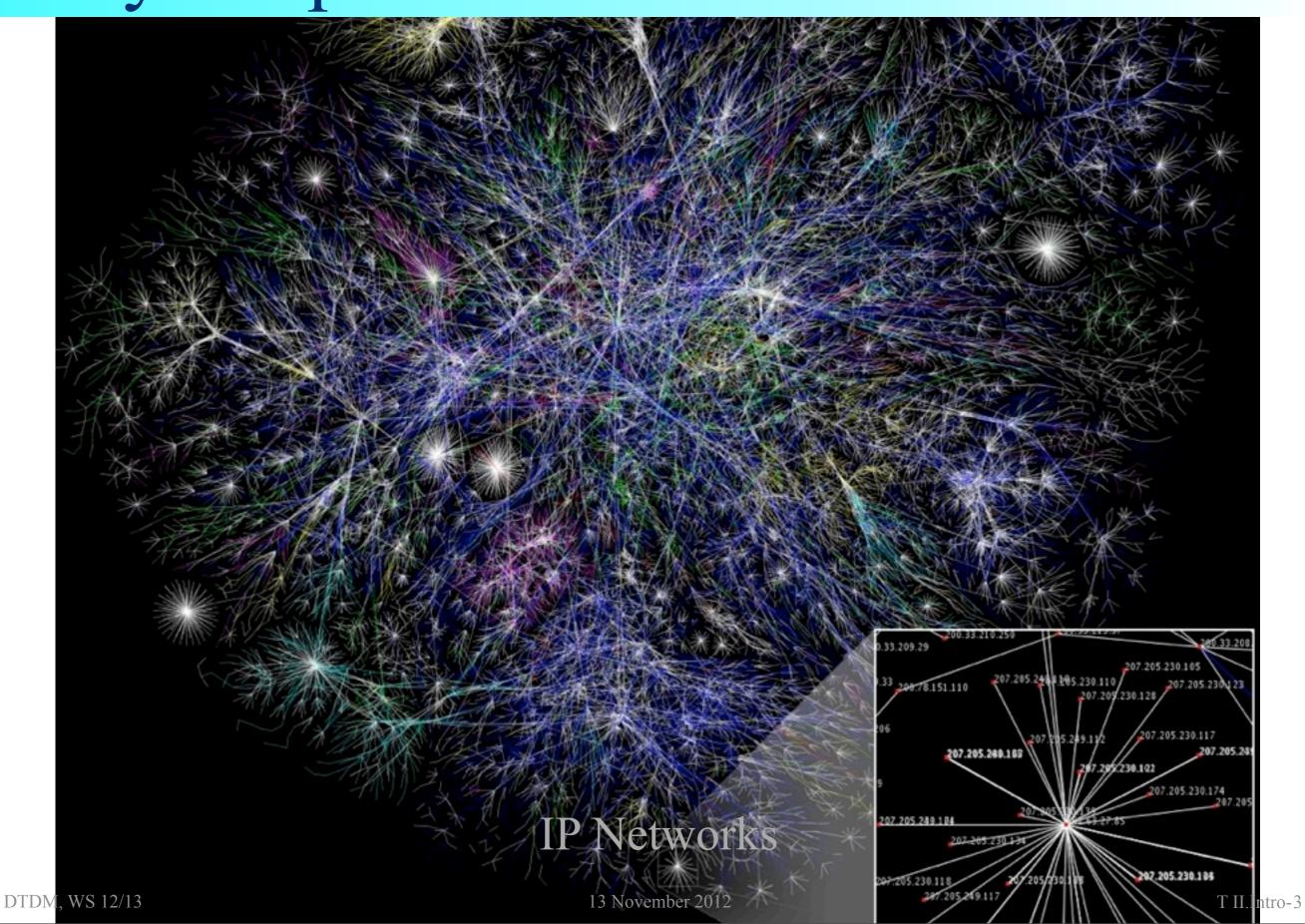
Topic II: Graph Mining

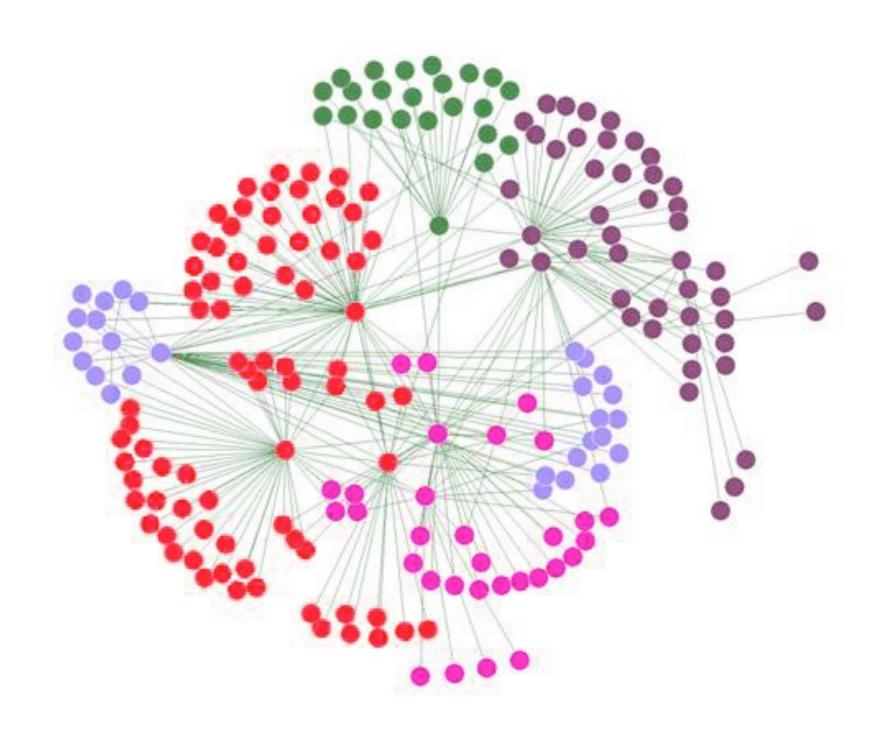
Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13

Topic II Intro: Graph Mining

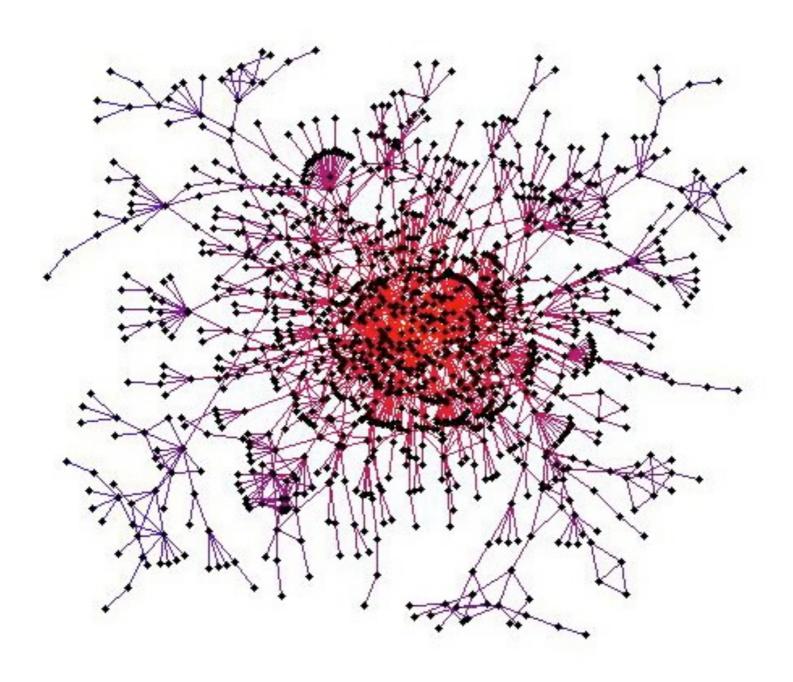
- 1. Why Graphs?
- 2. What is Graph Mining
- 3. Graphs: Definitions
- 4. Centrality
- 5. Graph Properties
 - 5.1. Small World
 - 5.2. Scale Invariance
 - 5.3. Clustering Coefficient
- 6. Random Graph Models

