
Peer-to-Peer Web Archival
and Time-Travel Search

supervised by: Srikanta Bedathur, Christos
Tryfonopoulos

Avishek Anand
by:

Motivation

• Web is constantly changing and evolving. “Only 20%
of the existing web-pages will exist after a year”

• Web today contains information from all walks of life
and capturing these changes is essential

• Web archiving is the process of collecting portions
from the web and ensuring the collection is
preserved in an archive for future analysis

captures info from all
walks of life, social
sentiments...hence its
capture results in
capture of evolution and
historys

Motivation

• Searching on the archives makes historical
analysis possible. E.g “John McCain @ 9/11/2001”

• Current attempts like Internet Archive (IA) have
limited search capability and their scalability is also
questionable

• We propose a scalable, decentralized and peer-
to-peer(p2p) approach to web archiving which
supports time-travel search

Outline

• P2P Framework for Web Archival

• Index organization for time-travel queries

• Partitioning Strategies for Index lists

• Results

• Conclusion

System Architecture

P2P Architecture for archival
and search

• Crawling peers push
content periodically to
storage layer

• Storage peers organized to
store data in a durable and
persistent way

• Indexing peers organized
to process queries
efficiently

Storage layer

Indexing Layer

Index Partitioning
• Indexing layer is organized such that peers holds

part of an index-list.

• Index are partitioned both along the time-axis
and in term-space.

• Term Partitioning based on the hashing used by
structured p2p overlays (Chord, Pastry etc.).

• Time Partitioning is partitioning the index list per
term in the time axis

Term-Time Partitioning

A

T0 – T2

T2 – T3

T3– T6

Term “A”

Directory peers

Indexing
peers

T0 T2 T3 T6

Time

....

....

....

Term-Time Partitioning

A time-travel query “A @ t” routed to the directory peer
responsible for “A” and then the indexing peer responsible for “t”

A

T0 – T2

T2 – T3

T3– T6

Term “A”

Directory peers

Indexing
peers

T0 T2 T3 T6

Time

....

....

....

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t8,t12)

(d5, [t11, t16))

(d4, [t9, t11))

Index Partitioning

d1
d2

d3

d4
d5

McCainMcCain

Each version is a
new entry, hence

long list:
need partitioning

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t8,t12)

(d5, [t11, t16))

(d4, [t9, t11))

Index Partitioning

Overall size increases due to duplicate entries

d1
d2

d3

d4
d5

McCainMcCain

Each version is a
new entry, hence

long list:
need partitioning

Partitioning Strategies

• Centralized Setting : Key issue is to provide performance
while partitioning index [Berberich et. al, SIGIR ‘07]

• Distributed Setting :

• Loss of data due to churn (leaving of peers)

• Reconstruction from underlying storage is expensive

• We leverage the replication due to partitioning to support
index reconstruction

Partitioning Strategies

Live Entries in a Partition

• Live entries in a partition Lv: [ti , tj):

Lv set of all the documents in the collection having term v

(d, [tb , te)) is the posting for the document d which begins at tb and ends at te.

• Live entries in a
partition could be
classified into left,
right, strikethrough
and subsumed.

d1

t1 t2

d2

d3
d4

d5

tbegin tend

Lv: [t1, t2) = {d1, d2, d3, d4} Lv: t1 = {d1, d2}

Partitioning Strategies: Formulation, Analysis
and Best Fit Partitioning Strategy

Avishek Anand

7/08/2008

1 Definitions

For consistency and ease of understanding some of the definitions have been
used from the TTIX paper. The live entries for the interval [ti, tj) are defined
by Lv : [ti, tj), that is formally defined as,

Lv : [ti, tj) = {(d, p, [tb, te)) ∈ Lv | tb <= tj ∧ te > ti} .

|Lv | is the total number of entries in the system. Assuming that the begin
and end of the world are 0 and N, Lv corresponds to Lv : [0, N).

Let T = 〈 t1 . . . tn 〉 be the sorted sequence of all unique time-interval bound-
aries of an inverted list Lv. Then we define

E = { [ti, ti+1) | 1 ≤ i < n}

to be the set of elementary time intervals. We assume that partitions can only
take place on the boundaries of these elementary time intervals and not within.
We refer to the set of time intervals for the time-partitions or simply referred
to as partitions as

M ⊆ { [ti, tj) | 1 ≤ i < j ≤ n } ,

and demand
∀ t ∈ [t1, tn) ∃m ∈M : t ∈ m ,

i.e., the time intervals in M must completely cover the time interval [t1, tn),
so that time-travel queries q t for all t ∈ [t1, tn) can be processed. We also
assume that intervals in M are disjoint. We can make this assumption without
ruling out any optimal solution with regard to space or performance defined
below. We call the time points where the partition boundaries lie as the partition
points P.

