
Transactions
in Cloud Computing

Presented by Fatemeh Shirazi
University of Saarland

Outline

• Introduction and basics

• Different transaction models

• Consistency Rationing

• Conclusion

2

Introduction

• Sequence of information exchange and related work

(such as database updating)

Clients

Transaction management

Storage

3

Key points in transaction

• Consistency

• Scalability

• Cost

• Availability

4

ACID

• A set of properties that guaranteeing database reliable
transactions

• Atomicity

• Consistency

• Isolation

• Durability

5

Outline

• Introduction and basics

• Different transaction models

• Consistency Rationing

• Conclusion

6

Amazon

7

• AWS MySQL
• Follows a traditional (non-cloud-enabled) model

• AWS MySQL/R

• AWS RDS
o Difference: RDS is Pre-packaged, users do not need to

worry about managing the deployment, software patches,
software upgrades and backups

Amazon

• AWS SimpleDB

o Amazons own database service

o Only supports a low level of consistency called eventual
consistency

• AWS S3

o Supports eventual consistency

o To improve performance caching is carried out in the
application servers

8

Others

• Google

o Google AppEngine has adopted a partitioning and
replication architecture

o Supports Memcache (caching)

• Microsoft
o Microsoft's Azure adopts replication architecture

9

Cloud Architectures figure copied from [2]

• Classic : Starting point

• Partitioning

• Replication

• Distributed control

• Caching

10

Classic figure copied from [2]

• Used as starting point

• Advantages:
1. It allows to use "best-of-

breed" components at all layers.

2. Allows scalability and elasticity at
the storage and web/application
server layers.

• e.g., AWS MySQL , AWS RDS

11

Partitioning figure copied from [2]

• The database is logically
partitioned and each
partition is controlled by a
separate database server.

• e.g., combined with the
replication model : AWS
SimpleDB and Google
AppEngine

12

Replication figure copied from [2]

• There are several database
servers.

• Each database server
controls a copy of the whole
database (or partition of the
database, if combined with
partitioning).

• e.g., AWS MySQL/R

13

Distributed control figure copied from [2]

• The storage system is
separated from the
database servers

• The database servers
access concurrently and
autonomously the shared
data from the storage
system.

• e.g., AWS S3

14

Caching figure copied from [2]

• The results of database
queries are stored
by dedicated cache
servers.

• Correspondingly, the set of
caching servers is typically
referred to as MemCache

• e.g., Memcache, Google
AppEngine supports
Memcache

15

Comparison of Architectures [WIPS]
copied from [2]

• WIPS(EB): The throughput of valid requests per second on the number of EBs

16

Cost per WIPS [m$], Vary EB table copied

from [2]

17

Consistency levels

• Snapshot Isolation SI Strong consistency

• Serializability S

• Repeatable read
• .

• .

• .

• Eventual Consistency EI

• Session Consistency SC Weak consistency

18

Tested Services copied from [2]

19

Tested Services copied from [2]

20

CAP Theorem

Good scalability and strong consistency are hard to
achieve due to CAP theorem

21

Outline

• Introduction and basics

• Different transaction models

• Consistency Rationing

• Conclusion

22

Motivation

• Web Shop

• The price of the items

• Data about the products sold

• Credit card information

• Data of customer profiles

• Records on user’s preferences

• Logging information

23

Consistency Rationing

• The point is that not all data need to be treated at the
same level of consistency

• Transaction Cost vs. Inconsistency Cost
o Not every thing is worth Gold [4]

• Consistency guarantees on the data instead at the
transaction level

• Automatically switch consistency guarantees at runtime

24

Consistency Rationing

• Categorizing the data into A-B-C groups

• Applying different consistency strategies for each
category

25

Categories

• Category A : e.g., Bank data, Atomic bomb, Credit card
information, Price of the items

• Category B : e.g., Tickets, Product inventory (to some
threshold)

• Category C : e.g., Recommendations, Data of customer
profiles, Records on user’s preferences, Logging
information

• The tricky one is category B

26

Consistency level of each category

• Serializability for A , always up-to-date data

• Session consistency for C , still eventual consistent

• B is switching in between depending on some policy

27

Techniques to adapt B’s consistency

• General Policy : Based on conflict probability

• Time Policy
• Time policy : Based on time stamp

• Numeric Policies e.g. Product inventory

• Fixed threshold policy : Based on a certain threshold

• Demarcation policy : Considers wider range of values

• Dynamic policy : Extends the conflict model (general policy)on numeric
types

28

Techniques factors copied from [4]

29

Cost per trx [$/1000] copied from [3]

30

Outline

• Introduction and basics

• Different transaction models

• Consistency Rationing

• Conclusion

31

Conclusion

• On Transaction in Cloud Computing, and the properties for a

reliable transaction (ACID)

• Demonstrating different transaction models

• Vendors can implement different architectures having

significant effects on performance[2]

• Introducing a new method to improve the consistency

management, namely Consistency rationing.

• Rationing the consistency provides big performance and cost

benefits[4]

Thank you

32

References

[1]"An evaluation of alternative architectures for transaction processing in
the cloud", D. Kossmann, T. Kraska, and S. Loesing, In SIGMOD '1.

[2]"An evaluation of alternative architectures for transaction processing in
the cloud", Slides of authors

[3] "Consistency rationing in the cloud: pay only when it matters", T.
Kraska, M. Hentschel, G. Alonso, and D. Kossmann, In VLDB '0. "

[4]"Consistency rationing in the cloud: pay only when it matters", Sildes
of authors

[5]"Transaction Consistency in the Cloud: Old Paradigms
Revisited",J.E.Armendariz-Ingo,M.I.Ruiz-Fuertes,2010.

[6]"Eventually Consistent", Werner Vogels, Communications of the ACM,
Vol.52, No.1, Page: 40-44,January 2009.

33

Cost per trx [$/1000], Vary penalty cost copied from [3]

34

