Transactions
in Cloud Computing

Presented by Fatemeh Shirazi

University of Saarland

Outline

Introduction and basics

Different transaction models

Consistency Rationing

Conclusion

Introduction

« Sequence of information exchange and related work
(such as database updating)

oeoeees@®®) Clets
r — = N

Transaction management

. /
v

Key points in transaction

« Consistency
« Scalability
* Cost

 Avalilability

ACID

A set of properties that guaranteeing database reliable
transactions

Atomicity
« Consistency
* |solation

+ Durability

Outline

Introduction and basics

Different transaction models

Consistency Rationing

Conclusion

R W

Amazon

amaZzon
web services™

« AWS MySQL
« Follows a traditional (non-cloud-enabled) model

- AWS MySQL/R

« AWS RDS

o Difference: RDS is Pre-packaged, users do not need to
worry about managing the deployment, software patches,
software upgrades and backups

Amazon

amaZzon
web services™

« AWS SimpleDB

o Amazons own database service

o Only supports a low level of consistency called eventual
consistency

« AWS S3

o Supports eventual consistency

o To Improve performance caching is carried out in the
application servers

Others

* Google

o Google AppEngine has adopted a partitioning and | ,.
replication architecture (ép(e)g()ng

é}_)b

o Supports Memcache (caching)

* Microsoft
o Microsoft's Azure adopts replication architecture

ClOUd ArChiteCtU reS figure copied from [2]

Classic : Starting point

Partitioning

Web Server+
App Server

DB Server +
Storage

Clients

« Replication

B=l Web Server +
App Server

DB Server

* Distributed control

Storage

App Server +
DB Server

« Caching

Distributed Control

Classic figure copied from [2]

« Used as starting point

« Advantages:

1. It allows to use "best-of-
breed" components at all layers.

2. Allows scalability and elasticity at
the storage and web/application
server layers.

DB Server

- e.g., AWS MySQL , AWS RDS

Storage

Pa rtitiOni ng figure copied from [2]

* The database is logically
partitioned and each
partition is controlled by a
separate database server.

Clients

e e.g., combined with the
il i =l mml gl \Veb Server+ replication model : AWS
App Server

SimpleDB and Google
AppEngine
NN e

Replication figure copied from [2]

* There are several database
servers.

Q g g g & Clients

« Each database server
controls a copy of the whole

database (or partition of the ﬁ ﬁi Web Server+

database, if combined with App Server
partitioning). / /

ﬁv DB Server +

* e.g., A WS MySQL/R Storage

Distributed control figure copied from [2]

« The storage system is
separated from the
database servers

Clients

 Wab Sorver + The database servers
App Server + access concurrently and

]

DB Server autonomously the shared
,‘ data from the storage
daaa o

. e.g., AWS S3

CaChi ng figure copied from [2]

* The results of database
gueries are stored
by dedicated cache
servers.

Clients

i App Server +
Web Server

sQL Muma
Put/Get

=
. e.g., Memcache, Google ﬁ ﬁ ﬁ ﬁl Storage

AppEngine supports
Memcache

« Correspondingly, the set of
caching servers is typically
referred to as MemCache

DB Server
MemCache

Comparison of Architectures [WIPS]

copied from [2]

1200
1100
1000
9200
800
700
600 -
500
400
300
200
100

0

WIPS

0 1000 2000 3000 4000 5000 6000 7000 8000 900
EB

MySQL RDS ==SDB ®®§53 "wAEC "==Azure ***** Ideal

- WIPS(EB): The throughput of valid requests per second on the number of EBs

s

Cost per WIPS [mS], Vary EB :asie copiec

from [2]

1 10 100 [500 [1000
MySQL 0.635 | 0.072
MySQL/R 2334 | 0.238 | 0.034 | 0.008 | 0.006
RDS [211 | 0.126 | 0.032 | 0.008 | 0.006
SimpleDB 0.384 | 0.073 | 0.042 | 0.039 | 0.037
S3 [.304 | 0.206 | 0.042 | 0.019 | 0.011
Google AE 0.002 | 0.028 | 0.033 | 0.042 | 0.176
Google AE/C [0.002 | 0.0I8 | 0.026 | 0.028 | 0.134
Azure 0.775] 0.084 [°0.023 | 0.006 | 0.006

s

Consistency levels

Snapshot Isolation Sl Strong consistency
Serializablility S
Repeatable read

Eventual Consistency El
Session Consistency SC Weak consistency

s o

TeSted SerV]CeS copied from [2]

&7 websarvices
Business Model PaaS PaaS laaS laaS
‘Architecture Replication Part. + Repl. Classic Distr. \

(+Dist. Control) Control

|Consistency SI = Sl Rep. Read EC |
Cloud Provider Microsoft Google Amazon Flexible
Web/App .Net Azure AppEngine Tomcat Tomcat
Server
Database SQL Azure DataStore MySQL --
Storage / FS Simple DataStore GFS - S3
App-Language C# Java/AppEngine Java Java
DB-Language SQL GQL SQL Low-Lev. API
HW Config. Part. automatic Automatic Manual Manual

