SPEERTO SPEERTO Extension Experimental Evaluation

(e]e] (e]e] [e]
00000000 [e]e]e} 00000

Efficient Top-k Query Processing In Highly
Distributed Environment

Seminar on non traditional data management

Vinay Setty
Saarland University — Department of Computer Science

20,/01,/2009

Introduction SPEERTO SPEERTO Extension

0000000 [e]e) [e]e)

[o]e] 00000000 000
Contents

Introduction
Skyline
K — Skyband and Top-k Queries

SPEERTO
System Overview
Threshold-Based Top-k Algorithm

SPEERTO Extension
Parallel Processing
Reducing Skyline Cardinality

Experimental Evaluation
Experimental Setup
Experimental Results

Experimental Evaluation

[e]
00000

Introduction SPEERTO SPEERTO Extension
9000000 [e]e) [e]e)
[o]e] 00000000 000

Experimental Evaluation

[e]
00000

Find a hotel in Manhattan, cheap and near to the beach

-» Tb S

anbom

74°00'38.16"W

0ct 2008

Figure: Skyline of Manhattan

Introduction SPEERTO SPEERTO Extension
0e00000 [e]e) [e]e)
[o]e] 00000000 000

Experimental Evaluation

[e]
00000

Find a hotel in Manhattan, cheap and near to the beach

-» Tb S

anbom

74°00'38.16"W

0ct 2008

Figure: Skyline of Manhattan

Introduction
00e0000

Top-k Queries

Exact best k results based on user-defined aggregate function

Example:

User query: top-k hotels with aggregate function distance +
price

Many centralized solutions are available

Challenge is to support highly distributed environments like
P2P

Existing solutions for P2P are for vertical data distribution

Introduction
000e000

Data representation for Top-k Queries

Given set of data objects O with |O| = n

The feature space is defined by the d scoring functions s;
Feature space is d-dimensional

Each o; € O is represented as a point p

p = {plLl, ... pld]} where p[j] = 5;(0;) (1 < j < d)

® 6 6 6 o

Feature space

Data objects o;

pl] ql1] S

Introduction
0000e00

Aggregation Function

User-defined increasingly monotone aggregate function f

Increasingly monotone: Vi p[i] < p/[i] =

f(p) = f(p[L]. ... pld]) < F(p/[1], .., p'[d]) = f(pr)
Example: Weighted sum over all the features (used in
SPEERTO)

Aggregated score, score(o;) = Zj’:l w;sj(0;), w; : weight of s;

Introduction
00000e0

Skyline

@ Given a d-dimensional feature space D and a set of objects O

e A point p € O with p={p[1], ..., p[d]} dominates a point
g € O, if on each dimension d; € D, p[i] < g[i] and at least
one dimension with p[i] < q[i]

@ The “Skyline” SKY C O is set of points that are not
dominated by any other points

Skyline

Distance /

1 23 4567 8 9 Price

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

000000e (e]e] (e]e] [e]
(oo} 00000000 [e]e]e} 00000

Property of Skyline

Observation:

The top-1 object for any increasingly monotone function f belongs
to the skyline set

Proof:

Assume g € top — 1 and g ¢ SKY

f is increasingly monotone = Vd; € D,3p € SKY and pli] < q[i]
and at least one d; € D, p[j] < q[/]

This is a contradiction to our assumption that q is top-1

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] (e]e] [e]
e0 00000000 [e]e]e} 00000

@ To answer Top-k query with kK < K Skyline is not sufficient

Definition:
K — Skyband is the set of points which are dominated by at most
K-1 points.

