Topic III: Significance Testing

Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13

T III: Significance Testing

- 1. Hypothesis Testing
 - 1.1. Null Hypotheses and p-values
 - 1.2. Parametric Tests
 - 1.3. Exact Tests
- 2. Significance and Data Mining
 - 2.1. Why? How?
- 3. Significance for a Frequency Threshold
- 4. Course Feedback Feedback

Hypothesis testing

- Suppose we throw a coin n times and we want to estimate if the coin is fair, i.e. if Pr(heads) = Pr(tails).
- Let $X_1, X_2, ..., X_n \sim \text{Bernoulli}(p)$ be the i.i.d. coin flips Coin is fair $\Leftrightarrow p = 1/2$
- Let the null hypothesis H_0 be "coin is fair".
- The alternative hypothesis H_1 is then "coin is not fair"
- Intuitively, if $|n^{-1}\sum_i X_i 1/2|$ is large, we should reject the null hypothesis
- But can we formalize this?

Hypothesis testing terminology

- $\theta = \theta_0$ is called simple hypothesis
- $\theta > \theta_0$ or $\theta < \theta_0$ is called composite hypothesis
- H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$ is called **two-sided test**
- H_0 : $\theta \le \theta_0$ vs. H_1 : $\theta > \theta_0$ and H_0 : $\theta \ge \theta_0$ vs. H_1 : $\theta < \theta_0$ are called **one-sided tests**
- Rejection region R: if $X \in R$, reject H_0 o/w retain H_0
 - -Typically $R = \{x : T(x) > c\}$ where T is a **test statistic** and c is a **critical value**
- Error types:

	Retain H ₀	Reject H ₀
H_0 true	✓	type I error
H ₁ true	type II error	

The *p*-values

- The p-value is the probability that if H_0 holds, we observe values at least as extreme as the test statistic
 - It is *not* the probability that H_0 holds
 - If p-value is small enough, we can reject H_0
 - -How small is small enough depends on application
- Typical *p*-value scale:

<i>p</i> -value	evidence	
< 0.01	very strong evidence against H_0	
0.01-0.05	strong evidence against H_0	
0.05-0.1	weak evidence against H_0	
> 0.1	little or no evidence against H_0	

Statistical Power

- The **power** of the test is the probability that it will reject the null hypothesis when it is false
 - If the rate of Type II errors is β , the power is 1β
- At least three factors have effect to power:
 - -Significance level
 - Higher significance ⇒ lesser power
 - Magnitude of the effect
 - How "far" we are from the null hypothesis
 - -Sample size

The Wald test

For two-sided test H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$

Test statistic $W = \frac{\hat{\theta} - \theta_0}{\hat{\mathsf{se}}}$, where $\hat{\theta}$ is the sample estimate and

 $\hat{se} = se(\hat{\theta}) = \sqrt{Var[\hat{\theta}]}$ is the standard error.

W converges in probability to N(0,1).

If w is the observed value of Wald statistic, the p-value is $2\Phi(-|w|)$.

The coin-tossing example revisited

Using Wald test we can test if our coin is fair. Suppose the observed average is 0.6 with estimated standard error 0.049. The observed Wald statistic w is now $w = (0.6 - 0.5)/0.049 \approx 2.04$. Therefore the p-value is $2\Phi(-2.04) \approx 0.041$, and we have strong evidence to reject the null hypothesis.

Confidence Intervals

- Suppose have a statistical test to test null hypothesis $\theta = \theta_0$ at significance α for any value of θ_0
- The **confidence interval** of θ at confidence level 1α is the interval $[x, y] \ni \theta$ if null hypothesis $\theta = \theta_0$ is *retained* at significance α for any $\theta_0 \in [x, y]$
 - There are other ways to define/compute confidence intervals

DTDM, WS 12/13 18 December 2012 T III.Intro-9

Parametric Tests

- Many statistical tests assume we can express (or approximate) the null hypothesis distribution in closed form
 - Normal distribution, Poisson distribution, Weibull distribution...
 - Test if data is normally distributed
 - Test if two samples are from independent distributions
 - The test statistics approaches χ^2 distribution
- This simplifies the calculations
 - -But most parametric tests are not **exact** because the distributions hold only asymptotically

Exact Tests

- Exact test give exact p-values
 - -No asymptotics
- Usually more time consuming to compute
- Used mostly with smaller samples
 - -Faster to compute
 - Parametric tests behave badly
- Can (sometimes) be used when no parametric probability distribution is known

Permutation Test

- Suppose we have two samples of numbers
 - $-x_1, x_2, ..., x_n$, and $y_1, y_2, ..., y_m$ with means \bar{x} and \bar{y}
- The null hypothesis is $\bar{x} = \bar{y}$ (two-sided test)
- First we compute $T(obs) = |\bar{x} \bar{y}|$
- We pool x's and y's together and create every possible partition of the values into sets of size n and m
 - We compute the means and their absolute difference
 - There are $\binom{n+m}{n}$ such partitions
- The *p*-value is the fraction of partition with same or higher absolute difference of means

Significance and Data Mining

- Hypothesis testing is confirmatory data analysis
 - -Data mining is exploratory data analysis
- But data mining can still use (or need) statistical significance testing
 - While the hypothesis is (partially) created by an algorithm, the significance of the findings still need to be validated
- For example, finding many frequent itemsets is
 - -Surprising, if the data is rather sparse
 - -Expected, if the data is rather dense

An Example

- Suppose we have found a frequent itemsets with size *s* and frequency *f* from data *D* that has *k* 1s
- Is this finding significant?
 - -Let's assume the values in D are independent
 - We can create all possible data matrices D ' of same size and density
 - We can compute from how of these data we find an itemset with same size and same or higher frequency
 - Or we can compute in how many of these data *this* itemset has same or better frequency
 - This gives us a *p*-value
 - Or does it?

