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Definitions and Problems

* The data 1s a set of graphs D = {G1, G, ...

— Directed or undirected

* The graphs G; are labelled

—Each vertex v has a label L(v)
—Each edge e = (u, v) has a label L(u, v)

* Data can be e.g. molecule structures
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Graph Isomorphism

*» Graphs G=(V, E) and G" = (V, E’) are isomorphic if
there exists a byjective function ¢: V' — V"’ such that
—(u, v) € E if and only 1f (o(u), o(v)) E E’

—L(v)=L(p(v)) forallve V
—L(u, v) = L(o(u), o(v)) for all (u, v) EE

» Graph G’ 1s subgraph isomorphic to G 1f there exists

a subgraph of G which 1s 1somorphic to G’

* No polynomial-time algorithm 1s known for
determining if G and G’ are 1somorphic

* Determining 1f G’ 1s subgraph 1somorphic to G 1s NP-
hard




Equivalence and Canonical Graphs

* [somorphism defines an equivalence class
—1d: V' — V, 1d(v) = v shows G 1s 1somorphic to 1tself
—If G 1s 1somorphic to G’ via @, then G’ 1s 1somorphic to G
via ¢!
—If G 1s 1somorphic to A via ¢ and H to I via y, then G 1s
1Isomorphic to / via ¢poy
* A canonization of a graph G, canon(G) produces
another graph C such that 1f / 1s a graph that 1s
1Isomorphic to G, canon(G) = canon(H)

—Two graphs are 1somorphic 1f and only if their canonical
versions are the same
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Frequent Subg

raph Mining

* Given a set D of n graphs and a minimum support

parameter minsup,

find all connected graphs that are

subgraph 1somorphic to at least minsup graphs in D

— Enormously complex problem

—For graphs that have m vertices there are

. 20(m) subgraphs (not all are connected)

—If we have s labels

or vertices and edges we have

. 0 ((2s)0<m2>) labe

1ngs of the different graphs

— Counting the support means solving multiple NP-hard

problems
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Apriori-Based Graph Mining (AGM)

* Subgraph frequency follows downwards closedness
property

— A supergraph cannot be frequent unless 1ts subgraph 1s

* Idea: generate all k-vertex graphs that are supergraphs
of k—1 vertex frequent graphs and check frequency

* Two problems:

—How to generate the graphs
—How to check the frequency

* Idea: do the generation based on adjacency matrices

Inokuchi, Washio & Motoda 2000




Matrices and Codes

* In labelled adjacency matrix we have
— Vertex labels 1n the diagonal
—Edge labels 1n off-diagonal (or 0 1f no edges)
* The code of the the adjacency matrix X 1s the lower-
left triangular submatrix listed in row-major order
— X1,1X2,1X22X3.1 ... Xk 1 ... Xk k... Xn,n

* The adjacency matrices can be sorted using the
standard lexicographical order 1n their codes




Joining Two Subgraphs

* Assume we have two frequent subgraphs of k vertices
whose adjacency matrices agree on the first A1 edges

Xk—1 €1 Xk—1 yl)
X = Y =

* We can do the join as follows

Xkp—1 X1 Y X,
T _
Lyl = | XT3 Trk Zkk+1 | =

T
Z 1

—Zi+1,k = Zik+1 assumes all possible edge labels
* One matrix for each possibility




Avoiding Redundancy

 The two adjacency matrices are joined only if code(Xx) <
code(Yx) (“normal order™)

* We need to confirm that all subgraphs of the resulting (k
+1)-vertex matrix are frequent
— We need to consider the normal-order generated k-vertex
subgraphs
* The algorithm only stores normal-order generated graphs

— They are generated by re-generating the k-vertex subgraph from
singletons 1n normal order

* Process 1s called normalization and can compute the normal forms of
all subgraphs

— Normalization can be expressed as a row and column
permutations: X, = PXP




Canonical Forms

* [somorphic graphs can have many different normal
forms

* Given a set NF(G) of all normal forms representing
graphs 1somorphic to G, the canonical form of G 1s
the adjacency matrix X, that has the minimum code 1n
NF(G)

Xc = arg min {code(X) : X &€ NF(G)}

* Given an adjacency matrix X, 1ts normal form 1s
X, = P'XP for some permutation matrix P, and its
canonical form X, is Q'P'XPQ for some permutation
matrix O




Finding Canonical Forms

* Let X be an adjacency matrix of k+1 vertices

— Let Y be X with vertex m removed

— Let P be the permutation of Y to 1ts normal form and Q the
permutation of P'YP to the canonical form

