Seminar: "Social Networks"

Clustering the tagged web

Daniel Ramage Paul Heymann Christopher D. Manning Hector Garcia-Molina

Thomas von Bomhard

Problem: Ambiguity of user queries

- "Barcelona" (City? Football team? Movie?)
- "Michael Jordan"

Michael I. Jordan

Michael J. Jordan

Google shows only one Michael Jordan

Google micha

michael jordan

Search)

Web Bhow options...

F

Adv

Michael Jordan - Wikipedia, the free encyclopedia

Michael Jeffrey Jordan (born February 17, 1963) is a retired American professional basketball player and active businessman. His biography on the National ... Early years - Professional sports career - Olympic career en.wikipedia.org/wiki/Michael Jordan - Cached - Similar

NBA.com: Michael Jordan Bio

Michael Jordan | 23. Season statistics & Notes · Season splits · Game-by-game stats · Bio · Printable player file. 2002-03. Statistics. PPG, 20.0. RPG, 6.10 ... www.nba.com/playerfile/michael_jordan.html - <u>Cached</u> - <u>Similar</u>

NBA.com: Michael Jordan Summary

Michael Jordan By acclamation, Michael Jordan is the greatest basketball player of all time. Although, a summary of his basketball career and influence on ... www.nba.com/history/players/jordan_summary.html - <u>Cached</u> - <u>Similar</u>

Image results for michael jordan - Report images

Video results for michael jordan

Better: More diversity in search results

Google	michael jordan Search	Advance
Web E Show opt	lions	Res
Results include you Michael Jordan Michael Jeffrey Jor player and active bu Early years - Profes en.wikipedia.org/wil	r SearchWiki notes for michael iordan. I Share these notes <u>N - Wikipedia, the free encyclopedia</u> rdan (born February 17, 1963) is a retired American professional basketball usinessman. His biography on the National ssional sports career - Olympic career ki/Michael_Jordan - Cached - Similar - 	
Michael I. Jord 18 Aug 2004 Gra uncertainty. www.eecs.berkeley 4 0 - Picked by NBA.com: Mich Michael Jordan 12	an's Home Page aphical models, variational methods, machine learning, reasoning under aphical models, variational methods, machine learning, reasoning under acedu/~jordan/ - <u>Cached</u> - ⊘ 承 ↓ / 3 other people. A Season statistics & Notes - Season splits - Game-by-game state - Bio -	

Michael Jordan | 23. Season statistics & Notes · Season splits · Game-by-game stats · E Printable player file. 2002-03. Statistics. PPG, 20.0. RPG, 6.10 ... www.nba.com/playerfile/michael_jordan.html - Cached - Similar - (2) (A) (X)

NBA.com: Michael Jordan Summary

Michael Jordan By acclamation, Michael Jordan is the greatest basketball player of all time. Although, a summary of his basketball career and influence on ... www.nba.com/history/players/jordan_summary.html - Cached - Similar - (*) (*) *

Image results for michael jordan - Report images

Clustering the Web

Clustering the tagged Web

Based on:

- HTML Content
- User-generated tags from a social bookmarking website like delicious.com

	Everyone's Bookmarks for: Michael I. Jordan's Hon www.cs.berkeley.edu/~jordan/	ne Page	 Save this bookmark Look up another URL 	
History	Notes		Tags	
		a second a set of		
	Saved 73 times, first saved by Marku	s Fix on 13 May 04. View Chart 🖿 🖻	people	25
24 DEC 09	replore	ml researcher	research	18
09 NOV 09	akastrin	people	berkeley	14
	-	b - b -	machinelearning	10
16 OCT 09	angie.h.hsieh	graphical+models machine+learning statistics berkeley research	machine-learning	10
14 OCT 09	P caiyizhi	people research berkeley machine_learning	machine_learning	9
	E Diadas		ai	9
01 OCT 09	Diador	research AI vision graph learning people machine_learning machinelearning machine-learning statistics	jordan	8
		ucberkeley berkeley researcher	researcher	6
09 SEP 09	大牛		ucberkeley	5
	Guibin	people research berkeley machinelearning at unberkeley statistics	learning	5
		poppio resoluciti concerto machineranning ai coorneloy essence	machine.learning	4
21 AUG 09	P zybler	ai homepage	machine	4
00.11111.00	E i stevenese		vision	3
00 JUN 09	I_stevenson	people MachineLearning bayesian vision motorcontrol u_berkeley gen1	michael	3
06 MAY 09	P menocinque	[UniEd]-MLPR	graph	3
	-		homepage	3
05 MAY 09	The statistician.		bayesian	2
	Roger Bilisoly	web_pages	researchers	2
	thuhien7110	herkeley jordan machine learning researcher machine	academic	2
	-	berkeley jordan machine leanning researcher machine	bayes	1

Questions

- Does tagging data improve the performance of clustering methods ?
 - How do we model words and tags of a document ?
 - How do we modify clustering methods in order to include tagging data ?
 - How can we evaluate the clustering results ?

