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Introduction

« Sequence of information exchange and related work
(such as database updating)
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Transaction management

. /
v




Key points in transaction

« Consistency
« Scalability
* Cost

 Avalilability



ACID

A set of properties that guaranteeing database reliable
transactions

Atomicity
« Consistency
* |solation

+ Durability
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Amazon

amaZzon
web services™

« AWS MySQL
« Follows a traditional (non-cloud-enabled) model

- AWS MySQL/R

« AWS RDS

o Difference: RDS is Pre-packaged, users do not need to
worry about managing the deployment, software patches,
software upgrades and backups



Amazon

amaZzon
web services™

« AWS SimpleDB

o Amazons own database service

o Only supports a low level of consistency called eventual
consistency

« AWS S3

o Supports eventual consistency

o To Improve performance caching is carried out in the
application servers



Others

* Google

o Google AppEngine has adopted a partitioning and | ,.
replication architecture (ép(e)g()ng
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o Supports Memcache (caching)

* Microsoft
o Microsoft's Azure adopts replication architecture




ClOUd ArChiteCtU reS figure copied from [2]

Classic : Starting point

Partitioning

Web Server+
App Server

DB Server +
Storage

Clients

« Replication
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* Distributed control

Storage

App Server +
DB Server

« Caching

Distributed Control



Classic figure copied from [2]

« Used as starting point

« Advantages:

1. It allows to use "best-of-
breed" components at all layers.

2. Allows scalability and elasticity at
the storage and web/application
server layers.

DB Server

- e.g., AWS MySQL , AWS RDS

Storage




Pa rtitiOni ng figure copied from [2]

* The database is logically
partitioned and each
partition is controlled by a
separate database server.

Clients

e e.g., combined with the
il i =l mml gl \Veb Server+ replication model : AWS
App Server

SimpleDB and Google
AppEngine
NN e




Replication figure copied from [2]

* There are several database
servers.

Q g g g & Clients

« Each database server
controls a copy of the whole

database (or partition of the ﬁ ﬁi Web Server+

database, if combined with App Server
partitioning). / /

ﬁv DB Server +

* e.g., A WS MySQL/R Storage




Distributed control figure copied from [2]

« The storage system is
separated from the
database servers

Clients

 Wab Sorver +  The database servers
App Server + access concurrently and

]

DB Server autonomously the shared
,‘ data from the storage
daaa o

. e.g., AWS S3



CaChi ng figure copied from [2]

* The results of database
gueries are stored
by dedicated cache
servers.

Clients

i App Server +
Web Server

sQL Muma
Put/Get

=
. e.g., Memcache, Google ﬁ ﬁ ﬁ ﬁl Storage

AppEngine supports
Memcache

« Correspondingly, the set of
caching servers is typically
referred to as MemCache

DB Server
MemCache




Comparison of Architectures [WIPS]

copied from [2]
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MySQL RDS ==SDB ®®§53 "wAEC "==Azure ***** Ideal

- WIPS(EB): The throughput of valid requests per second on the number of EBs
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Cost per WIPS [mS], Vary EB :asie copiec

from [2]

1 10 100 [ 500 [ 1000
MySQL 0.635 | 0.072
MySQL/R 2334 | 0.238 | 0.034 | 0.008 | 0.006
RDS [211 | 0.126 | 0.032 | 0.008 | 0.006
SimpleDB 0.384 | 0.073 | 0.042 | 0.039 | 0.037
S3 [.304 | 0.206 | 0.042 | 0.019 | 0.011
Google AE 0.002 | 0.028 | 0.033 | 0.042 | 0.176
Google AE/C [ 0.002 | 0.0I8 | 0.026 | 0.028 | 0.134
Azure 0.775 ] 0.084 [°0.023 | 0.006 | 0.006
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Consistency levels

Snapshot Isolation Sl Strong consistency
Serializablility S
Repeatable read

Eventual Consistency El
Session Consistency SC Weak consistency
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TeSted SerV]CeS copied from [2]

&7 websarvices
Business Model PaaS PaaS laaS laaS
‘Architecture Replication Part. + Repl. Classic Distr. \

(+Dist. Control) Control

|Consistency SI = Sl Rep. Read EC |
Cloud Provider Microsoft Google Amazon Flexible
Web/App .Net Azure AppEngine Tomcat Tomcat
Server
Database SQL Azure DataStore MySQL --
Storage / FS Simple DataStore GFS - S3
App-Language C# Java/AppEngine Java Java
DB-Language SQL GQL SQL Low-Lev. API
HW Config. Part. automatic Automatic Manual Manual
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Tested Services copied from 21

amazon
web services”
| AwsSimpleds | AWSMySQL | AWSWySQLR _
Business Model laaS laaS laaS
‘Architecture Partitioning + Classic Replication ‘
Replication
|Consistency EC Rep. Read Rep. Read |
Cloud Provider Amazon Flexible Flexible
Web/App Server Tomcat Tomcat Tomcat
Database SimpleDB MySQL MySQL
Storage / File -- EBS EBS
System
App-Language Java Java Java
DB-Language SimpleDB Queries SQL SQL

HW Config Partly Automatic Manual Manual
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CAP Theorem

Good scalability and strong consistency are hard to
achieve due to CAP theorem
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Motivation

 Web Shop

* The price of the items

« Data about the products sold

« Credit card information

« Data of customer profiles

» Records on user’s preferences
* Logging information




Consistency Rationing

The point is that not all data need to be treated at the
same level of consistency

Transaction Cost vs. Inconsistency Cost
o Not every thing is worth Gold [4]

Consistency guarantees on the data instead at the
transaction level

Automatically switch consistency guarantees at runtime



Consistency Rationing

« Categorizing the data into A-B-C groups

* Applying different consistency strategies for each
category



Categories

« Category A: e.g., Bank data, Atomic bomb, Credit card
iInformation, Price of the items

« Category B : e.qg., Tickets, Product inventory (to some
threshold)

« Category C : e.g., Recommendations, Data of customer
profiles, Records on user’s preferences, Logging
Information

* The tricky one is category B



Consistency level of each category

 Serializability for A, always up-to-date data
« Session consistency for C, still eventual consistent

* B iIs switching in between depending on some policy



Techniques to adapt B’s consistency

« General Policy : Based on conflict probability

* Time Policy
« Time policy : Based on time stamp

* Numeric Policies e.g. Product inventory
 Fixed threshold policy : Based on a certain threshold
« Demarcation policy : Considers wider range of values

« Dynamic policy : Extends the conflict model (general policy Jon numeric
types



Techniques factors copied from 14
| |Characteristics ___|Use Cases _|Policies

General Non-uniform conflict Collaborative General policy
rates editing
Value » Updates are » Web shop » Fixed threshold policy
Constraint commutative * Ticket » Demarcation policy
* A value constraint/ reservation « Dynamic policy
limit exists
Time- Consistency does not  Auction Time-based policy
Based matter much until a systems
certain moment in time
Value- Consistency Plane-ticket Value-based policy
Based requirements depend reservation
on the data value (business vs.

economy class)



Cost per trx [$/1000] copied from [3]
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Conclusion =

« On Transaction in Cloud Computing, and the properties for a
reliable transaction (ACID)

« Demonstrating different transaction models

* Vendors can implement different architectures having
significant effects on performance(2]

 Introducing a new method to improve the consistency
management, namely Consistency rationing.

« Rationing the consistency provides big performance and cost
benefits[4]
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Cost per trx [$/1000], Vary penalty cost copied from (3
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