
Behavioral Simulations in MapReduceBehavioral Simulations in MapReduceBehavioral Simulations in MapReduceBehavioral Simulations in MapReduce

JingYu Yang Jan 25th,2011

2

OutlineOutlineOutlineOutline

Outline
• Motivation & Introduction
• Behavior Simulations In The State-Effect Pattern
• MapReduce For Simulations
• Programing Agent Behavior
• Experiments
• Conclusion

3

What is MapReduce?What is MapReduce?What is MapReduce?What is MapReduce?

• MapReduce is a framework for processing huge
datasets on certain kinds of distributable problems using
a large number of computers (nodes), collectively
referred to as a cluster.

• "Map" step: The master node takes the input, chops it up
into smaller sub-problems, and distributes those to
worker nodes

• "Reduce" step: The master node takes the answers to all
the sub-problems and combines them in some way to
get the output

4

What is MapReduce?What is MapReduce?What is MapReduce?What is MapReduce?
• map : (k1;v1)->[(k2;v2)]

produces a set of intermediate key-value pairs
• reduce : (k2; [v2])->[v3]

collects all of the intermediate pairs with the same key and produces a
value

5

Small ExampleSmall ExampleSmall ExampleSmall Example

Word counting

map <word, “1”>

6

Small ExampleSmall ExampleSmall ExampleSmall Example

Reduce <key, sum>

7

What are Behavioral Simulations?What are Behavioral Simulations?What are Behavioral Simulations?What are Behavioral Simulations?

• Also called agent-based simulations
• Understand large complex systems
• Tackling the ecological and infrastructure challenges

of our society.
• Application Areas

Traffic,Ecology,Sociology,etc.

8

Why Behavioral Simulations?Why Behavioral Simulations?Why Behavioral Simulations?Why Behavioral Simulations?
• Traffic

–Congestion cost $87.2 billion in
the U.S. in 2007

–Evaluating proposed traffic
management systems before
implementing them

•Ecology
–Use behavioral simulations to
model collective animal motion,
such as that of locust swarms
or fish schools
–Crucial for they affect human
food security

9

Challenges of Behavioral SimulationsChallenges of Behavioral SimulationsChallenges of Behavioral SimulationsChallenges of Behavioral Simulations

• Easy to program �not scalable

• Scalable �hard to program

• Purpose: close the gap

10

Requirements for Simulation PlatformsRequirements for Simulation PlatformsRequirements for Simulation PlatformsRequirements for Simulation Platforms

• Support for Complex Agent Interaction
• Automatic Scalability
• High Performance
• Commodity Hardware
• Simple Programming Model

11

ContributionContributionContributionContribution

• show how behavioral simulations can be
abstracted in the state-effect pattern

• show how MapReduce can be used to scale
behavioral simulations

• present a new scripting language for simulations
• perform an experimental evaluation with two

real-world behavioral simulations

12

OutlineOutlineOutlineOutline

Outline
• Motivation & Introduction
• Behavior Simulations In The State-Effect Pattern
• Mapreduce For Simulations
• Programing Agent Behavior
• Experiments
• Conclusion

13

A Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish Schools

• Fish Behavior
• –Avoidance: if too

close, repel other fish
• –Attraction: if seen

within range, attract
other fish

14

A Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish Schools

• Time-stepping: agents
proceed in ticks

• Concurrency: agents are
concurrent within a tick

• Interactions: agents
continuously interact

• Spatial Locality: agents
have limited visibility

15

Traditional Solutions for ConcurrencyTraditional Solutions for ConcurrencyTraditional Solutions for ConcurrencyTraditional Solutions for Concurrency

• Preempt conflicts
• Avoiding conflicts（Rollback in case of conflicts）

• Problems:
–Frequency of local interactions among agents �many conflicts
–Poor scalability

due to either excessive synchronization or frequent rollbacks

16

State-Effect PatternState-Effect PatternState-Effect PatternState-Effect Pattern

• Programming pattern to deal with concurrency
• Time-stepped model

ticks�represent the smallest time period of interest

• Events occur during same tick can be reordered
or parallelized

• Basic Idea:separate read and write operation
limit the synchronization necessary between agents

17

State-Effect PatternState-Effect PatternState-Effect PatternState-Effect Pattern

• States:
–public attributes that are updated only at tick
boundaries

state attributes remain fixed during a tick
Only need to be synchronized at the end of each tick

• Effects:
–intermediate computations as agents interact to
calculate new states

effect attribute has an associated decomposable and order-
independent combinator function for combining multiple assignments

18

States and EffectsStates and EffectsStates and EffectsStates and Effects

• States:
–Snapshot of agents
at the beginning of
the tick

position, velocity vector

• Effects:
–Intermediate results
from interaction, used
to calculate new
states
sets of forces from other fish