Outlook

- Document Models
- Clustering Methods
 - K-Means
 - (Multi Multinomial) Latent Dirichlet Allocation
- Evaluation Method
- Experiments & Results

Document models for a vector space

Word vocabulary: W Tag vocabulary: T Bag of words of a document: B_w Bag of tags of a document: B_t

• Words Only: $V_w = \langle w_1, w_2, \dots, w_{|W|} \rangle$ w_i is tf (or tf-idf) of word i in B_w Normalization: $\|V_w\|_2 = 1$

• Tags Only:
$$V_t = \langle w_1, w_2, \dots, w_{|T|} \rangle$$

Document models for a vector space

• Tags as Words Vocabulary: $W' = W \cup T$

Bag of Words: $B_{w'} = B_t \cup B_w$

$$V_{w'} = \left\langle w_1, w_2, \dots, w_{|W'|} \right\rangle$$

• Tags as New Words:

$$V_{w,t} = \left\langle w_1, w_2, \dots, w_{|W|}, w_{|W|+1}, w_{|W|+2}, \dots, w_{|W|+|T|} \right\rangle$$

Document models for a vector space

• Words+Tags:

$$V_{w+t} = \left\langle \sqrt{\frac{1}{2}} V_w, \sqrt{\frac{1}{2}} V_t \right\rangle$$

Count and weight words and tags independently !

K-Means Clustering Problem

Given the data: (x_1, \ldots, x_N) $x_i \in \mathbb{R}^d$

K-Means aims for the clusters: $P = \{C_1, \dots, C_k\}$ such that:

$$\sum_{i=1}^{k} \sum_{x_j \in C_i} \left\| x_j - \mu_i \right\|^2 \quad \text{is minimal}$$

where μ_i is the mean of cluster C_i

Standard K-Means Clustering Algorithm

Step 1: Choose randomly k datapoints as initial means

Standard K-Means Clustering Algorithm

Step 2: Assign each datapoint to the cluster with the closest mean.

Step 3: Compute centroidsof the *k* clusters.They become the new means.

Standard K-Means Clustering Algorithm

Repeat steps 2 and 3 until convergence has been reached.

Outlook

- Document models
- Clustering Methods
 - K-Means
 - Multi-Multinomial Latent Dirichlet Allocation
 - Topic Models
 - Latent Dirichlet Allocation
 - Multi-Multinomial Latent Dirichlet Allocation
- Evaluation
- Results

Latent Dirichlet Allocation

Prior: Dirichlet Distribution

$$p(x_1,\ldots,x_K) = \frac{\Gamma(K\alpha)}{\Gamma(\alpha)^K} \prod_{i=1}^K (x_i)^{\alpha-1}$$

- Hyperparameter α determines the form of the Dirichlet D.
- The form determines which kinds of multinomial distributions are more likely or less likely.

K=3 α changes from 0.3 to 2.0

Inverting the generative model

- Maximum likelihood estimation
 - EM-Algorithm: Hofmann (1999)
- Deterministic approximate algorithms
 Variational EM: Blei, Ng, Jordan (2003)
- Markov Chain Monte Carlo
 - ^o Gibbs Sampler: Griffiths & Steyr (2004)
 - Gibbs Sampler: Wei and Croft (2006)

Document models for (MM)-LDA

- Words only: LDA
- Tags only: LDA
- Tags as Words Times n: Add tags as words with multiplicity of n and use LDA
- Tags as new Words: Add tags as special words (e.g. tag#Basketball) and use LDA
- Words+Tags: Use MM-LDA

Multi Multinomial Latent Dirichlet Allocation distribution

distribution over words for each topic

Outlook

- Document models
- Clustering Methods
 - K-Means
 - (Multi-Multinomial) Latent Dirichlet Allocation
- Evaluation Method
 - Gold Standard Clustering
 - Cluster Evaluation Score
 - Dataset
- Experiments & Results

Gold Standard Clustering

• We create a "gold standard" clustering using the Open Directory Project

dmoz open directory proj abor	ject <u>ut dmoz</u> l <u>dmoz blog</u> l <u>sugge</u>	In partnership with Aol Search. <u>st URL help</u> <u>link</u> <u>editor login</u>
		Search <u>advanced</u>
<u>Arts</u>	Business	Computers
Movies, Television, <u>Music</u>	Jobs, Real Estate, Investing	Internet, Software, Hardware
Games	Health	Home
Video Games, RPGs, Gambling	Fitness, Medicine, Alternative	Family, Consumers, Cooking
Kids and Teens	<u>News</u>	Recreation
Arts, School Time, Teen Life	Media, <u>Newspapers</u> , <u>Weather</u>	Travel, Food, Outdoors, Humor
Reference	<u>Regional</u>	Science
Maps, Education, Libraries	<u>US, Canada, UK, Europe</u>	Biology, Psychology, Physics

Gold Standard Clustering

- A node in the ODP hierarchy is chosen as root
- Each child (+ its descendants) is treated as one cluster.

