Topic II.1: Frequent Subgraph Mining

Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13

TII.1: Frequent Subgraph Mining

- 1. Definitions and Problems
 - 1.1. Graph Isomorphism
- 2. Apriori-Based Graph Mining (AGM)
 - 2.1. Labelled Adjacency Matrices
 - 2.2. Matrix Codes
 - 2.3. Normal and Canonical Forms
- 3. DFS-Based Method: gSpan
 - 3.1. DFS Trees
 - 3.2. DFS Codes and Their Orders
 - 3.3. Candidate Generation

Definitions and Problems

- The data is a set of graphs $D = \{G_1, G_2, ..., G_n\}$
 - Directed or undirected
- The graphs G_i are labelled
 - -Each vertex v has a label L(v)
 - -Each edge e = (u, v) has a label L(u, v)

• Data can be e.g. molecule structures

DTDM, WS 12/13

Graph Isomorphism

- Graphs G = (V, E) and G' = (V', E') are **isomorphic** if there exists a bijective function $\varphi: V \to V'$ such that
 - $-(u, v) \in E$ if and only if $(\varphi(u), \varphi(v)) \in E$
 - $-L(v) = L(\varphi(v))$ for all $v \in V$
 - $-L(u, v) = L(\varphi(u), \varphi(v))$ for all $(u, v) \in E$
- Graph G' is subgraph isomorphic to G if there exists a subgraph of G which is isomorphic to G'
- No polynomial-time algorithm is known for determining if *G* and *G* are isomorphic
- Determining if G' is subgraph isomorphic to G is NP-hard

Equivalence and Canonical Graphs

- Isomorphism defines an equivalence class
 - $-id: V \rightarrow V$, id(v) = v shows G is isomorphic to itself
 - If G is isomorphic to G' via φ , then G' is isomorphic to G via φ^{-1}
 - If *G* is isomorphic to *H* via φ and *H* to *I* via χ, then *G* is isomorphic to *I* via $\varphi \circ \chi$
- A **canonization** of a graph G, canon(G) produces another graph C such that if H is a graph that is isomorphic to G, canon(G) = canon(H)
 - Two graphs are isomorphic if and only if their canonical versions are the same

Frequent Subgraph Mining

- Given a set *D* of *n* graphs and a minimum support parameter *minsup*, find all connected graphs that are subgraph isomorphic to at least *minsup* graphs in *D*
 - -Enormously complex problem
 - -For graphs that have m vertices there are
 - $2^{O(m^2)}$ subgraphs (not all are connected)
 - If we have s labels for vertices and edges we have
 - $O\left((2s)^{O(m^2)}\right)$ labelings of the different graphs
 - Counting the support means solving multiple NP-hard problems

Apriori-Based Graph Mining (AGM)

- Subgraph frequency follows downwards closedness property
 - A supergraph cannot be frequent unless its subgraph is
- Idea: generate all k-vertex graphs that are supergraphs of k-1 vertex frequent graphs and check frequency
- Two problems:
 - -How to generate the graphs
 - -How to check the frequency
- Idea: do the generation based on adjacency matrices

Matrices and Codes

- In labelled adjacency matrix we have
 - Vertex labels in the diagonal
 - -Edge labels in off-diagonal (or 0 if no edges)
- The code of the the adjacency matrix X is the lower-left triangular submatrix listed in row-major order
 - $-x_{1,1}x_{2,1}x_{2,2}x_{3,1}...x_{k,1}...x_{k,k}...x_{n,n}$
- The adjacency matrices can be sorted using the standard lexicographical order in their codes

Joining Two Subgraphs

• Assume we have two frequent subgraphs of k vertices whose adjacency matrices agree on the first k-1 edges

$$X_k = \begin{pmatrix} X_{k-1} & \boldsymbol{x}_1 \\ \boldsymbol{x}_2^T & x_{kk} \end{pmatrix}, Y_k = \begin{pmatrix} X_{k-1} & \boldsymbol{y}_1 \\ \boldsymbol{y}_2^T & y_{kk} \end{pmatrix}$$

We can do the join as follows

$$Z_{k+1} = egin{pmatrix} X_{k-1} & m{x}_1 & m{y}_1 \ m{x}_2^T & x_{kk} & z_{k,k+1} \ m{y}_2^T & z_{k+1,k} & y_{kk} \end{pmatrix} = egin{pmatrix} X_k & m{y}_1 \ m{z}_{k,k+1} \ m{y}_2^T & z_{k+1,k} & y_{kk} \end{pmatrix}$$