@ Special case: 1 — Skyband is Skyline

Example: 3 — Skyband

b
Distagce | @ e
ST ©
o
w 4
N o
T |1 K-Skyband
i e area (K=3)
T d /
"1 i [
T © In
~1 P s
© MR

T I R A R
1 2 3 4 5 6 7 8 9 10 Price

Introduction
0000000

oe

Example: Top-k query in 2-dimensional feature space

SPEERTO

(e]e]

00000000

Given a linear top-K query defined by a vector w

SPEERTO Extension

(e]e]
[e]e]e}

Top-k Skyline Query

Experimental Evaluation

[e]
00000

Only direction of w matters, we can assume fo’;l w; =1
In d-dimensional space, query boderline is d-1 dimensional

hyperplane

Query processing is sweeping query boderline in feature space

Distan

1 2 3 4 5 67 8 9 10

4

e @ ° o
§ a
-
| g
Ofr @
L . @{
r O K-Skyband
=, 0} area (K=3)
\, h
L \\\ o 4 /
b h S “ p @
%]
B Q\ -] n
- AN o— Query borderline

» 05%x+05%Yy=25

SPEERTO
[Jo)

SPEERTO: System Overview

Top-k queries in P2P networks
Unstructured P2P network of N, peers

Special peers called "super-peers”
SPi(1 <i < Nsp) and Ngp << N,

Each super-peer maintains DEG,, links to simple peers

Also, initially a super-peer is connected to
DEGs,(DEGs, < DEG)) other super-peers

Later, at query time each super-peer can open connection to
any other super-peer

Introduction SPEERTO SPEERTO Extension Experimental Evaluation
0000000 oce [e]e) o]
[o]e] 00000000 000 00000

SPEERTO: System Overview
@ Each peer P; holds n; d-dimensional points, denoted as set
Oi(1<i<N,)
e Total data set O = J O; with |O| = n= &1 n;
@ K-skyband from N, simple peers are merged and stored at
each super-peer SP;

Example:

SPEERTO

®0000000

Skyline based routing

Skyline is used as preprocessing step
Each peer computes its K-skyband

Each super-peer merges all the K-skybands from its simple
peers to get KSKY;

This merged data serves as routing table for query routing
User query can be posed at any peer
Associated super-peer handles the query routing

Top-k queries with (k < K)) are accurately answered

SPEERTO

O@000000

Solution Approach

@ Naive Solutions
e Broadcast the Merged Skyband of a super-peer to other
super-peers
e Flood the query to all super-peers and get the Top-k results
@ SPEERTO Approach

e Broadcast only part of merged data: Skyline
e Query only those peers which contain Top-k values

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] (e]e] [e]
(oo} 00@00000 [e]e]e} 00000

Threshold-Based Top-k

@ Each super-peer SP; assembles N, sets of skyline points
SKY;, (1 < i< Nsp), also called as Routing Objects
@ A threshold value is defined as the score of the k-th point

@ In 2-dimensional space, query borderline is sweeped to get
top-k results

Example: A top-4 query with weights w = (0.5, 0.5)

8P, P, © Routing object
4 Data object

Threshold
borderline

Active region

1 2 3 4 5 67 8 9 10 =
f—

Query borderline
0.5*x+0.5*y=2.5

1 2 3 4 5 67 8 9 10 x

SPEERTO SPEERTO Extension

(e]e]

Experimental Evaluation
[e]e)
000@0000 000

[e]
00000

Threshold-based Top-k algorithm

list= KSKY,
threshold = min(list)
count=0

\"4

if count < k

next_obj = list.pop()

temp = ! fnext_gb] return next_obj
- is a routing iy
next_obj.query object count
v
list.append(temp)

l threshold =

min(list)

-5

SPEERTO

00008000

Top-3 Query Example

SPy SPc
X Y Score X Y Seore
h 4 35 | f 6 2
SPy SPpSPc c 0.5 7 3.75 m 6 05 3.95
y e b . 8 15 | 475 | p | 15 10 | 5.25
4 (@] 5 4 45 8 1 45
a 2 8 5 5 6 55
_ Og 3 8 55 4 8 6
¢ 7 4 55 3 10 6.5
_\n
T ° © 5Py Py
:: Of X Y score X Y score
1 hg il 3| 2 25 | e| 45| 10 | 725
1 \i | d 0 9 1 5 6 8 7
- m ®$b a 1 9 5 n 8 6 7
Py | 4 25010305 | L0 LT
1 2 3 4 5 67 8 910 x 7 3 5 7 10 8.5
5 7 6 8 9 8.5
4 9 6.5 9 8 8.5
10 7 8.5