Z&M, Ch. 4

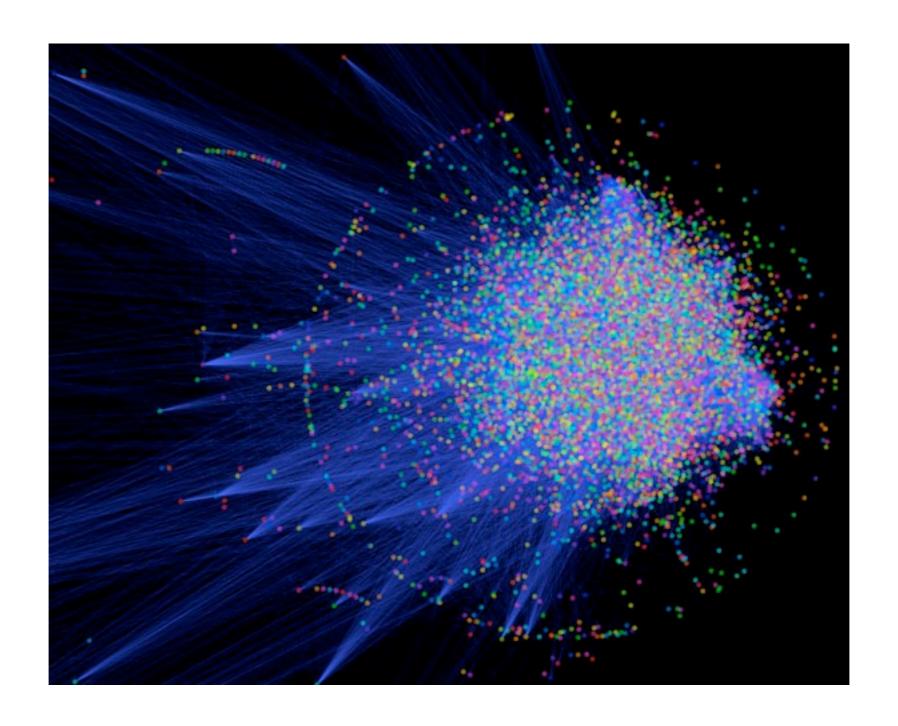




Social Networks

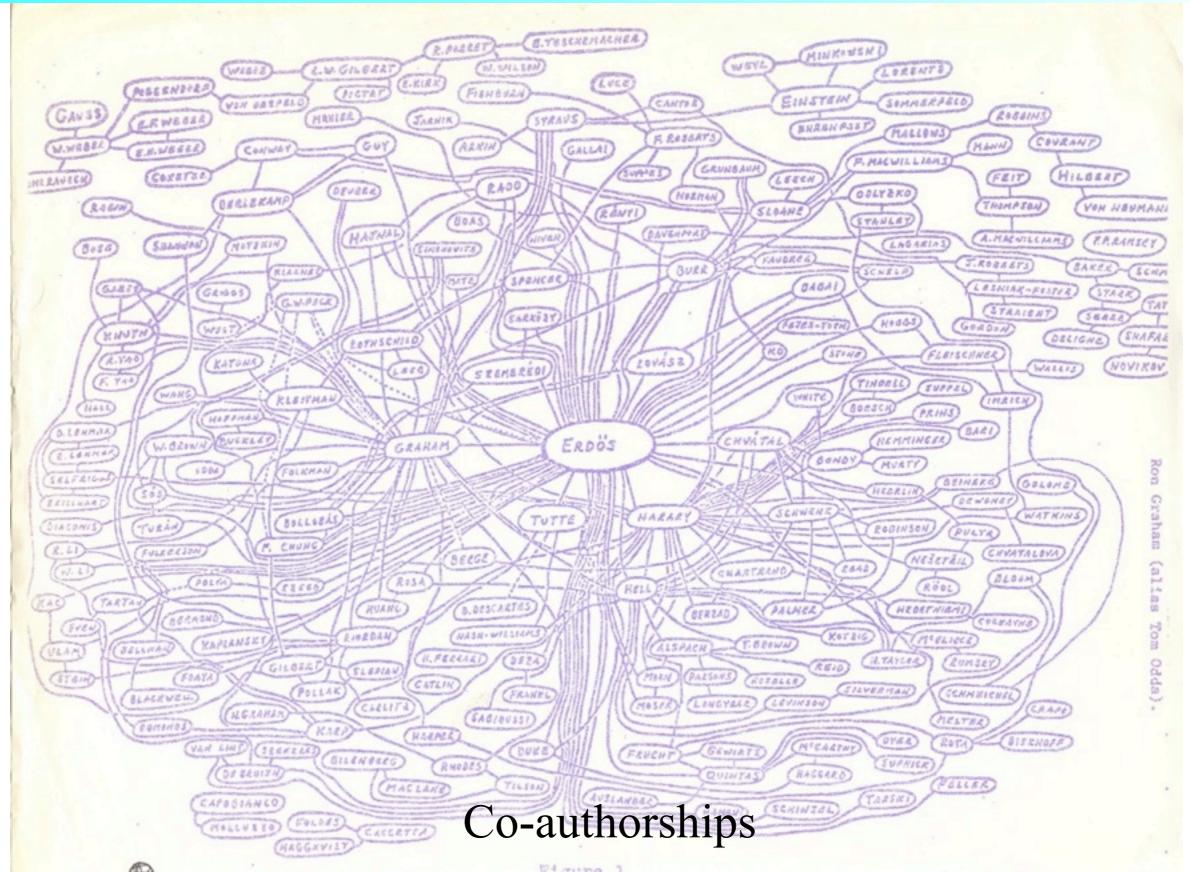


World Wide Web



Protein-Protein Interactions

DTDM, WS 12/13



Why Graphs? QCMA P^{NP[log^2]} NISZK_h MA_E **AWPP** C_=P SBP P^{NP[log]} NE **NISZK** WAPP WPP **BPE** MA AmpP-BQP N.BPP PZK **RPE BPQP** UE BHLWPP TreeBQP **ZPE** BH_2 **BPP** E US RQP **SUBEXP** P^{FewP} compNP **RBQP** ZQP EP YP QP Few **ZBQP** EQP **QPLIN** FewP RP betaP **ZPP** UP

Graphs are Everywhere!

Graphs: Definitions

- An undirected graph G is a pair (V, E)
 - $-V = \{v_i\}$ is the set of vertices
 - $-E = \{e_i = \{v_i, v_j\} : v_i, v_j \in V\}$ is the set of edges
- In directed graph the edges have a direction
 - $-E = \{e_i = (v_i, v_j) : v_i, v_j \in V\}$
- And edge from a vertex to itself is loop
 - A graph that does not have loops is *simple*
- The **degree** of a vertex v, d(v), is the number of edges attached to it, $d(v) = |\{\{v, u\} \in E : u \in V\}|$