- $-z_{k+1,k} = z_{k,k+1}$ assumes all possible edge labels
 - One matrix for each possibility

Avoiding Redundancy

- The two adjacency matrices are joined only if $code(X_k) \le code(Y_k)$ ("normal order")
- We need to confirm that all subgraphs of the resulting (*k* +1)-vertex matrix are frequent
 - We need to consider the normal-order generated *k*-vertex subgraphs
 - The algorithm only stores normal-order generated graphs
 - They are generated by re-generating the *k*-vertex subgraph from singletons in normal order
 - Process is called *normalization* and can compute the normal forms of all subgraphs
 - Normalization can be expressed as a row and column permutations: $X_n = P^T X P$

Canonical Forms

- Isomorphic graphs can have many different normal forms
- Given a set NF(G) of all normal forms representing graphs isomorphic to G, the *canonical form* of G is the adjacency matrix X_c that has the minimum code in NF(G)

$$X_c = \arg\min \{code(X) : X \in NF(G)\}$$

• Given an adjacency matrix X, its normal form is $X_n = P^T X P$ for some permutation matrix P, and its canonical form X_c is $Q^T P^T X P Q$ for some permutation matrix Q

Finding Canonical Forms

- Let X be an adjacency matrix of k+1 vertices
 - Let Y be X with vertex m removed
 - Let P be the permutation of Y to its normal form and Q the permutation of P^TYP to the canonical form
 - We assume we have already computed them
 - We compute candidate P and Q for X by
 - Q' is like Q but bottom-right corner is 1

```
• p'_{ij} is

-p_{ij} \text{ if } i < m \text{ and } j \neq k
-p_{i-1,j} \text{ if } i > m \text{ and } j \neq k
-1 \text{ if } i = m \text{ and } j = k
-0 \text{ otherwise}
```

- Final P and Q are found by trying all candidates and selecting the ones that give the lowest code

The Algorithm

- Start with frequent graphs of 1 vertex
- while there are frequent graphs left
 - Join two frequent (k-1)-vertex graphs
 - -Check the resulting graphs subgraphs are frequent
 - If not, continue
 - -Compute the canonical form of the graph
 - If this canonical form has already been studied, continue
 - -Compare the canonical form with the canonical forms of the *k*-vertex subgraphs of the graphs in *D*
 - If the graph is frequent, keep, otherwise discard
- return all frequent subgraphs

The gSpan Algorithm

- We can improve the running time of frequent subgraph mining by either
 - -Making the frequency check faster
 - Lots of efforts in faster isomorphism checking but only little progress
 - Creating less candidates that need to be checked
 - Level-wise algorithms (like AGM) generate huge numbers of candidates
 - Each must be checked with for isomorphism with others
- The gSpan (graph-based Substructure pattern mining) algorithm replaces the level-wise approach with a depth-first approach

Yan & Han 2002; Z&M Ch. 11

Depth-First Spanning Tree

- A dept-first spanning (DFS) tree of a graph G
 - Is a connected tree
 - Contains all the vertices of G
 - Is build in depth-first order
 - Selection between the siblings is e.g. based on the vertex index
- Edges of the DFS tree are forward edges
- Edges not in the DFS tree are backward edges
- A *rightmost path* in the DFS tree is the path travels from the root to the *rightmost vertex* by always taking the rightmost child (last-added)

The DFS Tree

Generating Candidates from DFS Tree

- Given graph G, we extend it *only* from the vertices in the rightmost path
 - We can add backwards edges from the rightmost vertex to some other vertex in the rightmost path
 - We can add a forward edge from any vertex in the rightmost path
 - This increases the number of vertices by 1
- The order of generating the candidates is
 - First backward extensions
 - First to root, then to root's child, ...
 - Then forward extensions
 - First from the leaf, then from leaf's father, ...

DFS Codes and their Orders

- A DFS code is a sequence of tuples of type $\langle v_i, v_j, L(v_i), L(v_i), L(v_i, v_j) \rangle$
 - Tuples are given in DFS order
 - Backwards edges are listed before forward edges
- A DFS code is *canonical* if it is the smallest of the codes in the ordering
 - $-\langle v_i, v_j, L(v_i), L(v_i), L(v_i, v_j) \rangle < \langle v_x, v_y, L(v_x), L(v_y), L(v_x, v_y) \rangle$ if
 - $\langle v_i, v_j \rangle <_e \langle v_x, v_y \rangle$; or
 - $\langle v_i, v_j \rangle = \langle v_x, v_y \rangle$ and $\langle L(v_i), L(v_j), L(v_i, v_j) \rangle <_l \langle L(v_x), L(v_y), L(v_x, v_y) \rangle$
 - The ordering of the label tuples is the lexicographical ordering