SPEERTO

00000e00

Top-3 Query Example

SPa SP¢
Y Score X Y Score
h 4 3 35 | r 2 5 2
SPy SPySPc c 05| 7 |375| ,»| 6 | 05 | 325
» 4 b d| 8 15 | 475 | p | 15 | 10 | 525
4 Oe 5 4 4.5 8 1 45
a 2 8 5 5 6 55
1 Og 3 8 55 4 8 6
¢ 7 4 55 3 10 6.5
\\\ C’ On
T . 5Py SPp
i N
N ™ 4 X N score X Y score
T \\ N\, [C
. ('. i| 3 2 2.5 e | 45 | 10 | 7.25
—-— \\\\ ' AN 9 1 5 6 8 7
+4 i) 0 g
-+ \\ Jn al 1 9 n 8 6 7
N, .
e Py e 4 1251325 | PTOL R RT
1 2 3 4 5 6 7\8 9 10 x 7 3 5 7 10 8.5
5 7 6 8 9 8.5
Query borderline Threshold 4 9 6.5 9 8 8.5
*y = .
0.5"x+0.5"y=2.5 porderline o | 7 | a5

SPEERTO

00000080

Top-3 Query Example

SP, SP.
X Y Score
h f 2 6 4
SP, 5P, SPc c o5 | 7 |375| m| 6 05 | 3.25
y 4 b d 8 15 [475 | 5 | 15 10 | 525
1 o’ 5 4 45 8 1 45
a 2 8 5 5 6 55
1 Og 3 8 55 4 8 6
¢ 7 4 55 3 10 6.5

©”
v
&
%)
~
>)

i e| 45 | 10 | 7.25
ol 9 5 6 8 7
al 1 9 5 n| 8 6 7
_z| 4 25 | 325 | j 10 4 7
x 7 3 5 7 10 8.5
5 7 6 8 9 8.5
Threshold 4 | 9 | 85 9 8 | 85
borderline 10 7 8.5

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] (e]e] [e]
(oo} 0O000000e [e]e]e} 00000

Correctness and Optimality of SPEERTO

Correctness
@ Use of skyline at each super-peer guarantees correct result

Number of queried super-peers
@ A super-peer SP is queried only if next best object o in sorted
list
@ o is next best match so there is at least one object in SP
which is part of Top-k result

Data transfer

@ Only objects with score less than threshold value are
transferred

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] [Je] [e]
(oo} 00000000 [e]e]e} 00000

SPEERTO Extensions

Parallel processing
@ Linear processing of object list is blocking
@ We can query more than one peers in an iteration

@ Results in inaccuracy of result

Reduced Skyline cardinality
e |SKY/| is very high

@ Solution is to find an approximation of the skyline

@ Approximate skyline is robust to data updates

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] oe [e]
(oo} 00000000 [e]e]e} 00000

SPEERTO: Parallel Query processing

@ Compute mean score m = t_%re(ol) t - Threshold value,

score(01)- score of top-1 object, N,- number of retrieved
objects

Introduction SPEERTO SPEERTO Extension Experimental Evaluation
0000000 [e]e) oce o]
[o]e] 00000000 000 00000

SPEERTO: Parallel Query processing

@ Compute mean score m = %ﬁe(ol) t - Threshold value,
score(01)- score of top-1 object, N,- number of retrieved
objects

@ If next object oy is routing object then compute
m __ score(op)—score(o1)
re — m

SPEERTO Extension Experimental Evaluation

@ Compute mean score m = t_%re(ol) t - Threshold value,

score(01)- score of top-1 object, N,- number of retrieved
objects

@ If next object oy is routing object then compute
m __ score(op)—score(o1)
re — m