RRRRRRERRRRRRRRRRRR

Tested Services copied from 21

amazon
web services”
| AwsSimpleds | AWSMySQL | AWSWySQLR _
Business Model laaS laaS laaS
‘Architecture Partitioning + Classic Replication ‘
Replication
|Consistency EC Rep. Read Rep. Read |
Cloud Provider Amazon Flexible Flexible
Web/App Server Tomcat Tomcat Tomcat
Database SimpleDB MySQL MySQL
Storage / File -- EBS EBS
System
App-Language Java Java Java
DB-Language SimpleDB Queries SQL SQL

HW Config Partly Automatic Manual Manual

RRRRRRRRRREREERRRRRRARY

CAP Theorem

Good scalability and strong consistency are hard to
achieve due to CAP theorem

Outline

Introduction and basics

Different transaction models

Consistency Rationing

Conclusion

Motivation

 Web Shop

* The price of the items

« Data about the products sold

« Credit card information

« Data of customer profiles

» Records on user’s preferences
* Logging information

Consistency Rationing

The point is that not all data need to be treated at the
same level of consistency

Transaction Cost vs. Inconsistency Cost
o Not every thing is worth Gold [4]

Consistency guarantees on the data instead at the
transaction level

Automatically switch consistency guarantees at runtime

Consistency Rationing

« Categorizing the data into A-B-C groups

* Applying different consistency strategies for each
category

Categories

« Category A: e.g., Bank data, Atomic bomb, Credit card
iInformation, Price of the items

« Category B : e.qg., Tickets, Product inventory (to some
threshold)

« Category C : e.g., Recommendations, Data of customer
profiles, Records on user’s preferences, Logging
Information

* The tricky one is category B

Consistency level of each category

 Serializability for A, always up-to-date data
« Session consistency for C, still eventual consistent

* B iIs switching in between depending on some policy

Techniques to adapt B’s consistency

« General Policy : Based on conflict probability

* Time Policy
« Time policy : Based on time stamp

* Numeric Policies e.g. Product inventory
 Fixed threshold policy : Based on a certain threshold
« Demarcation policy : Considers wider range of values

« Dynamic policy : Extends the conflict model (general policy Jon numeric
types

Techniques factors copied from 14
| |Characteristics ___|Use Cases _|Policies

General Non-uniform conflict Collaborative General policy
rates editing
Value » Updates are » Web shop » Fixed threshold policy
Constraint commutative * Ticket » Demarcation policy
* A value constraint/ reservation « Dynamic policy
limit exists
Time- Consistency does not Auction Time-based policy
Based matter much until a systems
certain moment in time
Value- Consistency Plane-ticket Value-based policy
Based requirements depend reservation
on the data value (business vs.

economy class)

Cost per trx [$/1000] copied from [3]

2.38
et @ Uniform
~ distribution
S 02 m 80-20
. distribution
wv
s 015 |
g
z
©c 0,1 f
o
Q.
‘8‘ 0,05 F
o
0
A data Cdata Dynamic

Policies of consistency

Outline

Introduction and basics

Different transaction models

Consistency Rationing

 Conclusion

Conclusion =

« On Transaction in Cloud Computing, and the properties for a
reliable transaction (ACID)

« Demonstrating different transaction models

* Vendors can implement different architectures having
significant effects on performance(2]

 Introducing a new method to improve the consistency
management, namely Consistency rationing.

« Rationing the consistency provides big performance and cost
benefits[4]

References

[1]"An evaluatlon of alternative architectures for transaction processmg In
the cloud", D. Kossmann, T. Kraska, and S. Loesing, In SIGMOD '1

[2]"An evaluation of alternative architectures for transaction processing in
the cloud", Slides of authors

[3] "Consistency rationing in the cloud: p %only when it matters", T.
Kraska, M. Hentschel, G. Alonso, and D. Kossmann, In VLDB'0. "

[4]"Consistency rationing in the cloud: pay only when it matters"”, Sildes
of authors

[5]"Transaction Consistency in the Cloud: Old Paradigms
Revisited",J.E.Armendariz-Ingo,M.l.Ruiz-Fuertes,2010.

[6]"Eventually Consistent”, Werner Vogels, Communications of the ACM,
Vol.52, No.1, Page: 40- 44 ,January 2009.

R A

Cost per trx [$/1000], Vary penalty cost copied from (3

- B~ A data: 80-20 distribution
0,04 ~i— A data: Uniform distribution
- M= Dynamic: 80-20 distribution
~g— Dynamic: Uniform distribution

Cost per transaction [$/1000]

D 1

0,01 0,1 1
Penalty cost [S] per inconsistency

