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What is MapReduce?What is MapReduce?What is MapReduce?What is MapReduce?

• MapReduce is a framework for processing huge 
datasets on certain kinds of distributable problems using 
a large number of computers (nodes), collectively 
referred to as a cluster.

• "Map" step: The master node takes the input, chops it up 
into smaller sub-problems, and distributes those to 
worker nodes

• "Reduce" step: The master node takes the answers to all 
the sub-problems and combines them in some way to 
get the output 
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What is MapReduce?What is MapReduce?What is MapReduce?What is MapReduce?
• map : (k1;v1)->[(k2;v2)]

produces a set of intermediate key-value pairs
• reduce : (k2; [v2])->[v3]

collects all of the intermediate pairs with the same key and produces a 
value
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Small ExampleSmall ExampleSmall ExampleSmall Example

Word counting

map   <word, “1”>
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Small ExampleSmall ExampleSmall ExampleSmall Example

Reduce   <key, sum>
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What are Behavioral Simulations?What are Behavioral Simulations?What are Behavioral Simulations?What are Behavioral Simulations?

• Also called agent-based simulations
• Understand large complex systems
• Tackling the ecological and infrastructure challenges

of our society.
• Application Areas

Traffic,Ecology,Sociology,etc.
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Why Behavioral Simulations?Why Behavioral Simulations?Why Behavioral Simulations?Why Behavioral Simulations?
• Traffic

–Congestion cost $87.2 billion in 
the U.S. in 2007

–Evaluating proposed traffic 
management systems before 
implementing them

•Ecology
–Use behavioral simulations to 
model collective animal motion, 
such as that of locust swarms 
or fish schools
–Crucial for they affect human 
food security
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Challenges of Behavioral SimulationsChallenges of Behavioral SimulationsChallenges of Behavioral SimulationsChallenges of Behavioral Simulations

• Easy to program �not scalable

• Scalable �hard to program

• Purpose: close the gap
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Requirements for Simulation PlatformsRequirements for Simulation PlatformsRequirements for Simulation PlatformsRequirements for Simulation Platforms

• Support for Complex Agent Interaction
• Automatic Scalability
• High Performance
• Commodity Hardware
• Simple Programming Model
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ContributionContributionContributionContribution

• show how behavioral simulations can be 
abstracted in the state-effect pattern

• show how MapReduce can be used to scale 
behavioral simulations 

• present a new scripting language for simulations
• perform an experimental evaluation with two 

real-world behavioral simulations
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A Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish Schools

• Fish Behavior
• –Avoidance: if too 

close, repel other fish
• –Attraction: if seen 

within range, attract 
other fish
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A Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish SchoolsA Running Example: Fish Schools

• Time-stepping: agents 
proceed in ticks

• Concurrency: agents are 
concurrent within a tick

• Interactions: agents 
continuously interact

• Spatial Locality: agents 
have limited visibility
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Traditional Solutions for ConcurrencyTraditional Solutions for ConcurrencyTraditional Solutions for ConcurrencyTraditional Solutions for Concurrency

• Preempt conflicts 
• Avoiding conflicts（Rollback in case of conflicts）    

• Problems:
–Frequency of local interactions among agents �many conflicts
–Poor scalability

due to either excessive synchronization or frequent rollbacks
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State-Effect PatternState-Effect PatternState-Effect PatternState-Effect Pattern

• Programming pattern to deal with concurrency
• Time-stepped model

ticks�represent the smallest time period of interest

• Events occur during same tick can be reordered 
or parallelized 

• Basic Idea:separate read and write operation
limit the synchronization necessary between agents
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State-Effect PatternState-Effect PatternState-Effect PatternState-Effect Pattern

• States:
–public attributes that are updated only at tick 
boundaries

state attributes remain fixed during a tick
Only need to be synchronized at the end of each tick

• Effects:
–intermediate computations as agents interact to 
calculate new states

effect attribute has an associated decomposable and order-
independent combinator function for combining multiple assignments
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States and EffectsStates and EffectsStates and EffectsStates and Effects

• States:
–Snapshot of agents 
at the beginning of 
the tick

position, velocity vector

• Effects:
–Intermediate results 
from interaction, used 
to calculate new 
states
sets of forces from other fish
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Two Phases of a TickTwo Phases of a TickTwo Phases of a TickTwo Phases of a Tick