The space required for the sublists for a given partitioning scheme M is
defined as

S(M) : [ti, tj) =
∑

m∈M
|Lv : m| ,

i.e., the total length of all lists in M.

1

Blowup
• Blowup (ϒ): Ratio of sum of live entries in

each partition to the total number of
entries

P (M) = {t1, t2}

Live entries : 33 4 2

d1

t1 t2

d2

d3
d4

d5

tbegin tend

Blowup = 9/5

Replication
• Replication(R) measures the fraction of index

entries that are ever replicated or replicated at
least once.

P(M) is the set of time-points where the partitions exists

d1

t1 t2

d2

d3
d4

d5

tbegin tend

Replication R(M) = 3/5

P (M) = {t1, t2}

2 Problem Statement

Maximum Replication problem: To obtain the maximum reconstruction
keeping the entire blowup in check we need to maximize the number of doc-
uments which are replicated at least once. In other words we maximize the
number of documents ever replicated. Lets call the ratio of the number of doc-
uments which are at least replicated once to the total number of documents for
a partitioning scheme M as the replication of the system for the given scheme.
More formally

R(M) =
|
⋃

ti∈P(M) Lv : ti|
|Lv|

.

Let us, further for the ease of usage, define the allowable number of entries
in the interval [0, ti] as Ati ,

Ati = γ |Lv : [0, ti)|l>1 + |Lv : [0, ti)|l=1 .

where |Lv|l>1 are the documents which have a lifetime longer than the ele-
mentary time interval. In other words these documents these documents can be
partitioned (since partitions can only take place at the elementary time points).
|Lv|l=1 are the documents which have a lifetime which are a subset of the el-
ementary time intervals E . The reason why they are not multiplied by γ is
because the elementary lifetimes cannot to partitioned (they do not contribute
to the live entries of any of the time points) and hence they do not contribute
to the relaxation factor γ.

In the rest of the text whenever we refer to new documents we refer to newly
added documents with a lifetime greater than the elementary time interval.
Hence the problem statement now for a given time period [0, tN] is the following:

arg max
M

R(M) s.t.

∑

m∈M
|Lv : m| ≤ γ |Lv| .

arg max
M

R(M) s.t.
∑

m∈M
|Lv : m| ≤ AtN .

Max-Min Reconstructibility problem (MMR): We intend to maximize
this minimum reconstruction value for every allowable partitioning scheme pos-
sible. Formally stated:

arg max
M

min
m∈M

URR(m) s.t.
∑

m∈M
|Lv : m| ≤ AtN .

3

Unique Reconstructibility Ratio
(URR)

• URR [ti, tj): is a measure of how much benefit does
the partition give to its adjoining partitions

d1

t1 t2

d2

d3
d4

d5

tbegin tend

URR: [t1, t2) = 2/4

We additionally represent the set of time-points where the partition bound-
aries for a given given paritioning scheme M are present as P (M). (Needs to
be formally defined).

An entry is said to be live at a time-point t,if it begins before t and ends
after it. The set of live entries at a time point ti is represented by Nti and note
that it is invariant in case of no future additions/deletions. Live entries at any
point in other words is the set of documents/entries the time point cuts.

Nti = {(d, p, [tj , tk)) ∈ Lv | tj ≤ ti ∧ tk > ti} .

We now turn to defining a few metrics for a partition [ti, tj) namely, Forward ,
Reverse, Subsumed and Strike − through entries.

Forward entries are those live-entries in the partition which begin before
the start of the partition and end before the end and after the begin of the
partition.

Fwd : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb < ti ∧ te > ti ∧ te < tj} .

Reverse entries are the set of entries which start inside the partion and
end after the end of the partition.

Rev : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb >= ti ∧ tb < tj ∧ te > tj} .

Subsumed entries are those live-entries which are completely contained
inside the partition.

Sub : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb >= ti ∧ te <= tj} .

Finally, Strike-through entries are those live entries which start before
the partition and end after the partition.

Str : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb < ti ∧ te > tj} .

Reconsruction (URR): or the unique recontructibility ratio of a partition
is defined as the ratio of the sum of the number of forward and reverse entries
to the total number of live entries in the partition.

