Topic 11.1: Frequent Subgraph
Mining

Discrete Topics 1n Data Mining

Universitiat des Saarlandes, Saarbriicken
Winter Semester 2012/13




TIL1: Frequent Subgraph Miningili

1. Definitions and Problems
1.1. Graph Isomorphism

2. Apriori-Based Graph Mining (AGM)

2.1. Labelled Adjacency Matrices
2.2. Matrix Codes

2.3. Normal and Canonical Forms

. DFS-Based Method: gSpan
3.1. DFS Trees
3.2. DFS Codes and Their Orders
3.3. Candidate Generation

DTDM, WS 12/13 20 Novem ber 2012



Definitions and Problems

* The data 1s a set of graphs D = {G1, G, ...

— Directed or undirected

* The graphs G; are labelled

—Each vertex v has a label L(v)
—Each edge e = (u, v) has a label L(u, v)

* Data can be e.g. molecule structures

1
o

WS 12/13 20 November 2012



Graph Isomorphism

*» Graphs G=(V, E) and G" = (V, E’) are isomorphic if
there exists a byjective function ¢: V' — V"’ such that
—(u, v) € E if and only 1f (o(u), o(v)) E E’

—L(v)=L(p(v)) forallve V
—L(u, v) = L(o(u), o(v)) for all (u, v) EE

» Graph G’ 1s subgraph isomorphic to G 1f there exists

a subgraph of G which 1s 1somorphic to G’

* No polynomial-time algorithm 1s known for
determining if G and G’ are 1somorphic

* Determining 1f G’ 1s subgraph 1somorphic to G 1s NP-
hard




Equivalence and Canonical Graphs

* [somorphism defines an equivalence class
—1d: V' — V, 1d(v) = v shows G 1s 1somorphic to 1tself
—If G 1s 1somorphic to G’ via @, then G’ 1s 1somorphic to G
via ¢!
—If G 1s 1somorphic to A via ¢ and H to I via y, then G 1s
1Isomorphic to / via ¢poy
* A canonization of a graph G, canon(G) produces
another graph C such that 1f / 1s a graph that 1s
1Isomorphic to G, canon(G) = canon(H)

—Two graphs are 1somorphic 1f and only if their canonical
versions are the same




An Example of Isomorphic Graphs




An Example of Isomorphic Graphs




An Example of Isomorphic Graphs




An Example of Isomorphic Graphs




An Example of Isomorphic Graphs




An Example of Isomorphic Graphs




An Example of Isomorphic Graphs




Frequent Subg

raph Mining

* Given a set D of n graphs and a minimum support

parameter minsup,

find all connected graphs that are

subgraph 1somorphic to at least minsup graphs in D

— Enormously complex problem

—For graphs that have m vertices there are

. 20(m) subgraphs (not all are connected)

—If we have s labels

or vertices and edges we have

. 0 ((2s)0<m2>) labe

1ngs of the different graphs

— Counting the support means solving multiple NP-hard

problems




An Example




An Example

S

DTDM, WS 12/13 20 November 2012 TII.1-10




An Example

DTDM, WS 12/13 20 November 2012 TIL.I-10



Apriori-Based Graph Mining (AGM)

* Subgraph frequency follows downwards closedness
property

— A supergraph cannot be frequent unless 1ts subgraph 1s

* Idea: generate all k-vertex graphs that are supergraphs
of k—1 vertex frequent graphs and check frequency

* Two problems:

—How to generate the graphs
—How to check the frequency

* Idea: do the generation based on adjacency matrices

Inokuchi, Washio & Motoda 2000




Matrices and Codes

* In labelled adjacency matrix we have
— Vertex labels 1n the diagonal
—Edge labels 1n off-diagonal (or 0 1f no edges)
* The code of the the adjacency matrix X 1s the lower-
left triangular submatrix listed in row-major order
— X1,1X2,1X22X3.1 ... Xk 1 ... Xk k... Xn,n

* The adjacency matrices can be sorted using the
standard lexicographical order 1n their codes




Joining Two Subgraphs

* Assume we have two frequent subgraphs of k vertices
whose adjacency matrices agree on the first A1 edges

Xk—1 €1 Xk—1 yl)
X = Y =

* We can do the join as follows

Xkp—1 X1 Y X,
T _
Lyl = | XT3 Trk Zkk+1 | =

T
Z 1

—Zi+1,k = Zik+1 assumes all possible edge labels
* One matrix for each possibility




Avoiding Redundancy

 The two adjacency matrices are joined only if code(Xx) <
code(Yx) (“normal order™)

* We need to confirm that all subgraphs of the resulting (k
+1)-vertex matrix are frequent
— We need to consider the normal-order generated k-vertex
subgraphs
* The algorithm only stores normal-order generated graphs

— They are generated by re-generating the k-vertex subgraph from
singletons 1n normal order

* Process 1s called normalization and can compute the normal forms of
all subgraphs

— Normalization can be expressed as a row and column
permutations: X, = PXP




Canonical Forms

* [somorphic graphs can have many different normal
forms

* Given a set NF(G) of all normal forms representing
graphs 1somorphic to G, the canonical form of G 1s
the adjacency matrix X, that has the minimum code 1n
NF(G)

