
Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

T III.Intro-

Topic III: Significance Testing

1



DTDM, WS 12/13 18 December 2012 T III.Intro-

T III: Significance Testing
1. Hypothesis Testing

1.1. Null Hypotheses and p-values
1.2. Parametric Tests
1.3. Exact Tests

2. Significance and Data Mining
2.1. Why? How?

3. Significance for a Frequency Threshold
4. Course Feedback Feedback
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Hypothesis testing
• Suppose we throw a coin n times and we want to 

estimate if the coin is fair, i.e. if Pr(heads) = Pr(tails).
• Let X1, X2, …, Xn ~ Bernoulli(p) be the i.i.d. coin flips
–Coin is fair ⇔ p = 1/2

• Let the null hypothesis H0 be “coin is fair”.
• The alternative hypothesis H1 is then “coin is not 

fair”
• Intuitively, if |n-1∑i Xi - 1/2| is large, we should reject 

the null hypothesis
• But can we formalize this?
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Hypothesis testing terminology
• θ = θ0 is called simple hypothesis
• θ > θ0 or θ < θ0 is called composite hypothesis
• H0: θ = θ0 vs. H1: θ ≠ θ0 is called two-sided test
• H0: θ ≤ θ0 vs. H1: θ > θ0 and H0: θ ≥ θ0 vs. H1: θ < θ0 

are called one-sided tests
• Rejection region R: if X ∈ R, reject H0 o/w retain H0 
–Typically R = {x : T(x) > c} where T is a test statistic and c 

is a critical value 
• Error types:
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Statistical Hypothesis Testing
A hypothesis test determines a probability 1-�
(test level �, significance level) that a sample X1, ..., Xn
from some unknown probability distribution has a certain property.
Examples:
1) The sample originates from a normal distribution.
2) Under the assumption of a normal distribution

the sample originates from a N(�, �2) distribution.
3) Two random variables are independent.
4) Two random variables are identically distributed.
5) Parameter � of a Poisson distribution from which the sample stems has value 5.
6) Parameter p of a Bernoulli distribution from which the sample stems has value 0.5.

General form:
null hypothesis H0 vs. alternative hypothesis H1

needs test variable X (derived from X1, ..., Xn, H0, H1) and
test region R with
X�R for rejecting H0 and 
X�R for retaining H0

Retain H0 Reject H0
H0 true � type I error
H1 true type II error �
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The p-values
• The p-value is the probability that if H0 holds, we 

observe values at least as extreme as the test statistic
– It is not the probability that H0 holds
– If p-value is small enough, we can reject H0 
–How small is small enough depends on application

• Typical p-value scale:
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p-­‐value evidence

<	
  0.01 very	
  strong	
  evidence	
  against	
  H0

0.01–0.05 strong	
  evidence	
  against	
  H0

0.05–0.1 weak	
  evidence	
  against	
  H0

>	
  0.1 li9le	
  or	
  no	
  evidence	
  against	
  H0
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Statistical Power
• The power of the test is the probability that it will 

reject the null hypothesis when it is false
– If the rate of Type II errors is β, the power is 1 – β

• At least three factors have effect to power:
– Significance level
•Higher significance ⇒ lesser power

–Magnitude of the effect
•How “far” we are from the null hypothesis

– Sample size
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The Wald test
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For two-sided test H0: θ = θ0 vs. H1: θ ≠ θ0 

W =
✓̂- ✓0
ŝe

✓̂

ŝe = se(✓̂) =
q

Var[✓̂]

Test statistic , where is the sample estimate and

is the standard error.

W converges in probability to N(0,1).

If w is the observed value of Wald statistic, the p-value is 2Φ(-|w|).
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The coin-tossing example revisited
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Using Wald test we can test if our coin is fair. Suppose the 
observed average is 0.6 with estimated standard error 0.049. The 
observed Wald statistic w is now w = (0.6 - 0.5)/0.049 ≈ 2.04. 
Therefore the p-value is 2Φ(-2.04) ≈ 0.041, and we have strong 
evidence to reject the null hypothesis.
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Normal Distribution Table
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Confidence Intervals
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• Suppose have a statistical test to test null hypothesis 
θ = θ0 at significance α for any value of θ0 
• The confidence interval of θ at confidence level 

1 – α is the interval [x, y] ∋ θ if null hypothesis θ = θ0 
is retained at significance α for any θ0 ∈ [x, y]
–There are other ways to define/compute confidence 

intervals
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Parametric Tests
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• Many statistical tests assume we can express (or 
approximate) the null hypothesis distribution in 
closed form
–Normal distribution, Poisson distribution, Weibull 

distribution…
–Test if data is normally distributed
–Test if two samples are from independent distributions
•The test statistics approaches χ2 distribution