URR : [ti, tj) =
|(Right : [ti, tj)) ∪ (Left : [ti, tj))|

|Lv : [ti, tj)|

or alternately:

URR : [ti, tj) =
|Nti ∪Ntj | − |Nti ∩Nti |

|Lv : [ti, tj)|

2

Right: [t1, t2) = {d4}

Left: [t1, t2) = {d1}

Lv: [t1, t2) = {d1,d2,d3,d4}

Maximum Replication
• Maximum Replication (Max-Rep): Find a

partitioning to Maximize replication keeping the blowup in
check.

2 Problem Statement

Maximum Replication problem: To obtain the maximum reconstruction
keeping the entire blowup in check we need to maximize the number of doc-
uments which are replicated at least once. In other words we maximize the
number of documents ever replicated. Lets call the ratio of the number of doc-
uments which are at least replicated once to the total number of documents for
a partitioning scheme M as the replication of the system for the given scheme.
More formally

R(M) =
|
⋃

ti∈P(M) Lv : ti|
|Lv|

.

Let us, further for the ease of usage, define the allowable number of entries
in the interval [0, ti] as Ati ,

Ati = γ |Lv : [0, ti)|l>1 + |Lv : [0, ti)|l=1 .

where |Lv|l>1 are the documents which have a lifetime longer than the ele-
mentary time interval. In other words these documents these documents can be
partitioned (since partitions can only take place at the elementary time points).
|Lv|l=1 are the documents which have a lifetime which are a subset of the el-
ementary time intervals E . The reason why they are not multiplied by γ is
because the elementary lifetimes cannot to partitioned (they do not contribute
to the live entries of any of the time points) and hence they do not contribute
to the relaxation factor γ.

In the rest of the text whenever we refer to new documents we refer to newly
added documents with a lifetime greater than the elementary time interval.
Hence the problem statement now for a given time period [0, tN] is the following:

arg max
M

R(M) s.t.

∑

m∈M
|Lv : m| ≤ γ |Lv| .

arg max
M

R(M) s.t.
∑

m∈M
|Lv : m| ≤ AtN .

Max-Min Reconstructibility problem (MMR): We intend to maximize
this minimum reconstruction value for every allowable partitioning scheme pos-
sible. Formally stated:

arg max
M

min
m∈M

URR(m) s.t.
∑

m∈M
|Lv : m| ≤ AtN .

3

• Max-Rep is NP-Hard :
Reduction from subset-sum
problem

• Optimal implementation
(Branch-and-Bound) for a
limited time-range

Maximum Minimum
Reconstructibility

• Max-Min Reconstructibility: Find a partitioning to
Maximize the minimum URR keeping the blowup in check.

arg max
M

min
m∈M

URR(m) s.t.
∑

m∈M
|Lv : m| ≤ γ |Lv| .

3 The Best-Fit Algorithm

The problem is NP-hard (refer Appendix for the proof). We however have a
best-fit solution, which although not proved to be near-optimal, performs good
enough. The idea is to find an optimal solution for a smaller time period [0, ti]
and use this information to find the optimal partitioning strategy for the interval
[0, ti+1].

The number of live entries at any given point ti, | Lp : ti | , is a sum of
unique and shared entries. A unique entry for ti, Uti : M, is defined as an entry
which is live at ti and but not at any of the partitioning points PM. For a given
partitioning scheme M, the unique entries are defined as

Uti : M = {(d, p, [tj , tk)) ∈ Lp : ti | tj > #M (ti) ∧ tk ≤ %M (ti))}

where,

#M (t) = max({t′ ∈ M | t′ ≤ t} ∪ {t1}) (i.e, the partitioning point just before t)
%M (t) = min({t′ ∈ M | t′ > t} ∪ {tn}) (i.e., the partitioning point just after t).

Shared entries at ti, Sti : M, are the live and non-unique entries at ti. In
other words, the live entries at ti which are not common to any of the live entries
of the partitioning points.

Sti : M = Nti − Uti : M

and
| Sti : M | + | Uti : M | = |Nti |

Observe again that the live entries at any time is independent of the parti-
tioning strategy.

Let us assume Mopt : ti corresponds to the optimal partitioning scheme
in the time frame [0, ti] and S(Mopt : ti) is the actual space required for
simplicity. Deficit, δti , is defined as the difference between the allowable limit
and the space occupied by the optimal partitioning strategy.

δopt : ti = Ati − S(Mopt : ti) .

Every time point in the system has an associated number of live entries
(unique and shared entries) and we use this information along with the optimal
partitioning strategy until the previous time point to determine if the partition-
ing strategy is optimal.