Xc = arg min {code(X) : X &€ NF(G)}

* Given an adjacency matrix X, 1ts normal form 1s
X, = P'XP for some permutation matrix P, and its
canonical form X, is Q'P'XPQ for some permutation
matrix O




Finding Canonical Forms

* Let X be an adjacency matrix of k+1 vertices

— Let Y be X with vertex m removed

— Let P be the permutation of Y to 1ts normal form and Q the
permutation of P'YP to the canonical form

* We assume we have already computed them

— We compute candidate P’ and Q° for X by

* 0’ 1s like O but bottom-right corner 1s 1

*p ’ij 1S
—piifi<mandj#k
—piijifi>mandj#k
—lifi=mandj=k
—0 otherwise

— Final P’ and Q’ are found by trying all candidates and selecting
the ones that give the lowest code




The Algorithm

 Start with frequent graphs of 1 vertex

* while there are frequent graphs left
—Join two frequent (k—1)-vertex graphs

— Check the resulting graphs subgraphs are frequent
e [f not, continue

— Compute the canonical form of the graph
* [ this canonical form has already been studied, continue

— Compare the canonical form with the canonical forms of the
k-vertex subgraphs of the graphs in D

* [f the graph 1s frequent, keep, otherwise discard

 return all frequent subgraphs




The gSpan Algorithm

* We can improve the running time of frequent
subgraph mining by either
— Making the frequency check faster

* Lots of efforts in faster isomorphism checking but only little
progress

— Creating less candidates that need to be checked

* Level-wise algorithms (like AGM) generate huge numbers of
candidates

* Each must be checked with for isomorphism with others

* The gSpan (graph-based Substructure pattern mining)
algorithm replaces the level-wise approach with a
depth-first approach

Yan & Han 2002; Z&M Ch. 11




Depth-First Spanning Tree

* A dept-first spanning (DFS) tree of a graph G
—Is a connected tree
— Contains all the vertices of G
—Is build in depth-first order

 Selection between the siblings 1s €.g. based on the vertex index

* Edges of the DFS tree are forward edges
* Edges not in the DFS tree are backward edges

* A rightmost path 1n the DFS tree 1s the path travels

from the root to the rightmost vertex by always taking
the rightmost child (last-added)




An Example




An Example

vo(d)—(¢)
g

5




An Example




An Example




An Example

DTDM, WS 12/13 20 November 2012



An Example

DTDM, WS 12/13 20 November 2012 TI1.1-20



An Example

V1 (a

DTDM, WS 12/13 20 November 2012 TI1.1-20



An Example

V1 (a

DTDM, WS 12/13 20 November 2012 TI1.1-20



The DFS Tree




Generating Candidates from DFES Tree

* Given graph G, we extend it only from the vertices in
the rightmost path

— We can add backwards edges from the rightmost vertex to
some other vertex in the rightmost path

— We can add a forward edge from any vertex in the rightmost
path

* This increases the number of vertices by 1

* The order of generating the candidates 1s

— First backward extensions
e First to root, then to root’s child, ...

— Then forward extensions
 First from the leaf, then from leat’s father, ...




An Example




An Example




An Example




An Example




An Example




An Example




An Example




DFS Codes and their Orders

* A DFS code 1s a sequence of tuples of type
<Vi, Vi, L(Vi), L(Vj), L(Vi, Vj)>
— Tuples are given in DFS order
* Backwards edges are listed before forward edges

* A DFS code 1s canonical i1f 1t 1s the smallest of the

codes 1n the ordering
— i, vi, L(vi), L(v)), L(vi,v))) < vy, vy, L(vy), L(vy), L(vy,vy)) 1f
* Vi, Vi) <e (Vx, Vy); OF
o (vi, vipy=(vx, vy and <L(v;), L(v}j), L(vi, vj)) <i {L(vx), L(vy), L(vx, Vy))

—The ordering of the label tuples 1s the lexicographical
ordering




Ordering the Edges

» Let e = (v, viy and exy = (vx, V)

¢ eij <e exy 1f

—If e;; and e,y are forward edges, then
*j <y, or
ej=yandi>x
—If e;; and e, are backward edges, then
;1 <X, Or
ei=xand;j <y
—1If e 1s forward and e, 1s backward, then i <y
—If e¢;; 1s backward and ey, 1s forward, then j < x







First rows are identical




In second row, G2 is bigger in labels’ order




Last rows are forward edges and 4 =4 but 2> 1 = G1 is smallest




Building the Candidates

 The candidates are build 1n a DF'S code tree

— A DFS code a 1s an ancestor of DFS code b 1f a 1s a proper
prefix of b

— The siblings in the tree follow the DFS code order

* A graph can be frequent only 1f all of the graph

representing its ancestors 1n the DFS tree are frequent

e The DFS tree contains all the canonical codes for all
the subgraphs of the graphs in the data

— But not all of the vertices 1n the code tree correspond to
canonical codes

* We will (implicitly) traverse this tree




The Algorithm

e SSpan:
—for each frequent 1-edge graphs

* call subgrm to grow all nodes 1n the code tree rooted in
this 1-edge graph
*remove this edge from the graph

e subgrm
—if the code 1s not canonical, return

— Add this graph to the set of frequent graphs

— Create each super-graph with one more edge and compute
its frequency

—call subgrm with each frequent super-graph