• Query Phase: agents 
inspect their environment 
to compute effects
–Read states �write effects
–Effect values combined using the 

appropriate combinator function
–Effect writes are order-independent

• Update Phase: agents 
update their own state
–Read effects �write states
–Reads and writes are totally local
–State writes are order-independent
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Two Phases of a TickTwo Phases of a TickTwo Phases of a TickTwo Phases of a Tick

• Only way that agents can communicate is 
through effect assignments in the query phase

• local assignment
agent updates one of its own effect attributes

• non-local assignment
agent writes to an effect attribute of a different agent
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A Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish Simulation

• Query
–For fish f in visibility α:
•Write repulsion to f’s effects
–For fish f in visibility ρ:
•Write attraction to f’s effects

• Update
–new velocity = combined 

repulsion + combined 
attraction + old velocity

–new position = old position + 
old velocity
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A Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish SimulationA Tick in Fish Simulation

• Query
–For fish f in visibility α:
•Write repulsion to f’s effects
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The Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood Property

• Synchronization at tick boundaries may still be very 
expensive

• Don't needs to query every other agent in the simulated 
world to compute its effects

• Most behavioral simulations are spatial, and simulated 
agents can only interact with other agents that are close 
according to a distance metric
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The Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood PropertyThe Neighborhood Property

• visibility 
visible region 
 the region of space containing agents
that this agent can read from or assign effects to

• reachability
reachable region
the region that the agent can move to after the update phase.

（reachable region will be a subset of its visible region，is not 
required）
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Simulations as Iterated Spatial JoinsSimulations as Iterated Spatial JoinsSimulations as Iterated Spatial JoinsSimulations as Iterated Spatial Joins

• Since agents only query other agents within their visible 
regions, processing a tick is similar to a spatial selfjoin

• Join each agent with the set of agents in its visible region 
and perform the query phase using only these agents

• Update phase:agents move to new positions within their 
reachable regions and we perform a new iteration of the 
join during the next tick
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Iterated Spatial Joins in MapReduceIterated Spatial Joins in MapReduceIterated Spatial Joins in MapReduceIterated Spatial Joins in MapReduce

• Map task
spatially partitioning agents into a number of 
disjoint regions

• Reduce task
join the agents using their visible regions
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Spatial PartitioningSpatial PartitioningSpatial PartitioningSpatial Partitioning

• Partition simulation 
space into regions, 
each handled by a 
separate node
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Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Owned Region: 
agents in it are owned 
by the node
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Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region: 
agents in it are not 
owned, but need to 
be seen by the node

• The map task 
replicates each agent 
a to every partition 
that contains a in its 
visible region.
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Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions
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Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region: 
agents in it are not 
owned, but need to 
be seen by the node



34
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Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions
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Communication Between PartitionsCommunication Between PartitionsCommunication Between PartitionsCommunication Between Partitions

• Visible Region: 
agents in it are not 
owned, but need to 
be seen by the node

• Only need to com-
municate with 
neighbors to
–refresh states
–forward assigned 

effects
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Local Effects AssignmentLocal Effects AssignmentLocal Effects AssignmentLocal Effects Assignment
•Mapt

1:tick t begins when the first map task, assigns each agent to a partition 
(distributet ).

• Reducet
1:outputs a copy of each agent it owns after executing the query phase 

and updating the agent’s effects.

•The tick ends when the next map task, map t+1
1 , executes the update phase 

(updatet ).
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Local Effects AssignmentLocal Effects AssignmentLocal Effects AssignmentLocal Effects Assignment
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Non-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects Assignment

•Using two MapReduce passes
•The first map task, mapt

1, is the same
•The first reduce task, reduce t

1, performs non-local effect assignments to its 
replicas (non-local effectt )
•Second map task:only necessary for distribution,not perform any computation
•reducet

2 ：computes the final value for each aggregate (effect aggregation t )
•Also called map-reduce-reduce model
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Non-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects AssignmentNon-Local Effects Assignment
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From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce



42

From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce



43

From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce



44
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From State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-ReduceFrom State-Effect to Map-Reduce
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BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)

• Special-purpose MapReduce engine for behavioral 
simulations

• Goal of BRACE：process a very large number of ticks 
efficiently, and to avoid I/O or communication overhead 

• Why introducing Brace?
behavioral simulations have considerably different characteristics than traditional 
MapReduce applications
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BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)
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BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)BRACE(Big Red Agent Computation Engine)

• Shared-Nothing, Main-Memory Architecture
expect data volumes to be modest, so BRACE executes
map and reduce tasks entirely in main memory