Ordering the Edges

- Let $e_{ij} = \langle v_i, v_j \rangle$ and $e_{xy} = \langle v_x, v_y \rangle$
- $e_{ij} <_e e_{xy}$ if
 - If e_{ij} and e_{xy} are forward edges, then
 - j < y; or
 - j = y and i > x
 - If e_{ij} and e_{xy} are backward edges, then
 - i < x; or
 - i = x and j < y
 - If e_{ij} is forward and e_{xy} is backward, then i < y
 - If e_{ij} is backward and e_{xy} is forward, then j ≤ x

$$t_{11} = \langle v_1, v_2, a, a, q \rangle t_{12} = \langle v_2, v_3, a, a, r, r \rangle t_{13} = \langle v_3, v_1, a, a, r, r \rangle t_{14} = \langle v_2, v_4, a, b, r \rangle$$

$$t_{21} = \langle v_1, v_2, a, a, q \rangle$$

 $t_{22} = \langle v_2, v_3, a, b, r \rangle$
 $t_{23} = \langle v_2, v_4, a, a, r \rangle$
 $t_{24} = \langle v_4, v_1, a, a, r \rangle$

$$t_{31} = \langle v_1, v_2, a, a, q \rangle$$

 $t_{32} = \langle v_2, v_3, a, a, r \rangle$
 $t_{33} = \langle v_3, v_1, a, a, r \rangle$
 $t_{34} = \langle v_1, v_4, a, b, r \rangle$

First rows are identical

$$t_{11} = \langle v_1, v_2, a, a, q \rangle$$

 $t_{12} = \langle v_2, v_3, b, a, r \rangle$
 $t_{13} = \langle v_3, v_1, a, a, r \rangle$
 $t_{14} = \langle v_2, v_4, a, b, r \rangle$

$$t_{21} = \langle v_1, v_2, a, a, q \rangle$$

 $t_{22} = \langle v_2, v_3, b, r \rangle$
 $t_{23} = \langle v_2, v_4, a, a, r \rangle$
 $t_{24} = \langle v_4, v_1, a, a, r \rangle$

$$t_{31} = \langle v_1, v_2, a, a, q \rangle$$

 $t_{32} = \langle v_2, v_3, a, a, r \rangle$
 $t_{33} = \langle v_3, v_1, a, a, r \rangle$
 $t_{34} = \langle v_1, v_4, a, b, r \rangle$

In second row, G2 is bigger in labels' order

$$t_{11} = \langle v_1, v_2, a, a, q \rangle$$

$$t_{12} = \langle v_2, v_3, a, a, r \rangle$$

$$t_{13} = \langle v_3, v_1, a, a, r \rangle$$

$$t_{14} \Rightarrow \langle v_2, v_4, a, b, r \rangle$$

$$t_{21} = \langle v_1, v_2, a, a, q \rangle$$

 $t_{22} = \langle v_2, v_3, a, b, r \rangle$
 $t_{23} = \langle v_2, v_4, a, a, r \rangle$
 $t_{24} = \langle v_4, v_1, a, a, r \rangle$

$$t_{31} = \langle v_1, v_2, a, a, q \rangle$$

$$t_{32} = \langle v_2, v_3, a, a, r \rangle$$

$$t_{33} = \langle v_3, v_1, a, a, r \rangle$$

$$t_{34} \Rightarrow \langle v_1, v_4, a, b, r \rangle$$

Last rows are forward edges and 4 = 4 but $2 > 1 \Rightarrow G_1$ is smallest

Building the Candidates

- The candidates are build in a DFS code tree
 - A DFS code **a** is an *ancestor* of DFS code **b** if **a** is a proper prefix of **b**
 - The siblings in the tree follow the DFS code order
- A graph can be frequent only if all of the graph representing its ancestors in the DFS tree are frequent
- The DFS tree contains all the canonical codes for all the subgraphs of the graphs in the data
 - -But not all of the vertices in the code tree correspond to canonical codes
- We will (implicitly) traverse this tree

The Algorithm

• gSpan:

- -for each frequent 1-edge graphs
 - call subgrm to grow all nodes in the code tree rooted in this 1-edge graph
 - remove this edge from the graph

• subgrm

- -if the code is not canonical, return
- -Add this graph to the set of frequent graphs
- Create each super-graph with one more edge and compute its frequency
- -call subgrm with each frequent super-graph