© else if 0y is data object, then process super-peers found so far

Introduction SPEERTO SPEERTO Extension Experimental Evaluation
00 oe

SPEERTO: Parallel Query processing
@ Compute mean score m = %rre(ol) t - Threshold value,
score(01)- score of top-1 object, N,- number of retrieved
objects
@ If next object oy is routing object then compute

N score(0y)—score(o1
Ny — scorelon)score(or)

© else if 0y is data object, then process super-peers found so far

@ If next object o3 is routing object then compute
m __ score(o3)—score(oz)
rs— m

Introduction SPEERTO SPEERTO Extension Experimental Evaluation
00 oe

SPEERTO: Parallel Query processing
@ Compute mean score m = %rre(ol) t - Threshold value,
score(01)- score of top-1 object, N,- number of retrieved
objects
@ If next object oy is routing object then compute

N score(0y)—score(o1
Ny — scorelon)score(or)

© else if 0y is data object, then process super-peers found so far

@ If next object o3 is routing object then compute
m __ score(o3)—score(oz)
rs— m

@ repeat 1 to 4 until N,p + N3 > (k —¢)

SPEERTO Extension
oce

SPEERTO: Parallel Query processing

Compute mean score m = %rre(ol) t - Threshold value,
score(01)- score of top-1 object, N,- number of retrieved

objects
If next object 0, is routing object then compute

N score(0y)—score(o1
Ny — scorelon)score(or)

else if oy is data object, then process super-peers found so far

If next object o3 is routing object then compute
m __ score(o3)—score(oz)
rs— m

repeat 1 to 4 until N,o + N,3 > (k — ¢)

. ti
A new mean is computed m/ = % my = %(02)
-
t—score(o1)

and m3 = N3
B

SPEERTO Extension
oce

SPEERTO: Parallel Query processing

Compute mean score m = %rre(ol) t - Threshold value,
score(01)- score of top-1 object, N,- number of retrieved

objects
If next object 0, is routing object then compute

N score(0y)—score(o1
Ny — scorelon)score(or)

else if oy is data object, then process super-peers found so far

If next object o3 is routing object then compute
m __ score(o3)—score(oz)
rs— m

repeat 1 to 4 until N,o + N,3 > (k — ¢)

m+my+my t—score(02)
3

A new mean is computed m/ = , My = N,
:

t—score(o1)
Nr3

A new Threshold t/ is computed

and m3 =

SPEERTO Extension
oce

SPEERTO: Parallel Query processing

Compute mean score m = %rre(ol) t - Threshold value,
score(01)- score of top-1 object, N,- number of retrieved

objects
If next object 0, is routing object then compute

N score(0y)—score(o1
Ny — scorelon)score(or)

else if oy is data object, then process super-peers found so far

If next object o3 is routing object then compute
m __ score(o3)—score(oz)
rs— m

repeat 1 to 4 until N,o + N,3 > (k — ¢)

t—score(02)

A new mean is computed m/ = s
:

t—score(o1)
Nr3

A new Threshold t/ is computed

m+m+mp _
3 , M2 =

and m3 =

Repeat until k objects are found

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] (e]e] [e]
(oo} 00000000 @00 00000

Reducing skyline cardinality

Given an upper limit U, abstract the skyline aSKY with at
most U points (U < |SKY|)

@ each point p € SKY is either dominated by or equal to at
least one point g € aSKY

e |aSKY| < U < |SKY/|
@ It only slightly influences the routing power of the skyline

@ There are many ways to find aSKY

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

oeo

How to Abstract The Skyline?