Problem 1: Too Many Datasets

- Assuming we have n items, m transactions, and $k (\leq nm)$ 1s in the data, we have $\binom{nm}{k}$ possible datasets
 - We cannot try all
- Solution 1: we can sample and estimate the *p*-value
 - -How big a sample we need depends on how small a *p*-value we want
- Solution 2: we can create a parametric distribution to estimate the *p*-value
 - -Considerably more complex

Problem 2: Multi-Hypothesis Testing

- We are actually testing whether *any* of the $\binom{n}{s}$ itemsets of size s has significant support
 - This is much more likely than just one of them having that support
 - For example, if s = 2, f = 7/m, n = 1k, m = 1M, and every item appears in every transaction with probability 1/1000 (i.i.d.)
 - Probability for any such 2-itemset is ≈ 0.0001
 - But there are $\approx 0.5M$ of such 2-itemsets
 - Each random data should have ≈ 50 such 2-itemsets
- Solution: *Bonferroni correction*; divide the *p*-value with the number of simultaneous tests
 - Very low power; lots of false negatives
 - Requires even more samples

Problem 3: The Independence

- The values are rarely completely independent
 - The independence assumption might omit very trivial structure
 - -E.g. some items are more popular than others
 - These are more likely to form a frequent itemset
- We need stronger null hypothesis
 - -But how to test that...

Significance for Frequency Threshold

- **Question.** How frequent should a *k*-itemset be for it to be significant?
- Null model. Random data set of same size with same expected item frequencies
 - If item i has frequency f_i , then in the random model the item appears in each transaction independently with probability f_i
 - Every column of the matrix is m i.i.d. Bernoulli samples with parameter f_i
- No need to do the frequent itemset mining on (too) many random data sets

Kirsch et al. 2012

Poisson Distribution

- One parameter: λ
 - -Rate of occurrence
- If $X \sim \text{Poisson}(\lambda)$, then $\Pr(X = k) = \lambda^k e^{-\lambda}/k!$ -E[X] = λ
- Models number of occurrences among a large set of possible events, where the probability of each event is small
 - -"Law of rare events"

The Main Idea

- Let $O_{k,s}$ be the number of observed k-itemsets of support at least s
 - Let $\hat{O}_{k,s}$ be the random variable corresponding to that in a random dataset
- **Theorem.** There exists a level s_{\min} such that if $s \ge s_{\min}$, $\hat{O}_{k,s}$ is approximated well by Poisson distribution
 - With this, we can compute the p-values easily
 - No need for data samples (almost...)
 - Only works with large-enough support levels
 - Rare events

How to Determine smin?

- Let $\varepsilon \in (0,1)$ be a parameter that defines how close to the Poisson we want to be
- Let S be the maximum expected support of k-itemset
 - Product of k largest frequencies times the number of transactions
 - -S is a lower bound for s_{\min}
- Create Δ random data sets and find from them all k-itemsets of support at least S
 - From these itemsets we can estimate how big the s_{\min} has to be for good approximation of $\hat{O}_{k,s}$ by Poisson
 - Δ depends on how sure we want to be that the approximation really is good (but, say, $\Delta = 1000$)

Controlling False Discovery Rate

- We might still get lots of Type I errors due to multiple-hypothesis testing
 - -False Discovery Rate (FDR) is the ratio of Type I errors among all rejected null hypotheses
- We want to find a support threshold $s^* \ge s_{\min}$ such that *all k*-itemsets with support $\ge s^*$ are statistically significant with controlled false discovery rate
 - They have confidence higher than 1α with FDR at most β

Controlling the Confidence

- Try values for s^* starting from $s_0 = s_{\min}$, $s_i = s_{\min} + 2^i$ $-h = \lfloor \log_2(s_{\max} - s_{\min}) \rfloor + 1 \text{ tests}$
- The null hypothesis H_0^i is that O_{k,s_i} is drawn from \hat{O}_{k,s_i}
 - This is easy to compute *if* we know Poisson parameter λ_i
 - We can estimate λ_i from the same random sample we used to obtain s_{\min} as it is just $E[\hat{O}_{k,s_i}]$
- Let α_0 , α_1 , ..., α_{h-1} be such that $\sum_i \alpha_i = \alpha$
 - We reject H_0^i if the p-value is smaller than α_i
 - By union bound, all rejections are correct with probability at least $1-\alpha$
- We select the smallest s_i where H_0^i is rejected

Controlling the FDR

- The first attempt does *not* control FDR
- For that, define $\beta_0, \beta_1, ..., \beta_{h-1}$ such that $\sum_i \beta_i^{-1} = \beta$
 - Let $\lambda_i = E[\hat{O}_{k,s_i}]$
 - $-\alpha_i$ can just be α/h and ditto for β_i
- Reject H_0^i if p-value of O_{k,s_i} is smaller than α_i and $O_{k,s_i} \ge \beta_i \lambda_i$
- **Theorem.** The k-itemsets that are frequent w.r.t. s^* are statistically significant with confidence 1α with FDR at most β

Summary

- Given itemset size k, confidence level 1α and false discovery rate β , we can find minimum support level s^* such that each k-itemset that has support at least s^* is significant with FDR at most β
 - -Null hypothesis: each item is i.i.d. Bernoulli with parameter f_i
 - Only works for high values of support
 - Poisson approximation
 - Might return s^* = ∞
 - Data cannot be distinguished from random
 - -Requires sampling only to estimate parameters

Lecturer

Topic

Requirements

Requirements, in parts

The amount of time required for the course as a whole (including preparation and follow-up) was appropriate.

The course was too difficult for me.

Overall

A part of overall

WWW. PHDCOMICS. COM