• This simplifies the calculations
–But most parametric tests are not exact because the 

distributions hold only asymptotically
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Exact Tests
• Exact test give exact p-values
–No asymptotics

• Usually more time consuming to compute
• Used mostly with smaller samples 
– Faster to compute
– Parametric tests behave badly

• Can (sometimes) be used when no parametric 
probability distribution is known
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Permutation Test
• Suppose we have two samples of numbers 
– x1, x2, …, xn, and y1, y2, …, ym with means    and 

• The null hypothesis is            (two-sided test)
• First we compute
• We pool x’s and y’s together and create every possible 

partition of the values into sets of size n and m
–We compute the means and their absolute difference
–There are            such partitions

• The p-value is the fraction of partition with same or 
higher absolute difference of means 
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x̄ ȳ

x̄ = ȳ

T (obs) = |
x̄� ȳ

|

�n+m
n
�
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Significance and Data Mining
• Hypothesis testing is confirmatory data analysis
–Data mining is exploratory data analysis

• But data mining can still use (or need) statistical 
significance testing
–While the hypothesis is (partially) created by an algorithm, 

the significance of the findings still need to be validated
• For example, finding many frequent itemsets is
– Surprising, if the data is rather sparse
–Expected, if the data is rather dense

13



DTDM, WS 12/13 18 December 2012 T III.Intro-

An Example
• Suppose we have found a frequent itemsets with size 

s and frequency f from data D that has k 1s
• Is this finding significant?
–Let’s assume the values in D are independent
–We can create all possible data matrices D’ of same size and 

density 
–We can compute from how of these data we find an itemset 

with same size and same or higher frequency
•Or we can compute in how many of these data this itemset has 

same or better frequency
–This gives us a p-value
•Or does it?
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Problem 1: Too Many Datasets
• Assuming we have n items, m transactions, and 

k (≤ nm) 1s in the data, we have        possible datasets
–We cannot try all

• Solution 1: we can sample and estimate the p-value
–How big a sample we need depends on how small a p-value 

we want
• Solution 2: we can create a parametric distribution to 

estimate the p-value
–Considerably more complex
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Problem 2: Multi-Hypothesis Testing
• We are actually testing whether any of the      itemsets of 

size s has significant support
– This is much more likely than just one of them having that 

support
– For example, if s = 2, f = 7/m, n = 1k, m = 1M, and every item 

appears in every transaction with probability 1/1000 (i.i.d.)
• Probability for any such 2-itemset is ≈ 0.0001
• But there are ≈ 0.5M of such 2-itemsets
• Each random data should have ≈ 50 such 2-itemsets

• Solution: Bonferroni correction; divide the p-value with the 
number of simultaneous tests
– Very low power; lots of false negatives
– Requires even more samples
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Problem 3: The Independence 
• The values are rarely 

completely independent
–The independence assumption 

might omit very trivial structure
–E.g. some items are more 

popular than others
•These are more likely to form a 

frequent itemset

• We need stronger null 
hypothesis
–But how to test that…
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Significance for Frequency Threshold
• Question. How frequent should a k-itemset be for it 

to be significant?
• Null model. Random data set of same size with same 

expected item frequencies
– If item i has frequency fi, then in the random model the item 

appears in each transaction independently with probability fi

•Every column of the matrix is m i.i.d. Bernoulli samples with 
parameter fi 

• No need to do the frequent itemset mining on (too) 
many random data sets
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Poisson Distribution
• One parameter: λ
–Rate of occurrence

• If X ∼ Poisson(λ), then
–E[X] = λ

• Models number of occurrences among a large set of 
possible events, where the probability of each event is 
small
– “Law of rare events” 
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Pr(X = k) = lke�l/k!



DTDM, WS 12/13 18 December 2012 T III.Intro-

The Main Idea
• Let Ok,s be the number of observed k-itemsets of 

support at least s 
–Let Ôk,s be the random variable corresponding to that in a 

random dataset
• Theorem. There exists a level smin such that if 

s ≥ smin, Ôk,s is approximated well by Poisson 
distribution
–With this, we can compute the p-values easily
•No need for data samples (almost…)