19

Two Phases of a TickTwo Phases of a TickTwo Phases of a TickTwo Phases of a Tick

• Query Phase: agents
inspect their environment
to compute effects
–Read states �write effects
–Effect values combined using the

appropriate combinator function
–Effect writes are order-independent

• Update Phase: agents
update their own state
–Read effects �write states
–Reads and writes are totally local
–State writes are order-independent

20

Two Phases of a TickTwo Phases of a TickTwo Phases of a TickTwo Phases of a Tick

• Only way that agents can communicate is
through effect assignments in the query phase

• local assignment
agent updates one of its own effect attributes

• non-local assignment
agent writes to an effect attribute of a different agent

21

A Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish Simulation

• Query
–For fish f in visibility α:
•Write repulsion to f’s effects
–For fish f in visibility ρ:
•Write attraction to f’s effects

• Update
–new velocity = combined

repulsion + combined
attraction + old velocity

–new position = old position +
old velocity

22

A Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish Simulation

• Query
–For fish f in visibility α:
•Write repulsion to f’s effects
–For fish f in visibility ρ:
•Write attraction to f’s effects

• Update
–new velocity = combined

repulsion + combined
attraction + old velocity

–new position = old position +
old velocity

23

The Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood Property

• Synchronization at tick boundaries may still be very
expensive

• Don't needs to query every other agent in the simulated
world to compute its effects

• Most behavioral simulations are spatial, and simulated
agents can only interact with other agents that are close
according to a distance metric

24

The Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood Property

• visibility
visible region
 the region of space containing agents
that this agent can read from or assign effects to

• reachability
reachable region
the region that the agent can move to after the update phase.

（reachable region will be a subset of its visible region，is not
required）

25

OutlineOutlineOutlineOutline

Outline
• Motivation & Introduction
• Behavior Simulations In The State-Effect Pattern
• Mapreduce For Simulations
• Programing Agent Behavior
• Experiments
• Conclusion

26

Simulations as Iterated Spatial JoinsSimulations as Iterated Spatial JoinsSimulations as Iterated Spatial JoinsSimulations as Iterated Spatial Joins

• Since agents only query other agents within their visible
regions, processing a tick is similar to a spatial selfjoin

• Join each agent with the set of agents in its visible region
and perform the query phase using only these agents

• Update phase:agents move to new positions within their
reachable regions and we perform a new iteration of the
join during the next tick

27

Iterated Spatial Joins in MapReduceIterated Spatial Joins in MapReduceIterated Spatial Joins in MapReduceIterated Spatial Joins in MapReduce

• Map task
spatially partitioning agents into a number of
disjoint regions

• Reduce task
join the agents using their visible regions

28

Spatial PartitioningSpatial PartitioningSpatial PartitioningSpatial Partitioning

• Partition simulation
space into regions,
each handled by a
separate node

29

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Owned Region:
agents in it are owned
by the node

30

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region:
agents in it are not
owned, but need to
be seen by the node

• The map task
replicates each agent
a to every partition
that contains a in its
visible region.

31

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region:
agents in it are not
owned, but need to
be seen by the node

32

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region:
agents in it are not
owned, but need to
be seen by the node

33

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region:
agents in it are not
owned, but need to
be seen by the node

34

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region:
agents in it are not
owned, but need to
be seen by the node

35

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region:
agents in it are not
owned, but need to
be seen by the node

36

Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region:
agents in it are not
owned, but need to
be seen by the node

• Only need to com-
municate with
neighbors to
–refresh states
–forward assigned

effects

37

Local Effects AssignmentLocal Effects AssignmentLocal Effects AssignmentLocal Effects Assignment
•Mapt

1:tick t begins when the first map task, assigns each agent to a partition
(distributet).

• Reducet
1:outputs a copy of each agent it owns after executing the query phase

and updating the agent’s effects.

•The tick ends when the next map task, map t+1
1 , executes the update phase

(updatet).

38

Local Effects AssignmentLocal Effects AssignmentLocal Effects AssignmentLocal Effects Assignment

39

Non-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects Assignment

•Using two MapReduce passes
•The first map task, mapt

1, is the same
•The first reduce task, reduce t

1, performs non-local effect assignments to its
replicas (non-local effectt)
•Second map task:only necessary for distribution,not perform any computation
•reducet

2 ：computes the final value for each aggregate (effect aggregation t)
•Also called map-reduce-reduce model

40

Non-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects Assignment

41

From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce

42

From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce

43

From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce

44

From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce

45

From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce

46

BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)

• Special-purpose MapReduce engine for behavioral
simulations

• Goal of BRACE：process a very large number of ticks
efficiently, and to avoid I/O or communication overhead

• Why introducing Brace?
behavioral simulations have considerably different characteristics than traditional
MapReduce applications