4

• Complexity yet to be
established

• Heuristic approaches like
Greedy considered

• Importance of approaches
which do not change the past

Greedy Approach

tbegin
tend

time window

time window

time

URR

Partition 1 Partition 2

Greedy Approach

tbegin
tend

time window

time window

time

URR

Time-points with the highest values of URR in a given time-
window are chosen as partitions

Partition 1 Partition 2

Experimental Setup

• We use the version lifetimes from Wikipedia

• Each version considered as a separate
document

• We consider lifetimes in day-level granularity

• Plot response of min-URR, Replication (R) with
varying blowup values

Results
Analysis of min-URR, blowup and R using Greedy approach

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1.6 1.8 2 2.2 2.4 2.6 2.8

Blowup

Replication
min-URR

Results
Analysis of Performance-Guarantee vs Greedy for

Replication

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

R
e
p
lic

a
ti
o
n

Blowup

Greedy
Performance Guarantee

Results
Analysis of Performance-Guarantee vs Greedy for

min-URR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1.5 1.6 1.7 1.8 1.9 2

m
in

-U
R

R

Blowup

Greedy
Performance Guarantee

Future Work

• To determine complexity of MMR and come up
with centralized solutions

• To look at combination of both Min-URR and
Replication as an optimization problem

• Explore possible applications of partitioning
strategies to other areas involving continuous
attributes

Thank You

References

• [1] Klaus Berberich, Srikanta Bedathur, Thomas Neumann, Gerhard
Weikum: A Time Machine for Text Search SIGIR 2007, July 2007

• [2] Srikanta Bedathur, Avishek Anand, Klaus Berberich, Ralf Schenkel,
Christos Tryfonopoulos: Realizing an Everlasting Web, under
submission CIDR 2009.

• [3] Klaus Berberich, Srikanta Bedathur, Thomas Neumann, Gerhard
Weikum: A Time Machine for Text Search MPII Technical Report MPI-
I-2007-5-002, July 2007

• [4] http://www.wikipedia.org/

http://www.sigir2007.org/
http://www.sigir2007.org/
http://www.wikipedia.org
http://www.wikipedia.org

Time-Term Partitioning

Term
Partitioned

‘90-’95 95-’05 ‘05 - now

Time Partitioned

Time-Term Partitioning

A query “q @ t” routed to gateway peer responsible for “t”
and then the peer responsible for “q”

Term
Partitioned

‘90-’95 95-’05 ‘05 - now

Time Partitioned

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

Index Partitioning

d1
d2

d3

d4
d5

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d5, [t11, t16))

McCain
[t12,t16)

P3P1

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

Index Partitioning

d1
d2

d3

d4
d5

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d5, [t11, t16))

McCain
[t12,t16)

P3P1

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

Index Partitioning

d1
d2

d3

d4
d5

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d5, [t11, t16))

McCain
[t12,t16)

P3P1

McCain
[t8,t12)

(d3, [t7, t13))

(d2, [t4, t9))

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

Index Partitioning

d1
d2

d3

d4
d5

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d5, [t11, t16))

McCain
[t12,t16)

P3P1

McCain
[t8,t12)

(d3, [t7, t13))

(d2, [t4, t9))

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

Index Partitioning

d1
d2

d3

d4
d5

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d5, [t11, t16))

McCain
[t12,t16)

P3P1 (d5, [t11, t16))

McCain
[t8,t12)

(d3, [t7, t13))

(d2, [t4, t9))

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

Index Partitioning

d1
d2

d3

d4
d5

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d5, [t11, t16))

McCain
[t12,t16)

P3P1 (d5, [t11, t16))

Reconstructed list

McCain
[t8,t12)

(d3, [t7, t13))

(d2, [t4, t9))

Time-travel queries

t2t1 t4 t7 t9 t11 t13 t16

(d1, [t1, t2))

(d2, [t4, t9))

(d3, [t7, t13))

(d4, [t9, t11))

McCain

(d5, [t11, t16))

Index Partitioning

d1
d2

d3

d4
d5

(d3, [t7, t13))

(d2, [t4, t9))

McCain
[t3,t8)

(d3, [t7, t13))

(d5, [t11, t16))

McCain
[t12,t16)

P3P1

Idea is to provide explicit reconstruction guarantees from
implicit replication of entries due to partitioning.

(d5, [t11, t16))

Reconstructed list

McCain
[t8,t12)

(d3, [t7, t13))

(d2, [t4, t9))

Live Entries
• Live entries in a

partition could be
classified into left,
right, strikethrough
and subsumed.