–Only works with large-enough support levels
•Rare events
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How to Determine smin?
• Let ε ∈ (0,1) be a parameter that defines how close to 

the Poisson we want to be
• Let S be the maximum expected support of k-itemset
– Product of k largest frequencies times the number of 

transactions
– S is a lower bound for smin 

• Create Δ random data sets and find from them all 
k-itemsets of support at least S 
– From these itemsets we can estimate how big the smin has to be 

for good approximation of Ôk,s by Poisson
– Δ depends on how sure we want to be that the approximation 

really is good (but, say, Δ = 1000)
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Controlling False Discovery Rate
• We might still get lots of Type I errors due to 

multiple-hypothesis testing
–False Discovery Rate (FDR) is the ratio of Type I errors 

among all rejected null hypotheses
• We want to find a support threshold s* ≥ smin such 

that all k-itemsets with support ≥ s* are statistically 
significant with controlled false discovery rate
–They have confidence higher than 1 – α with FDR at most β
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Controlling the Confidence
• Try values for s* starting from s0 = smin, si = smin + 2i 
– h = ⎣log2(smax – smin)⎦ + 1 tests

• The null hypothesis H0i is that Ok,si is drawn from Ôk,si

– This is easy to compute if we know Poisson parameter λi 
–We can estimate λi from the same random sample we used to 

obtain smin as it is just E[Ôk,si]

• Let α0, α1, …, αh–1 be such that ∑i αi = α
–We reject H0i if the p-value is smaller than αi 
•By union bound, all rejections are correct with probability at least 

1 – α

• We select the smallest si where H0i is rejected
23
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Controlling the FDR
• The first attempt does not control FDR
• For that, define β0, β1, …, βh–1 such that ∑i βi–1 = β
–Let λi = E[Ôk,si]
– αi can just be α/h and ditto for βi 

• Reject H0i if p-value of Ok,si is smaller than αi and 
Ok,si ≥ βiλi 
• Theorem. The k-itemsets that are frequent w.r.t. s* 

are statistically significant with confidence 1 – α with 
FDR at most β
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Summary
• Given itemset size k, confidence level 1 – α and false 

discovery rate β, we can find minimum support level 
s* such that each k-itemset that has support at least s* 
is significant with FDR at most β
–Null hypothesis: each item is i.i.d. Bernoulli with parameter 

fi 
–Only works for high values of support
• Poisson approximation

–Might return s* = ∞
•Data cannot be distinguished from random

–Requires sampling only to estimate parameters
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Lecturer
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Requirements
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Requirements, in parts
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Qualis - WS 2012/13 - Discrete Topics in Data Mining

Requirements

The difficulty of the content was adequate.

1 2 3 4 5
completely not at all

2

4

1
0 0

N= 7
M= 1,86
SD= 0,69
k.A.= 0

The amount of the content was adequate.

1 2 3 4 5
completely not at all

2

4

1
0 0

N= 7
M= 1,86
SD= 0,69
k.A.= 0

The requirements of the course were adequate.

1 2 3 4 5
completely not at all

3
4

0 0 0

N= 7
M= 1,57
SD= 0,53
k.A.= 0

The amount of time required for the course as a whole (including  
preparation and follow-up) was appropriate.

1 2 3 4 5
completely not at all

1

3 3

0 0

N= 7
M= 2,29
SD= 0,76
k.A.= 0

Qualis - WS 2012/13 - Discrete Topics in Data Mining

Requirements

The difficulty of the content was adequate.

1 2 3 4 5
completely not at all

2

4

1
0 0

N= 7
M= 1,86
SD= 0,69
k.A.= 0

The amount of the content was adequate.

1 2 3 4 5
completely not at all

2

4

1
0 0

N= 7
M= 1,86
SD= 0,69
k.A.= 0

The requirements of the course were adequate.

1 2 3 4 5
completely not at all

3
4

0 0 0

N= 7
M= 1,57
SD= 0,53
k.A.= 0

The amount of time required for the course as a whole (including  
preparation and follow-up) was appropriate.

1 2 3 4 5
completely not at all

1

3 3

0 0

N= 7
M= 2,29
SD= 0,76
k.A.= 0

Qualis - WS 2012/13 - Discrete Topics in Data Mining

Requirements

The course was too difficult for me.

1 2 3 4 5
completely not at all

1
2

1

3

0

N= 7
M= 2,86
SD= 1,21
k.A.= 0
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Overall
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A part of overall
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Qualis - WS 2012/13 - Discrete Topics in Data Mining

Overall Assessment

Overall, this was a good course.

1 2 3 4 5
completely not at all

4
3

0 0 0

N= 7

M= 1,43

SD= 0,53

k.A.= 0

I learned a lot in this course.

1 2 3 4 5
completely not at all

3 3

1

0 0

N= 7

M= 1,71

SD= 0,76

k.A.= 0

The course fulfilled my expectations.

1 2 3 4 5
completely not at all

4

2
1

0 0

N= 7

M= 1,57

SD= 0,79

k.A.= 0

I would recommend the course.

1 2 3 4 5
completely not at all

4

2
1

0 0

N= 7

M= 1,57

SD= 0,79

k.A.= 0
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