Consider an example with q, p, m, k as skyline

Given an upper limit U =3

Suppose we decide to replace q, p with one point r

To ensure accuracy the super-peers will also be contacted
based on abstraction

Top-1 result
A
b e
s+ [.° @
q
-
@ 1= @5y © &
LN ol . J
© 4 OL 1 e
e wl W ®
' Z\" S
1/2 3 4 35 6 N 9 10
Abstract query Query borderline

borderline

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

ooe

Heuristic to Abstract Skyline

@ Choose a point p with largest entropy value
E(p) = argmaxvresky,(D_1<i<q In(pli] + 1))

@ Choose another point g with minimum distance
dist = mini<i<q4(|p[i] — qli]|), Vt € SKY;

© Then replace p and g with r with
rli] = min(p[i], q[i]),(1 < i < d)

© lterate and terminate when U < |SKY/|

Experimental Evaluation
[]

Experimental Setup

@ Experiments were done on simulator running on single
machine

@ Data was horizontally partitioned, evenly among peers
o Uniform data: random points in a space [0, L]¢

@ Clustered data:

e Super-peer picks cluster centroids randomly
o All associated peers obtain points based on Gaussian
distribution

@ Default values:
d=4,K=50,10 < k < 50, n = 10°, np = 2000, Ns, = 0.1N,

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] (e]e] [e]
(oo} 00000000 [e]e]e} @0000

SPEERTO Performance - Response Time

@ Response time increases with dimensionality

@ Initial results are returned immediately

7 2
000 5 ——— 000 —
d=q d=g e -

5 B000 - - 5 o .

3 =8 o g 1500 =8 o -

£ 5000 fd=10 B . £ d=10 ---e--- .

2 4000 £ - -

£ . - £ 000} . o .

2 3000 -l 3

< g <

S s S

@ 2000 ¢ 3

Q Q

o o
1000 }-

10 20 30 40 50 1 2 3 4 5 6 7 8 9 10
top-k top-10
Response time with d Response time for first 10

objects

Introduction SPEERTO
0000000 [e]e)

(oo}

Number of contacted SPs

00000000

SPEERTO Extension Experimental Evaluation

(e]e]
[e]e]e}

[e]
0O@000

Effectiveness of Threshold Based Algorithm

@ Number of contacted super-peers increase slightly with d

@ Gain in number of transferred objects is around 21.9 for k=50

10 20 30 40 50
top-k

Number of contacted SPs

Improvement (%)

Taooaoao

[}

10 20 30 40 50
top-k

Improvement in number of
objects transferred

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] (e]e] [e]
(oo} 00000000 [e]e]e} 00e00

Scalability With Data Cardinality and Response Rime With
Clustered Data

@ For n = 1M to 2.5M response time slightly increases
@ SPEERTO performs better for clustered data

4500
4000
3500
3000
2500
2000
1500 e
1000 |
500

600

500

Response time (msec)
Response time (msec)

10 20 30 40 50
top-k top-k

Scalability with cardinality Clustered dataset

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

00000

Top-k with kK > K

|ReturnedTop— k& TrueTop—k|
| True Top—k|

e with K =10, kK = 100 and d = 2 relative recall is around 40%
@ Scalable for varying data even with k > K

@ Relative recall:

1
l E 2 * EZ * M * *.
08 | 0.8 : e aa s
= 06} _ T~
5 = 0.6
[} [s3
['4 [}
0.4 T 04 b e
d=2 k=50 ——
02} 0.2 | 4=2 k=100 ——
d=3 k=50 *
o . . . o Ld=3k=100 .- R
0 50 100 150 200 50 100 150 200 250 300 350 400 450 500
top-k n (x10%)

Recall for uniform data Recall for varying data

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000®

Performance With Extensions

e Parallel variant: Response time is improved by 20%, with only
small increase in objects transferred

@ Abstract variant: with d=2, 2% of dataset update and 50%
abstraction, only 4% super-peers need to update skyline

SEN e —— " " 100 . . :
[= — Abstract=50%, d=2 ——
d=6 x- Abstract=75%, d=2 -
—~ 30| d=8 -= g 80 Abstract=100%, d=2 - 1
S d=10 ---=--- S
g 3 5
[—
£ :
> =) .
= 20 . 1 5
- o
15
10 20 30 40 50 2 4 6 8 10
top-k Percentage of dataset updates