* We assume we have already computed them

— We compute candidate P’ and Q° for X by

* 0’ 1s like O but bottom-right corner 1s 1

*p ’ij 1S
—piifi<mandj#k
—piijifi>mandj#k
—lifi=mandj=k
—0 otherwise

— Final P’ and Q’ are found by trying all candidates and selecting
the ones that give the lowest code




The Algorithm

 Start with frequent graphs of 1 vertex

* while there are frequent graphs left
—Join two frequent (k—1)-vertex graphs

— Check the resulting graphs subgraphs are frequent
e [f not, continue

— Compute the canonical form of the graph
* [ this canonical form has already been studied, continue

— Compare the canonical form with the canonical forms of the
k-vertex subgraphs of the graphs in D

* [f the graph 1s frequent, keep, otherwise discard

 return all frequent subgraphs




The gSpan Algorithm

* We can improve the running time of frequent
subgraph mining by either
— Making the frequency check faster

* Lots of efforts in faster isomorphism checking but only little
progress

— Creating less candidates that need to be checked

* Level-wise algorithms (like AGM) generate huge numbers of
candidates

* Each must be checked with for isomorphism with others

* The gSpan (graph-based Substructure pattern mining)
algorithm replaces the level-wise approach with a
depth-first approach

Yan & Han 2002; Z&M Ch. 11




Depth-First Spanning Tree

* A dept-first spanning (DFS) tree of a graph G
—Is a connected tree
— Contains all the vertices of G
—Is build in depth-first order

 Selection between the siblings 1s €.g. based on the vertex index

* Edges of the DFS tree are forward edges
* Edges not in the DFS tree are backward edges

* A rightmost path 1n the DFS tree 1s the path travels

from the root to the rightmost vertex by always taking
the rightmost child (last-added)
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The DFS Tree




Generating Candidates from DFES Tree

* Given graph G, we extend it only from the vertices in
the rightmost path

— We can add backwards edges from the rightmost vertex to
some other vertex in the rightmost path

— We can add a forward edge from any vertex in the rightmost
path

* This increases the number of vertices by 1

* The order of generating the candidates 1s

— First backward extensions
e First to root, then to root’s child, ...

— Then forward extensions
 First from the leaf, then from leat’s father, ...
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DFS Codes and their Orders

* A DFS code 1s a sequence of tuples of type
<Vi, Vi, L(Vi), L(Vj), L(Vi, Vj)>
— Tuples are given in DFS order
* Backwards edges are listed before forward edges

* A DFS code 1s canonical i1f 1t 1s the smallest of the

codes 1n the ordering
— i, vi, L(vi), L(v)), L(vi,v))) < vy, vy, L(vy), L(vy), L(vy,vy)) 1f
* Vi, Vi) <e (Vx, Vy); OF
o (vi, vipy=(vx, vy and <L(v;), L(v}j), L(vi, vj)) <i {L(vx), L(vy), L(vx, Vy))

—The ordering of the label tuples 1s the lexicographical
ordering




Ordering the Edges

» Let e = (v, viy and exy = (vx, V)

¢ eij <e exy 1f

—If e;; and e,y are forward edges, then
*j <y, or
ej=yandi>x
—If e;; and e, are backward edges, then
;1 <X, Or
ei=xand;j <y
—1If e 1s forward and e, 1s backward, then i <y
—If e¢;; 1s backward and ey, 1s forward, then j < x







First rows are identical




In second row, G2 is bigger in labels’ order




Last rows are forward edges and 4 =4 but 2> 1 = G1 is smallest




Building the Candidates

 The candidates are build 1n a DF'S code tree

— A DFS code a 1s an ancestor of DFS code b 1f a 1s a proper
prefix of b

— The siblings in the tree follow the DFS code order

* A graph can be frequent only 1f all of the graph

representing its ancestors 1n the DFS tree are frequent

e The DFS tree contains all the canonical codes for all
the subgraphs of the graphs in the data

— But not all of the vertices 1n the code tree correspond to
canonical codes

* We will (implicitly) traverse this tree




The Algorithm

e SSpan:
—for each frequent 1-edge graphs

* call subgrm to grow all nodes 1n the code tree rooted in
this 1-edge graph
*remove this edge from the graph

e subgrm
—if the code 1s not canonical, return

— Add this graph to the set of frequent graphs

— Create each super-graph with one more edge and compute
its frequency

—call subgrm with each frequent super-graph