47

BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)

48

BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)

• Shared-Nothing, Main-Memory Architecture
expect data volumes to be modest, so BRACE executes
map and reduce tasks entirely in main memory

• Fault Tolerance
employ epoch synchronization with the master to trigger

coordinated checkpoints

• Partitioning and Load Balancing

• Collocation of Tasks

49

OutlineOutlineOutlineOutline

Outline
• Motivation & Introduction
• Behavior Simulations In The State-Effect Pattern
• Mapreduce For Simulations
• Programing Agent Behavior
• Experiments
• Conclusion

50

BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)

• High-level language for domain scientists
closer to the scientific models that describe agent behavior

• object-oriented language
• Programs specify behavior logic of individual

agents

51

BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)

• looks superficially like Java
The programmer can specify fields, methods, and constructors

• each field in class must be tagged as either state
or effect

• query phase expressed by run() method
• State fields are read-only
• Effect assignments are aggregated at the effect

field
• Has some important restrictions

52

Fish in BRASILFish in BRASILFish in BRASILFish in BRASIL

53

Fish in BRASILFish in BRASILFish in BRASILFish in BRASIL

54

Effect InversionEffect InversionEffect InversionEffect Inversion
• An important optimization that is unique to our

framework involves eliminating non-local effects.
• Rewritten expression does not change the results of

the simulation,but only assigns effects locally.

55

Effect InversionEffect InversionEffect InversionEffect Inversion

• Theorem: Every behavioral simulation written in
BRASIL that uses non-local effects can be rewritten
to an equivalent simulation that uses local effects
only

–Proof in the VLDB 2010 paper

56

OutlineOutlineOutlineOutline

Outline
• Motivation & Introduction
• Behavior Simulations In The State-Effect Pattern
• Mapreduce For Simulations
• Programing Agent Behavior
• Experiments
• Conclusion

57

Experimental SetupExperimental SetupExperimental SetupExperimental Setup

• Implementation
–BRACE MapReduce runtime implemented in C++ ,Our BRASIL

compiler, written in Java and directly generates C++
–Grid partitioning
assigns each grid cell to a separate slave node
–Include KD-Tree spatial indexing, rebuild every tick
–Basic load balancing
–Checkpointing is not yet integrated

• Simulation Workloads
implemented realistic traffic and fish school simulations

• Hardware: Cornell WebLabCluster (60 nodes,
2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB RAM)

58

• Compares the performance
of MITSIM against BRACE
using BRASIL

• Without spatial indexing:
Brace's Performance
Degrades quadratically with
increasing segment length

Traffic: Indexing vs. Seg. LengthTraffic: Indexing vs. Seg. LengthTraffic: Indexing vs. Seg. LengthTraffic: Indexing vs. Seg. Length

59

• increase the visibility
range:
KD-tree indexing
performance decreases

• indexing yields from two
to three times
improvement over a
range of visibility values.

Fish: Indexing vs. VisibilityFish: Indexing vs. VisibilityFish: Indexing vs. VisibilityFish: Indexing vs. Visibility

60

• Effect Inversion
increases agent tick
throughput
– from 3.59 million (Idx-

Only) to 4.36 million
(Idx+Inv) with KD-tree
indexing enabled

– from 2.95 million (No-
Opt) to 3.63 million
(Inv-Only) with KD-tree
indexing disabled

Predator: Effect InversionPredator: Effect InversionPredator: Effect InversionPredator: Effect Inversion

61

• Nearly linear
scalability

• Sudden drop is an
artifact of IP routing in
the multi-switch
configuration

Traffic: ScalabilityTraffic: ScalabilityTraffic: ScalabilityTraffic: Scalability

62

• move in two different
fixed directions

• Without load
balancing:form in nodes
at the extremes of
simulated space,load at
all other nodes falls to
zero

• With load
balancing:throughput
increases linearly with the
number of nodes

 Fish: Scalability Fish: Scalability Fish: Scalability Fish: Scalability

63

• With load balancing
the time per simulation
epoch is essentially flat

• With load balancing
the epoch time gradually
increases
reflects all agents being
simulated by only two
nodes

Fish: Load BalancingFish: Load BalancingFish: Load BalancingFish: Load Balancing

64

ConclusionsConclusionsConclusionsConclusions

• MapReduce can be used to scale behavioral simulations
across clusters

• New programming environment for behavioral
simulations
–Easy to program: Simulations in the state-effect pattern �

BRASIL
-Hides all the complexities of modeling computations in MapReduce
-parallel programming from domain scientists

–Scalable: State-effect pattern in special-purpose MapReduce
Engine � BRACE

-shared-nothing, in-memory MapReduce framework
-exploits collocation of mappers and reducers to bound communication

overhead

TTTThanks!hanks!hanks!hanks!