• Fault Tolerance 
employ epoch synchronization with the master to trigger                       

coordinated checkpoints          

• Partitioning and Load Balancing

• Collocation of Tasks
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BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)

• High-level language for domain scientists
closer to the scientific models that describe agent behavior

• object-oriented language
• Programs specify behavior logic of individual 

agents
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BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)BRASIL(Big Red Agent SImulationLanguage)

• looks superficially like Java
The programmer can specify fields, methods, and constructors

• each field in class must be tagged as either state 
or effect

• query phase expressed by run() method
• State fields are read-only
• Effect assignments are aggregated at the effect 

field 
• Has some important restrictions
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Fish in BRASILFish in BRASILFish in BRASILFish in BRASIL
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Fish in BRASILFish in BRASILFish in BRASILFish in BRASIL
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Effect InversionEffect InversionEffect InversionEffect Inversion
• An important optimization that is unique to our 

framework involves eliminating non-local effects.
• Rewritten expression does not change the results of 

the simulation,but only assigns effects locally.
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Effect InversionEffect InversionEffect InversionEffect Inversion

• Theorem: Every behavioral simulation written in 
BRASIL that uses non-local effects can be rewritten 
to an equivalent simulation that uses local effects 
only

–Proof in the VLDB 2010 paper
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Experimental SetupExperimental SetupExperimental SetupExperimental Setup

• Implementation
–BRACE MapReduce runtime implemented in C++ ,Our BRASIL 

compiler, written in Java and directly generates C++
–Grid partitioning
assigns each grid cell to a separate slave node
–Include KD-Tree spatial indexing, rebuild every tick
–Basic load balancing
–Checkpointing is not yet integrated

• Simulation Workloads
implemented realistic traffic and fish school simulations 

• Hardware: Cornell WebLabCluster (60 nodes, 
2xQuadCore Xeon 2.66GHz, 4MB cache, 16GB RAM)
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• Compares the performance 
of MITSIM against BRACE 
using BRASIL

• Without spatial indexing:
Brace's Performance 
Degrades quadratically with 
increasing segment length

Traffic: Indexing vs. Seg. LengthTraffic: Indexing vs. Seg. LengthTraffic: Indexing vs. Seg. LengthTraffic: Indexing vs. Seg. Length
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• increase the visibility 
range:
KD-tree indexing 
performance decreases

• indexing yields from two 
to three times 
improvement over a 
range of visibility values.

Fish: Indexing vs. VisibilityFish: Indexing vs. VisibilityFish: Indexing vs. VisibilityFish: Indexing vs. Visibility
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• Effect Inversion 
increases agent tick 
throughput
– from 3.59 million (Idx-

Only) to 4.36 million 
(Idx+Inv) with KD-tree 
indexing enabled

– from 2.95 million (No-
Opt) to 3.63 million 
(Inv-Only) with KD-tree 
indexing disabled

Predator: Effect InversionPredator: Effect InversionPredator: Effect InversionPredator: Effect Inversion
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• Nearly linear 
scalability

• Sudden drop is an 
artifact of IP routing in 
the multi-switch 
configuration

Traffic: ScalabilityTraffic: ScalabilityTraffic: ScalabilityTraffic: Scalability
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• move in two different 
fixed directions

• Without load 
balancing:form in nodes 
at the extremes of 
simulated space,load at 
all other nodes falls to 
zero

• With load 
balancing:throughput 
increases linearly with the 
number of nodes

 Fish: Scalability Fish: Scalability Fish: Scalability Fish: Scalability
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• With load balancing
the time per simulation 
epoch is essentially flat

• With load balancing 
the epoch time gradually 
increases
reflects all agents being 
simulated by only two 
nodes

Fish: Load BalancingFish: Load BalancingFish: Load BalancingFish: Load Balancing
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ConclusionsConclusionsConclusionsConclusions

• MapReduce can be used to scale behavioral simulations 
across clusters

• New programming environment for behavioral 
simulations
–Easy to program: Simulations in the state-effect pattern � 

BRASIL
-Hides all the complexities of modeling computations in MapReduce
-parallel programming from domain scientists

–Scalable: State-effect pattern in special-purpose MapReduce 
Engine � BRACE

-shared-nothing, in-memory MapReduce framework
-exploits collocation of mappers and reducers to bound communication 

overhead



TTTThanks!hanks!hanks!hanks!


