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Why Graphs?

Social Networks
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Why Graphs?

World Wide Web
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Why Graphs?

Protein—Protein Interactions
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Why Graphs?




Why Graphs?

Graphs are Everywhere!




Graphs: Definitions

* An undirected graph G 1s a pair (V, £)
— V= {vi} 1s the set of vertices
—E={e;={v, vj} : v, vi € V'} 15 the set of edges
* In directed graph the edges have a direction
—E={ei=W,v):viviEeTV}
* And edge from a vertex to itself 1s loop
— A graph that does not have loops 1s simple

* The degree of a vertex v, d(v), 1s the number of edges
attached to1t, dv)=[{{v ut €L . uecl}|

—In directed graphs vertices have in-degree id(v) and out-
degree od(v)




Subgraphs

* A graph H= (Vu, En) 1s a subgraph of G = (V] E) if
—VulV
—FEgCFE
—The edges 1n Ep are between vertices 1n Vy

« [f )7 C V1s a set of vertices, then G" = (V’, E’) 1s the

induced subgraph if

— For all vi, vi& V'’ such that {v;, vi}{ €F, {v, vi} EL"
* Subgraph K = (Vk, Ek) of G 1s a clique 1f

—Forall v, v € Vk, {vi, vj} € Ek

— Chiques are also called complete subgraphs




Bipartite Graphs

* A graph G = (V, E) 1s bipartite 1f } can be partitioned
into two sets U and W such that
- UNW=C and UU W=V (a partition)
—Forall {vi,vii € E,vieEUandv,E W
* No edges within U and no edges within W/

* Any subgraph of a bipartite graph 1s also bipartite

* A biclique 1s a complete bipartite subgraph
K=UUV,E)
—Forallue UandveE V, edge {u, v €L




Paths and Distances

* A walk 1n graph G between vertices x and y 1s an ordered
sequence <x =vo, Vi, V2, ..., Viel, Vi =Y)
—{vii,vi €Eforalli=1, ..., ¢
— If x =y, the walk 1s closed
— The same vertex can re-appear 1n the walk many times
* A trail 1s a walk where edges are distinct
— Vier, Vit #{vie1, vi} fori £j
* A path 1s a walk where vertices are distinct
—viFvifori#j
— A closed path with > 3 1s a cycle

* The distance between x and y, d(x, y) 1s the length of the
shortest path between them




Connectedness

* Two vertices x and y are connected 1if there 1s a path
between them

— A graph 1s connected if all pairs of its vertices are connected

* A connected component of a graph 1s a maximal
connected subgraph

* A directed graph 1s strongly connected 1f there 1s a
directed path between all ordered pairs of its vertices

— It 1s weakly connected if it 1s connected only when
considered as an undirected graph

* If a graph 1s not connected, 1t 1s disconnected







Adjacency Matrix

* The adjacency matrix of an undirected graph
G = (V, E) with | V]| = n 1s the n-by-n symmetric binary
matrix A with
—a;=11tand only if {v;, v;} EF
— A weighted adjacency matrix has the weights of the edges

* For directed graphs, the adjacency matrix 1s not
necessarily symmetric

* The bi-adjacency matrix of a bipartite graph
G=(UU YV, E)with |U|=n and |V| = m 1s the n-by-m
binary matrix B with
—b;=11tand only 1f {u; v} EE




Topological Attributes

» The weighted degree of a vertex vi 1s d(vi) = ) ;aij
* The average degree of a graph 1s the average of the
degrees of its vertices, X, d(vi)/n

—Degree and average degree can be extended to directed
graphs

* The average path length of a connected graph 1s the
average of path lengths between all vertices

Y Y vy ( ) - LR d)

I J>1 I J>1




Eccentricity, Radius & Diameter

* The eccentricity of a vertex v;, e(v;), 1s 1ts maximum
distance to any other vertex, max;{d(vi, v;)}

* The radius of a connected graph, »(G), 1s the
minimum eccentricity of any vertex, min;{e(v;)}

* The diameter of a connected graph, d(G), 1s the
maximum eccentricity of any vertex,

max;{e(v:)} = max;;{d(vi vj)}

—The effective diameter of a graph 1s smallest number that 1s
larger than the eccentricity of a large fraction of the vertices
in the graph

 “Large fraction” e.g. 90%




Clustering Coeftficient

* The clustering coefficient of vertex v;, C(v;), tells
how clique-like the neighbourhood of v; 1s

— Let n; be the number of neighbours of v; and m; the number

of edges between the neighbours of v; (v; excluded)
2mi

C(vi) =mj/ (Zl) " ni(ni— 1)

— Well-defined only for v; with at least two neighbours
* For others, let C(vi) =0

* The clustering coefficient of the graph is the average

clustering coefficient of the vertices:
C(G) = n1Z:C(vi)




Graph Mining

* Graphs can explain relations between objects

* Finding these relations 1s the task of graph mining
— The type of the relation depends on the task

* Graph mining 1s an umbrella term that encompasses
many different techniques and problems
— Frequent subgraph mining
— Graph clustering
— Path analysis/building
— Influence propagation




Example: Tiling Databases

@

* Binary matrices define a
bipartite graph

* A tile 1s a biclique of that
graph

* Tiling 1s the task of finding
a minimum number of
bicliques to cover all edges
of a bipartite graph

— Or to find £ bicliques to cover
most of the edges

DTDM, WS 12/13 13 Novem ber 2012
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Example: The Characteristics of Erdos
Graph

* Co-authorship graph of mathematicians
* 401K authors (vertices), 676K co-authorships (edges)

— Median degree = 1, mean = 3.36, standard deviation = 6.61

* Large connected component of 268K vertices
— The radius of the component 1s 12 and diameter 23
— Two vertices with eccentricity 12

— Average distance between two vertices 7.64 (based on a sample)
 “E1ght degrees of separation”

* The clustering coefficient 1s 0.14

http://www.oakland.edu/enp/



http://www.oakland.edu/enp/
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Centrality

* S1x degrees of Kevin Bacon

—Every actor 1s related to Kevin
Bacon by no more than 6 hops”

—Kevin Bacon has acted with many,

that have acted with many others,

that have acted with many others...

