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Hypothesis testing

* Suppose we throw a coin z times and we want to
estimate 1f the coin 1s fair, 1.e. 1f Pr(heads) = Pr(tails).

e Let X1, Xo, ..., Xu ~ Bernoulli(p) be the 1.1.d. coin flips
—Comisfarr < p=1/2
* Let the null hypothesis Hy be “coin 1s fair”.

* The alternative hypothesis H; 1s then *“coin 1s not
fair”

o Intuitively, if |n /> Xi - 1/2| is large, we should reject
the null hypothesis

* But can we formalize this?




Hypothesis testing terminology

* 0 = 0o is called simple hypothesis
* 0> 00 or 0 <0 1s called composite hypothesis
e Ho: 0 =00 vs. Hi: 0 # 0o 1s called two-sided test

e Ho: 0<0ovs. Hi: 0>00and Hy: 0>0¢ vs. Hi: 9 <0
are called one-sided tests

e Rejection region R: 1if X € R, reject Ho o/w retain Ho

—Typically R = {x : T(x) > ¢} where T 1s a test statistic and c
1s a critical value

Retain H, Reject H,
H,true| v type I error
H, true| type II error v

* Error types:




The p-values

* The p-value 1s the probability that if Ho holds, we
observe values at least as extreme as the test statistic
— It 1s not the probability that Ho holds
—If p-value 1s small enough, we can reject Ho
—How small 1s small enough depends on application

* Typical p-value scale:

<0.01 very strong evidence against Ho
0.01-0.05 strong evidence against Ho
0.05-0.1 weak evidence against Ho

>0.1 little or no evidence against Ho
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Statistical Power

* The power of the test 1s the probability that 1t waill
reject the null hypothesis when 1t 1s false

— If the rate of Type II errors 1s 3, the poweri1s 1 — 3
* At least three factors have effect to power:

— Significance level
« Higher significance = lesser power

—Magnitude of the effect
* How “far” we are from the null hypothesis

— Sample size




The Wald test

For two-sided test Ho: 6 = 0¢ vs. Hi: 6 # 09
0— 0,

Test statistic W = , where 0 is the sample estimate and

se
se = se(é) = \/ Var[0] is the standard error.

W converges 1n probability to N(0,1).

If w 1s the observed value of Wald statistic, the p-value 1s 2D(-|w)).




The coin-tossing example revisited

Using Wald test we can test 1f our coin 1s fair. Suppose the
observed average 1s 0.6 with estimated standard error 0.049. The
observed Wald statistic w 1s now w = (0.6 - 0.5)/0.049 = 2.04.
Therefore the p-value 1s 20(-2.04) = 0.041, and we have strong
evidence to reject the null hypothesis.

/A, _
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Contfidence Intervals

* Suppose have a statistical test to test null hypothesis
0 = 0o at significance o for any value of 0Oy

* The confidence interval of 0 at confidence level
1 — a 1s the interval [x, y] 0 if null hypothesis 6 = 0y
1s retained at significance o for any 0o € [x, V]

— There are other ways to define/compute confidence
intervals




Parametric Tests

* Many statistical tests assume we can express (or
approximate) the null hypothesis distribution in
closed form

— Normal distribution, Poisson distribution, Weibull
distribution...

—Test 1f data 1s normally distributed
—Test 1f two samples are from independent distributions
* The test statistics approaches y? distribution

* This sitmplifies the calculations

— But most parametric tests are not exact because the
distributions hold only asymptotically




Exact Tests

* Exact test give exact p-values
—No asymptotics

* Usually more time consuming to compute

* Used mostly with smaller samples
— Faster to compute
— Parametric tests behave badly

* Can (sometimes) be used when no parametric
probability distribution 1s known




Permutation Test

* Suppose we have two samples of numbers
—X1, X2, ..., Xn, and y1, y2, ..., ym With means X and y

* The null hypothesis 1s X =y (two-sided test)

e First we compute T (obs) = |x —y

* We pool x’s and y’s together and create every possible
partition of the values into sets of size n and m

— We compute the means and their absolute difference

n-+m

. ) such partitions

— There are (

* The p-value 1s the fraction of partition with same or
higher absolute difference of means




Significance and Data Mining

* Hypothesis testing 1s confirmatory data analysis
— Data mining 1s exploratory data analysis

* But data mining can still use (or need) statistical
significance testing

— While the hypothesis 1s (partially) created by an algorithm,
the significance of the findings still need to be validated

* For example, finding many frequent 1temsets 1s
— Surprising, if the data 1s rather sparse
— Expected, 1f the data 1s rather dense




An Example

* Suppose we have found a frequent itemsets with size
s and frequency f from data D that has & 1s

* Is this finding significant?
— Let’s assume the values in D are independent

— We can create all possible data matrices D’ of same size and
density

— We can compute from how of these data we find an itemset
with same size and same or higher frequency

* Or we can compute 1n how many of these data this itemset has
same or better frequency

—This gives us a p-value
* Or does 1t?




