we can answer queries for higher k values with better
recall. Experiments on clustered datasets resulted in similar
recall values (Figure 8(b)). By varying the cardinality we
noticed that recall (Figure 8(c)) and the skyband size (Fig-
ure 8(d)) are hardly influenced, which makes our approach
feasible for large-scale systems.

In Figure 8(e) we vary K between 1 and 100 and evaluate
the recall on top-100 queries for different dimensionality val-
ues. For K = 1 (which is the skyline set) we achieve recall
of more than 90% for dimensionality 6 and 8, while the size
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Figure 7: Performance of SPEERTO (Nsp = 200, Np = 2000, K = 50)

super-peers (Figure 7(h)) remains practically the same for
a given top-k query. In the next experiment, we study the
performance on clustered data. Figure 7(i) depicts the re-
sponse time for clustered data distribution while varying the
dimensionality of the dataset. The clustered dataset leads
to much smaller response time than the uniform distribu-
tion, because only a few super-peers are contacted during
query processing. Therefore, SPEERTO performs better for
the clustered dataset in terms of response time, contacted
super-peers, and transferred data objects.
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In the next experiments we evaluate the effectiveness of
SPEERTO for top-k queries with k > K. We compare the
actual top-k results with the ones retrieved from the K-
skyband, by measuring the relative recall, i.e., the fraction of
the produced top-k results that are in the true top-k results.

In Figure 8(a), we show the recall achieved for uniform
distribution and cardinality 0.5M, while varying d from 2 to
4. The K parameter of the skyband is set to 10, which en-
sures us the exact results at least for any top-10 query. We

evaluate the performance of our approach for 10 ≤ k ≤ 200.
As expected recall decreases as k increases, but notice that
the errors in the top-k list occur in the lower positioned ob-
jects, which are less important to the user. The skyband size
is manageable and less than 1% of the dataset in any case.
For d = 2 the skyband contains less than 100 points, thus
recall decreases rapidly. For d = 4 the skyband size grows to
less than 3500 data objects, and recall decreases less rapidly.
Figure 8(a) shows that using the 10-skyband we can answer
top-100 queries with recall around 40% for d = 2, while for
d = 4 we can answer queries for higher k values with better
recall. Experiments on clustered datasets resulted in similar
recall values (Figure 8(b)). By varying the cardinality we
noticed that recall (Figure 8(c)) and the skyband size (Fig-
ure 8(d)) are hardly influenced, which makes our approach
feasible for large-scale systems.

In Figure 8(e) we vary K between 1 and 100 and evaluate
the recall on top-100 queries for different dimensionality val-
ues. For K = 1 (which is the skyline set) we achieve recall
of more than 90% for dimensionality 6 and 8, while the size
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Figure 7: Performance of SPEERTO (Nsp = 200, Np = 2000, K = 50)

super-peers (Figure 7(h)) remains practically the same for
a given top-k query. In the next experiment, we study the
performance on clustered data. Figure 7(i) depicts the re-
sponse time for clustered data distribution while varying the
dimensionality of the dataset. The clustered dataset leads
to much smaller response time than the uniform distribu-
tion, because only a few super-peers are contacted during
query processing. Therefore, SPEERTO performs better for
the clustered dataset in terms of response time, contacted
super-peers, and transferred data objects.
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In the next experiments we evaluate the effectiveness of
SPEERTO for top-k queries with k > K. We compare the
actual top-k results with the ones retrieved from the K-
skyband, by measuring the relative recall, i.e., the fraction of
the produced top-k results that are in the true top-k results.

In Figure 8(a), we show the recall achieved for uniform
distribution and cardinality 0.5M, while varying d from 2 to
4. The K parameter of the skyband is set to 10, which en-
sures us the exact results at least for any top-10 query. We

evaluate the performance of our approach for 10 ≤ k ≤ 200.
As expected recall decreases as k increases, but notice that
the errors in the top-k list occur in the lower positioned ob-
jects, which are less important to the user. The skyband size
is manageable and less than 1% of the dataset in any case.
For d = 2 the skyband contains less than 100 points, thus
recall decreases rapidly. For d = 4 the skyband size grows to
less than 3500 data objects, and recall decreases less rapidly.
Figure 8(a) shows that using the 10-skyband we can answer
top-100 queries with recall around 40% for d = 2, while for
d = 4 we can answer queries for higher k values with better
recall. Experiments on clustered datasets resulted in similar
recall values (Figure 8(b)). By varying the cardinality we
noticed that recall (Figure 8(c)) and the skyband size (Fig-
ure 8(d)) are hardly influenced, which makes our approach
feasible for large-scale systems.