* That makes Kevin Bacon a
centre of the co-acting graph

— Although he’s not the centre: the
average distance to him 1s 2.994

but to Dennis Hopper it 1s only
2.802

http://oracleofbacon.org

DTDM, WS 12/13 13 November 2012
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Degree and Eccentricity Centrality

* Centrality is a function c: V' — R that induces a total
order in V

— The higher the centrality of a vertex, the more important 1t
1S

* In degree centrality c(vi) = d(v;), the degree of the
vertex

* In eccentricity centrality the least eccentric vertex 1s
the most central one, c(vi) = 1/e(v;)

— The lest eccentric vertex 1s central
— The most eccentric vertex 1s peripheral




Closeness Centrality

* In closeness centrality the vertex with least distance
to all other vertices 1s the centre

—1
C(V,‘) — (Zd(v,’,\/j))

* In eccentricity centrality we aim to minimize the
maximum distance

* In closeness centrality we aim to minimize the
average distance

— This 1s the distance used to measure the centre of
Hollywood




Betweenness Centrality

* The betweenness centrality measures the number of
shortest paths that travel through v;

— Measures the “monitoring” role of the vertex
—“All roads lead to Rome”

* Let njx be the number of shortest paths between v; and
vi and let njx(vi) be the number of those that include v;

— Let y(vi) = nis(vi)/mi
— Betweenness centrality 1s defined as
c(vi) = L L Yk

i ki
k>




Prestige

* In prestige, the vertex 1s more central 1f 1t has many
incoming edges from other vertices of high prestige
— A 1s the adjacency matrix of the directed graph G
—p 1s n-dimensional vector giving the prestige of the vertices
—-p=A'p
— Starting from an 1nitial prestige vector po, we get

pi=A'pr1=A"(A'pr2) = (A" pr2=(A"Ypis3 = ...
= (A")'po

* Vector p converges to the dominant eigenvector of 47

— Under some assumptions




PageRank

* PageRank uses normalized prestige to rank web pages

o If there 1s a vertex with no out-going edges, the
prestige cannot be computed

—PageRank evades this problem by adding a small
probability of a random jump to another vertex

— Random Surfer model

* Computing the PageRank 1s equivalent to computing
the stationary distribution of a certain Markov chain

— Which 1s again equivalent to computing the dominant
eigenvector




Graph Properties

* Several real-world graphs exhibit certain
characteristics

— Studying what these are and explaining why they appear 1s
an important area of network research

* As data miners, we need to understand the
consequences of these characteristics

— Finding a result that can be explained merely by one of
these characteristics 1s not interesting

* We also want to model graphs with these
characteristics




Small-World Property

* A graph G 1s said to exhibit a small-world property
if 1ts average path length scales logarithmically,
Ly <« log n
—The si1x degrees of Kevin Bacon 1s based on this property
— Also the Erd0s number

* How far a mathematician is from Hungarian combinatorist Paul
Erdds

A radius of a large, connected mathematical co-authorship
network (268K authors) 1s 12 and diameter 23




Scale-Free Property

* The degree distribution of a graph 1s the distribution
of 1ts vertex degrees

—How many vertices with degree 1, how many with degree 2,
etc.

—f(k) 1s the number of edges with degree £
* A graph 1s said to exhibit scale-free property it
k) o< kY
— So-called power-law distribution

—Majority of vertices have small degrees, few have very high
degrees

—Scale-free: f{ck) = a(ck)™ = (ac )k « k7




Example: WWW Links
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Clustering Effect

* A graph exhibits clustering effect if the distribution
of average clustering coefficient (per degree) follow
the power law

—If C(k) 1s the average clustering coefficient of all vertices of
degree k, then C(k) x k7

* The vertices with small degrees are part of highly
clustered areas (high clustering coefficient) while
“hub vertices” have smaller clustering coefficients




Random Graph Models

* Begin able to generate random graphs that exhibat
these properties 1s very useful

hey tell us something how such graphs have come to be

hey let us study what we find 1n an “average™ graph

— With some graph models, we can also make analytical
studies of the properties

* What to expect




Erdos—Reény1 Graphs

* Two parameters: number of vertices n and number of
edges m

» Samples uniformly from all such graphs

— Sample m edges u.a.r. without replacement
* Average degree 1s 2m/n
* Degree distribution follows Poisson, not power law
* Clustering coefficient 1s uniform
* Exhibits small-world property




Watts—Strogatz Graphs

* Aims for high local clustering

 Starts with vertices 1n a ring, each connected to &k
neighbours left and right

* Adds random perturbations

— Edge rewiring: move the end-point of random edges to
random vertices

— Edge shortcuts: add random edges between vertices

 Not scale-free

* High clustering coefficient for small amounts of
perturbations

* Small diameter with some amount of perturbations







Barabasi—Albert Graphs

* Mimics dynamic evolution of graphs
— Preferential attachment

 Starts with a regular graph

* At each time step, adds a new vertex u

—From u, adds g edges to other vertices

— Vertices are sampled proportional to their degree
* High degree, high probability to get more edges

* Degree distribution follows power law (with y = 3)
» Ultra-small world behaviour

* Very small clustering coefficient