Improvement in response time
with parallel version Data updates for d = 2

e 6 o6 o

Conclusions

A novel approach for answering top-k queries in a P2P
network based on super-peer architecture

A threshold-based algorithm which forwards the top-k query
requests among super-peers efficiently

A variant of SPEERTO that queries in parallel

An extension that restricts the cardinality of the skyline
SPEERTO scales well to bigger systems

SPEERTO performs considerably good even with kK > K

Thank Youl

References

@ Akrivi Vlachou, Christos Doulkeridis, Kjetil N, Michalis
Vazirgiannis: On efficient top-k query processing in highly
distributed environments. SIGMOD 2008, pp. 753-764

@ S. B orzs onyi, D. Kossmann, and K. Stocker. The skyline

operator. In Proceedings of IEEE Int. Conf. on Data
Engineering (ICDE), pages 421-430, 2001.

e D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Transactions
on Database Systems, 30(1):41-82, 2005

Backup slides

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

0000000 (e]e] (e]e] [e]
(oo} 00000000 [e]e]e} 00000

Skyline based routing with Updates and Churn

Updates
@ Periodic updates of skyline suffices

@ Broadcast the skyline updates, when either the skyline has
significantly changed or the validity time has expired.

@ K-skyband update at each super-peer is done more frequently

Churn
@ The skyline entry of the departed super-peer is removed at the
querying super-peer
@ When a super-peer joins the network, its skyline is broadcast

@ Churn of simple peers is handled by recomputing the
super-peer K-skyband

Introduction SPEERTO SPEERTO Extension Experimental Evaluation

Top-k with kK > K: More results

@ Clustered datasets result in similar recall values as uniform
data

@ By varying cardinality the skyband size is hardly inluenced

' o FHH R
. 2500 qmpr—— — ~
d=3 —*— i
2000 .d:4*, g
c
= g 1500 -
3] |
& 2
o
o 1000 |
N
’ e I Hrmmmmeees JURBISE —
500 fmorrore T
.

50 100 150 200 250 300 350 400 450 500
n (x103)

Recall for clustered data

Size for varying n

Introduction SPEERTO SPEERTO Extension Experimental Evaluation
0000000 [e]e) [e]e) o]
[o]e] 00000000 000 00000

Top-k with kK > K: More results

@ Recall values increase with dimensionality because the size of
the K-skyband also increases

@ For d = 2 recall is low since the skyline consists of only 13
points

1000000
100000
o
g
S 10000 -
=3
=) 1000 -
°
8 100 -
k]
B
<
K 10 4
5
8
T T T o 14
1 10 50 100 1 10 50 100
md=2 md=4 K-skyband md=2 md=4 K-skyband
[md=6 0Od=8 nd=6 0Od=8

Recall for varying K Size for varying K

Introduction SPEERTO SPEERTO Extension Experimental Evaluation
0000000 [e]e) [e]e) o]
[o]e] 00000000 000 00000

Abstract Skyline Performance

@ In abstract variant The number of transferred objects
increases rapidly, since the threshold is not used

@ For d = 3 the number of modified super-peers increases, but
again the gain of abstraction is significant

g
8 Y
5 2
S g
g s
£ 5
2 2
S o]
g £
z @
S °
;‘.é & 2 Abstract=50%, d=:
151 Abstract=75%, d=.
g Abstract=100%, d=3
£ 0
10 20 30 40 50 2 4 6 8 10
top-k Percentage of dataset updates

Variant with abstract skyline Data updates for d = 3

	Introduction
	Skyline
	K-Skyband and Top-k Queries

	SPEERTO
	System Overview
	Threshold-Based Top-k Algorithm

	SPEERTO Extension
	Parallel Processing
	Reducing Skyline Cardinality

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	