In Figure 8(e) we vary K between 1 and 100 and evaluate
the recall on top-100 queries for different dimensionality val-
ues. For K = 1 (which is the skyline set) we achieve recall
of more than 90% for dimensionality 6 and 8, while the size
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Figure 7: Performance of SPEERTO (Nsp = 200, Np = 2000, K = 50)

super-peers (Figure 7(h)) remains practically the same for
a given top-k query. In the next experiment, we study the
performance on clustered data. Figure 7(i) depicts the re-
sponse time for clustered data distribution while varying the
dimensionality of the dataset. The clustered dataset leads
to much smaller response time than the uniform distribu-
tion, because only a few super-peers are contacted during
query processing. Therefore, SPEERTO performs better for
the clustered dataset in terms of response time, contacted
super-peers, and transferred data objects.
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In the next experiments we evaluate the effectiveness of
SPEERTO for top-k queries with k > K. We compare the
actual top-k results with the ones retrieved from the K-
skyband, by measuring the relative recall, i.e., the fraction of
the produced top-k results that are in the true top-k results.

In Figure 8(a), we show the recall achieved for uniform
distribution and cardinality 0.5M, while varying d from 2 to
4. The K parameter of the skyband is set to 10, which en-
sures us the exact results at least for any top-10 query. We

evaluate the performance of our approach for 10 ≤ k ≤ 200.
As expected recall decreases as k increases, but notice that
the errors in the top-k list occur in the lower positioned ob-
jects, which are less important to the user. The skyband size
is manageable and less than 1% of the dataset in any case.
For d = 2 the skyband contains less than 100 points, thus
recall decreases rapidly. For d = 4 the skyband size grows to
less than 3500 data objects, and recall decreases less rapidly.
Figure 8(a) shows that using the 10-skyband we can answer
top-100 queries with recall around 40% for d = 2, while for
d = 4 we can answer queries for higher k values with better
recall. Experiments on clustered datasets resulted in similar
recall values (Figure 8(b)). By varying the cardinality we
noticed that recall (Figure 8(c)) and the skyband size (Fig-
ure 8(d)) are hardly influenced, which makes our approach
feasible for large-scale systems.

In Figure 8(e) we vary K between 1 and 100 and evaluate
the recall on top-100 queries for different dimensionality val-
ues. For K = 1 (which is the skyline set) we achieve recall
of more than 90% for dimensionality 6 and 8, while the size
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Scalability With Data Cardinality and Response Rime With
Clustered Data

For n = 1M to 2.5M response time slightly increases

SPEERTO performs better for clustered data
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Figure 7: Performance of SPEERTO (Nsp = 200, Np = 2000, K = 50)

super-peers (Figure 7(h)) remains practically the same for
a given top-k query. In the next experiment, we study the
performance on clustered data. Figure 7(i) depicts the re-
sponse time for clustered data distribution while varying the
dimensionality of the dataset. The clustered dataset leads
to much smaller response time than the uniform distribu-
tion, because only a few super-peers are contacted during
query processing. Therefore, SPEERTO performs better for
the clustered dataset in terms of response time, contacted
super-peers, and transferred data objects.
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In the next experiments we evaluate the effectiveness of
SPEERTO for top-k queries with k > K. We compare the
actual top-k results with the ones retrieved from the K-
skyband, by measuring the relative recall, i.e., the fraction of
the produced top-k results that are in the true top-k results.

In Figure 8(a), we show the recall achieved for uniform
distribution and cardinality 0.5M, while varying d from 2 to
4. The K parameter of the skyband is set to 10, which en-
sures us the exact results at least for any top-10 query. We

evaluate the performance of our approach for 10 ≤ k ≤ 200.
As expected recall decreases as k increases, but notice that
the errors in the top-k list occur in the lower positioned ob-
jects, which are less important to the user. The skyband size
is manageable and less than 1% of the dataset in any case.
For d = 2 the skyband contains less than 100 points, thus
recall decreases rapidly. For d = 4 the skyband size grows to
less than 3500 data objects, and recall decreases less rapidly.
Figure 8(a) shows that using the 10-skyband we can answer
top-100 queries with recall around 40% for d = 2, while for
d = 4 we can answer queries for higher k values with better
recall. Experiments on clustered datasets resulted in similar
recall values (Figure 8(b)). By varying the cardinality we
noticed that recall (Figure 8(c)) and the skyband size (Fig-
ure 8(d)) are hardly influenced, which makes our approach
feasible for large-scale systems.

In Figure 8(e) we vary K between 1 and 100 and evaluate
the recall on top-100 queries for different dimensionality val-
ues. For K = 1 (which is the skyline set) we achieve recall
of more than 90% for dimensionality 6 and 8, while the size
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Figure 7: Performance of SPEERTO (Nsp = 200, Np = 2000, K = 50)

super-peers (Figure 7(h)) remains practically the same for
a given top-k query. In the next experiment, we study the
performance on clustered data. Figure 7(i) depicts the re-
sponse time for clustered data distribution while varying the
dimensionality of the dataset. The clustered dataset leads
to much smaller response time than the uniform distribu-
tion, because only a few super-peers are contacted during
query processing. Therefore, SPEERTO performs better for
the clustered dataset in terms of response time, contacted
super-peers, and transferred data objects.
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In the next experiments we evaluate the effectiveness of
SPEERTO for top-k queries with k > K. We compare the
actual top-k results with the ones retrieved from the K-
skyband, by measuring the relative recall, i.e., the fraction of
the produced top-k results that are in the true top-k results.