Nt1= {d1, d2} Nt2 = {d2, d4}

Lv: [t1, t2) = {d1, d2, d3, d4}right:[t1, t2] = {d4}

left:[t1, t2] = {d1}

str:[t1, t2] = {d2}

sub:[t1, t2] = {d3}

Lv = {d1, d2, d3, d4, d5}

d1

t1 t2

d2

d3
d4

d5

tbegin tend

Live Entries in a
Partition

• Live entries at a time-point ti is a set of all entries
which exist at ti.

• Live entries in a partition Lv: [ti , tj):

Partitioning Strategies: Formulation, Analysis
and Best Fit Partitioning Strategy

Avishek Anand

7/08/2008

1 Definitions

For consistency and ease of understanding some of the definitions have been
used from the TTIX paper. The live entries for the interval [ti, tj) are defined
by Lv : [ti, tj), that is formally defined as,

Lv : [ti, tj) = {(d, p, [tb, te)) ∈ Lv | tb < tj ∧ te > ti} .

|Lv | is the total number of entries in the system. Assuming that the begin
and end of the world are 0 and N, Lv corresponds to Lv : [0, N).

Let T = 〈 t1 . . . tn 〉 be the sorted sequence of all unique time-interval bound-
aries of an inverted list Lv. Then we define

E = { [ti, ti+1) | 1 ≤ i < n}

to be the set of elementary time intervals. We assume that partitions can only
take place on the boundaries of these elementary time intervals and not within.
We refer to the set of time intervals for the time-partitions or simply referred
to as partitions as

M ⊆ { [ti, tj) | 1 ≤ i < j ≤ n } ,

and demand
∀ t ∈ [t1, tn) ∃m ∈M : t ∈ m ,

i.e., the time intervals in M must completely cover the time interval [t1, tn),
so that time-travel queries q t for all t ∈ [t1, tn) can be processed. We also
assume that intervals in M are disjoint. We can make this assumption without
ruling out any optimal solution with regard to space or performance defined
below. We call the time points where the partition boundaries lie as the partition
points P.

The space required for the sublists for a given partitioning scheme M is
defined as

S(M) : [ti, tj) =
∑

m∈M
|Lv : m| ,

i.e., the total length of all lists in M.

1

We additionally represent the set of time-points where the partition bound-
aries for a given given paritioning scheme M are present as P (M). (Needs to
be formally defined).

An entry is said to be live at a time-point t,if it begins before t and ends
after it. The set of live entries at a time point ti is represented by Nti and note
that it is invariant in case of no future additions/deletions. Live entries at any
point in other words is the set of documents/entries the time point cuts.

Nti = {(d, p, [tj , tk)) ∈ Lv | tj ≤ ti ∧ tk > ti} .

We now turn to defining a few metrics for a partition [ti, tj) namely, Forward ,
Reverse, Subsumed and Strike − through entries.

Forward entries are those live-entries in the partition which begin before
the start of the partition and end before the end and after the begin of the
partition.

Fwd : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb < ti ∧ te > ti ∧ te < tj} .

Reverse entries are the set of entries which start inside the partion and
end after the end of the partition.

Rev : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb >= ti ∧ tb < tj ∧ te > tj} .

Subsumed entries are those live-entries which are completely contained
inside the partition.

Sub : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb >= ti ∧ te <= tj} .

Finally, Strike-through entries are those live entries which start before
the partition and end after the partition.

Str : [ti, tj) = {(d, p, [tb, te)) ∈ Lv : [tb, te) | tb < ti ∧ te > tj} .

Reconsruction (URR): or the unique recontructibility ratio of a partition
is defined as the ratio of the sum of the number of forward and reverse entries
to the total number of live entries in the partition.

URR : [ti, tj) =
|(Fwd : [ti, tj)) ∪ (Rev : [ti, tj))|

|Lv : [ti, tj)|

or alternately:

URR : [ti, tj) =
|Nti ∪Ntj |− |Nti ∩Ntj |

|Lv : [ti, tj)|

2

Lv denotes all the documents in the collection.

(d, p, [tb , te)) is the posting for the document d which begins at tb and ends at te.

Backup Slides

• Everlast as Web Archival system

• Other lifetime analysis results about
Wikipedia

Time-travel queries

• Time-travel queries are keyword
queries with a temporal context. E.g
“McCain @ t5”

• The conventional inverted index
structures are extended by addition
of validity time-interval

• “McCain @ t8” => d2 , d3

• Every version is considered as a new
entry resulting in long lists.

(d1, 11.2, [t1, t2))

(d2, 14.2, [t4, t9))

(d3, 1.6, [t7, t12))

(d4, 3, [t11, t14))

McCain

Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200 1400 1600

Size of the Window

R
URR (nolast)

Values of R and Min URR for different window values on
wikipedia data