Problem 1: Too Many Datasets

» Assuming we have n items, m transactions, and
k (< nm) 1s in the data, we have (") possible datasets

— We cannot try all

* Solution 1: we can sample and estimate the p-value

—How big a sample we need depends on how small a p-value
we want

* Solution 2: we can create a parametric distribution to
estimate the p-value

— Considerably more complex




Problem 2: Multi-Hypothesis Testing

* We are actually testing whether any of the (?) itemsets of
size s has significant support

— This 1s much more likely than just one of them having that
support

— For example, if s =2, f="7/m, n = 1k, m = 1M, and every 1tem
appears 1n every transaction with probability 1/1000 (1.1.d.)
* Probability for any such 2-1temset 1s = 0.0001
e But there are = 0.5M of such 2-1temsets
* Each random data should have = 50 such 2-1temsets

* Solution: Bonferroni correction; divide the p-value with the
number of simultaneous tests

— Very low power; lots of false negatives
— Requires even more samples




Problem 3: The Independence

* The values are rarely
completely independent

— The independence assumption
might omit very trivial structure

—E.g. some 1items are more
popular than others

* These are more likely to form a
frequent 1temset

* We need stronger null
hypothesis

— But how to test that...
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Significance for Frequency Threshold

* Question. How frequent should a A-1temset be for 1t
to be significant?

e Null model. Random data set of same size with same
expected item frequencies

—If 1tem 7 has frequency f;, then in the random model the 1item
appears 1n each transaction independently with probability f;

e Every column of the matrix 1s m 1.1.d. Bernoull1 samples with
parameter f;

* No need to do the frequent 1temset mining on (too)
many random data sets

Kirsch et al. 2012




Poisson Distribution

* One parameter: A

— Rate of occurrence
» If X ~ Poisson(X), then Pr(X = k) = Afe ™ /k!
—E[X] =)\
* Models number of occurrences among a large set of

possible events, where the probability of each event 1s
small

—“Law of rare events”




The Main Idea

e Let Ors be the number of observed k-1temsets of
support at least s

—Let Oy s be the random variable corresponding to that in a
random dataset

e Theorem. There exists a level smin such that 1f

s > Smin, Oks 1s approximated well by Poisson
distribution

— With this, we can compute the p-values easily
* No need for data samples (almost...)

— Only works with large-enough support levels
* Rare events




How to Determine Smin?

e Let € € (0,1) be a parameter that defines how close to
the Poisson we want to be

* Let S be the maximum expected support of k-1temset

— Product of & largest frequencies times the number of
transactions

— S 1s a lower bound for smin

e Create A random data sets and find from them all
k-1temsets of support at least §

— From these 1temsets we can estimate how big the smin has to be
for good approximation of Oxs by Poisson

— A depends on how sure we want to be that the approximation
really 1s good (but, say, A= 1000)




Controlling False Discovery Rate

* We might still get lots of Type I errors due to
multiple-hypothesis testing

— False Discovery Rate (FDR) 1s the ratio of Type I errors
among all rejected null hypotheses
* We want to find a support threshold s™* > smin such
that all k-1itemsets with support > s* are statistically
significant with controlled false discovery rate

—They have confidence higher than 1 — a with FDR at most 3




Controlling the Confidence

 Try values for s* starting from so = Smin, S; = Smin + 2’
—h = Uog2(5max — Smin)J + 1 tests

» The null hypothesis Hy' is that Ok, is drawn from Oy

— This 1s easy to compute if we know Poisson parameter A,
— We can estimate A; from the same random sample we used to
obtain smin as it is just E[Oks]
* Let o, a1, ..., 0s—1 be such that ) ; o, = o

— We reject Hy' if the p-value is smaller than o;

* By union bound, all rejections are correct with probability at least
1l —a

* We select the smallest s; where Hy' 1s rejected




Controlling the FDR

* The first attempt does not control FDR

» For that, define o, P1, ..., Br1 such that }; B 1 =B
—Let }Mi — E[Ok,si]

—0,; can just be o/A# and ditto for f;

e Reject Hy' if p-value of Ok, 1s smaller than a; and

Ok,si > Bz?\»i

* Theorem. The k-1temsets that are frequent w.r.t. s*

are statistically significant with confidence 1 — a with
FDR at most 3




Summary

* G1ven 1itemset size k, confidence level 1 — a and false
discovery rate B, we can find minimum support level
s* such that each k-1temset that has support at least s*
1s significant with FDR at most [3

— Null hypothesis: each item 1s 1.1.d. Bernoull1 with parameter
fi
— Only works for high values of support
* Po1sson approximation
— Might return s* = o
* Data cannot be distinguished from random

— Requires sampling only to estimate parameters




[ ecturer

Comparison

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

completely  not at all
3

DTDM, WS 12/13 18 December 2012 T III.Intro-26



Topic

Comparison

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

completely  not at all

DTDM, WS 12/13 18 December 2012 T III.Intro-27



Requirements

! Course Comparison

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

completely ———— not at all
5

DTDM, WS 12/13 18 December 2012 T III.Intro-28



Requirements, 1n parts

The difficulty of the content was adequate.

completely |

The amount of time required for the course as a whole (including
preparation and follow-up) was appropriate.

| not at all

completely |

The course was too difficult for me.

| not at all

completely |

 not at all
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A part of overall

| learned a lot in this course.

completely |  not at all
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'M TELLING You, \\ I HE'S GOT ELVES ‘ [ HE ALWAYS WEARS ‘ CANTA CLAUS 1S
SLAVING AWAY ALL

HE KEEPS A THE SAME VEST AND A PROFESSOR!!

LIGT OF PEOPLE R YEAR DOING MENIAL WE ONLY &dowsS uP
UE LIKES AND 3 TASKS FOR LITTLE l )

wWWwWWwW, PHDCOMICS COM
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