In Figure 8(a), we show the recall achieved for uniform
distribution and cardinality 0.5M, while varying d from 2 to
4. The K parameter of the skyband is set to 10, which en-
sures us the exact results at least for any top-10 query. We

evaluate the performance of our approach for 10 ≤ k ≤ 200.
As expected recall decreases as k increases, but notice that
the errors in the top-k list occur in the lower positioned ob-
jects, which are less important to the user. The skyband size
is manageable and less than 1% of the dataset in any case.
For d = 2 the skyband contains less than 100 points, thus
recall decreases rapidly. For d = 4 the skyband size grows to
less than 3500 data objects, and recall decreases less rapidly.
Figure 8(a) shows that using the 10-skyband we can answer
top-100 queries with recall around 40% for d = 2, while for
d = 4 we can answer queries for higher k values with better
recall. Experiments on clustered datasets resulted in similar
recall values (Figure 8(b)). By varying the cardinality we
noticed that recall (Figure 8(c)) and the skyband size (Fig-
ure 8(d)) are hardly influenced, which makes our approach
feasible for large-scale systems.

In Figure 8(e) we vary K between 1 and 100 and evaluate
the recall on top-100 queries for different dimensionality val-
ues. For K = 1 (which is the skyline set) we achieve recall
of more than 90% for dimensionality 6 and 8, while the size

762

Scalability with cardinality
Clustered dataset
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Top-k with k > K

Relative recall: |ReturnedTop−k∈TrueTop−k|
|TrueTop−k|

with K = 10, k = 100 and d = 2 relative recall is around 40%

Scalable for varying data even with k > K
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Performance With Extensions
Parallel variant: Response time is improved by 20%, with only
small increase in objects transferred
Abstract variant: with d=2, 2% of dataset update and 50%
abstraction, only 4% super-peers need to update skyline
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Conclusions

A novel approach for answering top-k queries in a P2P
network based on super-peer architecture

A threshold-based algorithm which forwards the top-k query
requests among super-peers efficiently

A variant of SPEERTO that queries in parallel

An extension that restricts the cardinality of the skyline

SPEERTO scales well to bigger systems

SPEERTO performs considerably good even with k > K
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Thank You!
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Backup slides
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Skyline based routing with Updates and Churn

Updates

Periodic updates of skyline suffices

Broadcast the skyline updates, when either the skyline has
significantly changed or the validity time has expired.

K-skyband update at each super-peer is done more frequently

Churn

The skyline entry of the departed super-peer is removed at the
querying super-peer

When a super-peer joins the network, its skyline is broadcast

Churn of simple peers is handled by recomputing the
super-peer K-skyband
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Top-k with k > K : More results

Clustered datasets result in similar recall values as uniform
data

By varying cardinality the skyband size is hardly inluenced

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

R
ec

al
l

top-k

d=2
d=3
d=4

 0

 500

 1000

 1500

 2000

 2500

 50  100  150  200  250  300  350  400  450  500

S
iz

e 
of

 s
ky

ba
nd

n (x103)

d=2
d=3
d=4

Recall for clustered data Size for varying n



Introduction SPEERTO SPEERTO Extension Experimental Evaluation

Top-k with k > K : More results

Recall values increase with dimensionality because the size of
the K-skyband also increases

For d = 2 recall is low since the skyline consists of only 13
points
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Abstract Skyline Performance

In abstract variant The number of transferred objects
increases rapidly, since the threshold is not used

For d = 3 the number of modified super-peers increases, but
again the gain of abstraction is significant

 0

 5

 10

 15

 20

 25

 30

 10  20  30  40  50

In
cr

ea
se

 o
f t

ra
ns

fe
rr

ed
 o

bj
ec

t (
%

)

top-k

d=2
d=4
d=6
d=8

d=10

 0

 20

 40

 60

 80

 100

 2  4  6  8  10

P
er

ce
nt

ag
e 

of
 c

ha
ng

e

Percentage of dataset updates

Abstract=50%, d=3
Abstract=75%, d=3

Abstract=100%, d=3

Variant with abstract skyline Data updates for d = 3


	Introduction
	Skyline
	K-Skyband and Top-k Queries

	SPEERTO
	System Overview
	Threshold-Based Top-k Algorithm

	SPEERTO Extension
	Parallel Processing
	Reducing Skyline Cardinality

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	