Cluster Evaluation Metric

Gold Standard (GS) says:

Cluster Evaluation Metric

Clustering Algorithm (CA) returns:

Consider a pair of documents:

If the CA placed the two documents in different clusters, but the GS has them in different clusters -> Tedae (TIR))

F1 Cluster Evaluation Score

- The F1 score is the harmonic mean of precision and recall
- Precision : TP / (TP + FP) = 5/13
- Recall: TP / (TP + FN) = 5/8
- F1: $(2 \times \text{precision} \times \text{recall})/(\text{precision} + \text{recall}) \approx 0.476$

Dataset

- ODP Dataset
- Stanford Tag Crawl Dataset: One contiguous month of del.icio.us feeds.
- Consider only documents which are
 - present both in ODP and the Tag Crawl Dataset
 - are in English
 - and their page text is crawled
- Total number: 15,230

Outlook

- Document models
- Clustering Methods
 - K-Means
 - Multi-Multinomial Latent Dirichlet Allocation
- Evaluation Method
- Experiments & Results
 - K-Means (Document models)
 - MM-LDA (Document models)
 - Comparison

Experiment: K-Means on different document models

Averaged F1 – Scores of 10 runs of K-Means applied on 13230 documents using tf-weighting

	K-Means
Words	.139
Tags as Words x 1	.158
Tags as Words x 2	.176
Tags as New Words	.154
Words+Tags	.225

Experiment: (MM)-LDA on different document models

F1 – Scores of LDA and MM-LDA applied on 13230 documents

	(MM-)LDA
Words	.260
Tags as Words x 1	.213
Tags as Words x 2	.198
Tags as New Words	.216
Words+Tags	.307

Comparison: K-Means and MM-LDA

Tag-Augmented K-means

	tags	words
1	linux security php opensource vpn unix	linux ircd php beware kernel exe
2	games go game sports firefox gaming	dmg munsey ballparks suppes racer game
3	music research finance audio mp3 lyrics	music research redirect nottingham meta laboratory
4	news business newspaper politics media magazine	v business leadership d news j
5	politics activism travel movies law government	aquaculture terrapass geothermal anarchist wwoof cpsc
6	science physics biology astronomy space chemistry	science wildman foraging collembola physics biology
7	css python javascript programming xml webdesign	squeakland sql coq css python flash
8	food recipes cooking shopping tea recipe	recipes food cooking recipe stylist tea
9	blog blogs fashion design art politics	fif blog comments posted my beuys
10	education art college university school teaching	learning gsapp students education school cutecircuit
11	health medical healthcare medicine solar psychology	health napkin cafepress.com medical care folding
12	java programming development compiler c opensource	java c programming goto code language
13	software windows opensource mac freeware osx	software windows mac download os thinkfree
14	dictionary reference language bible writing english	dictionary english words syw dictionaries spanish
15	internet dns search seo google web	internet shutdown sportsbook epra kbs npower
16	history library books literature libraries philosophy	library tarot peopling ursula guin bowdoin

Multi-Multinomial LDA (MM-LDA)

	tags	words
1	web2.0 tools online editor photo office	icons uml powerpoint lucid dreams dreaming
2	guitar scanner chemistry military earthquake groupware	grub outlook bittorrent rendering recovery boot
3	health medical medicine healthcare process gardening	exe health openpkg okino dll polytrans
4	bible christian space astronomy religion christianity	gaelic bible nt bone scottish english
5	politics activism environment copyright law government	war shall power prisoners their article
6	social community web2.0 humor fun funny	press f prompt messages ignoring each
7	reference science education research art books	science research information university search site
8	java database programming development mysql sql	java sql mysql schizophrenia testing test
9	dictionary language english reference translation thesaurus	english writing dictionary spanish words bppv
10	travel search maps google reference map	search deadline call fif conference paper
11	time clock timezones world train md5	quantum thu pfb am pm mf
12	food recipes cooking business shopping finance	my food tea wine me recipes
13	news blog music blogs technology system/unfiled	comments blog he posted news pm
14	programming software webdesign web css design	you can if or not use
15	photography photo compression zip photos photoblog	flash camera eos light e-ttl units
16	mac apple osx games unicode game	dmg u x mac b v

Comparison: K-Means and MM-LDA

	(MM-)LDA	K-means
Words	.260	.139
Tags	.270	.219
Words+Tags	.307	.225

Clustering the tagged Web

- Motivation (Ambiguity of queries, Web Categorization, Tags)
- Document models (Words, Tags, Words+Tags,...)
- Clustering Methods
 - K-Means (Problem, Algorithm)
 - (MM)-LDA (Topic Models, LDA, MM-LDA)
- Evaluation Method
 - Gold Standard Clustering
 - F1 Cluster Evaluation Score
 - Dataset
- Experiments & Results
 - K-Means (Document models)
 - (MM)-LDA (Document models)
 - Comparison