 - In directed graphs vertices have in-degree id(v) and outdegree od(v)

Subgraphs

- A graph $H = (V_H, E_H)$ is a subgraph of G = (V, E) if
 - $-V_H \subseteq V$
 - $-E_H \subseteq E$
 - The edges in E_H are between vertices in V_H
- If $V' \subseteq V$ is a set of vertices, then G' = (V', E') is the induced subgraph if
 - For all v_i , $v_j \in V'$ such that $\{v_i, v_j\} \in E$, $\{v_i, v_j\} \in E'$
- Subgraph $K = (V_K, E_K)$ of G is a clique if
 - -For all v_i , $v_j \in V_K$, $\{v_i, v_j\} \in E_K$
 - -Cliques are also called complete subgraphs

Bipartite Graphs

- A graph G = (V, E) is **bipartite** if V can be partitioned into two sets U and W such that
 - $-U \cap W = \emptyset$ and $U \cup W = V$ (a partition)
 - -For all $\{v_i, v_j\}$ ∈ E, v_i ∈ U and v_j ∈ W
 - ullet No edges within U and no edges within W
- Any subgraph of a bipartite graph is also bipartite
- A biclique is a complete bipartite subgraph $K = (U \cup V, E)$
 - For all u ∈ U and v ∈ V, edge $\{u, v\}$ ∈ E

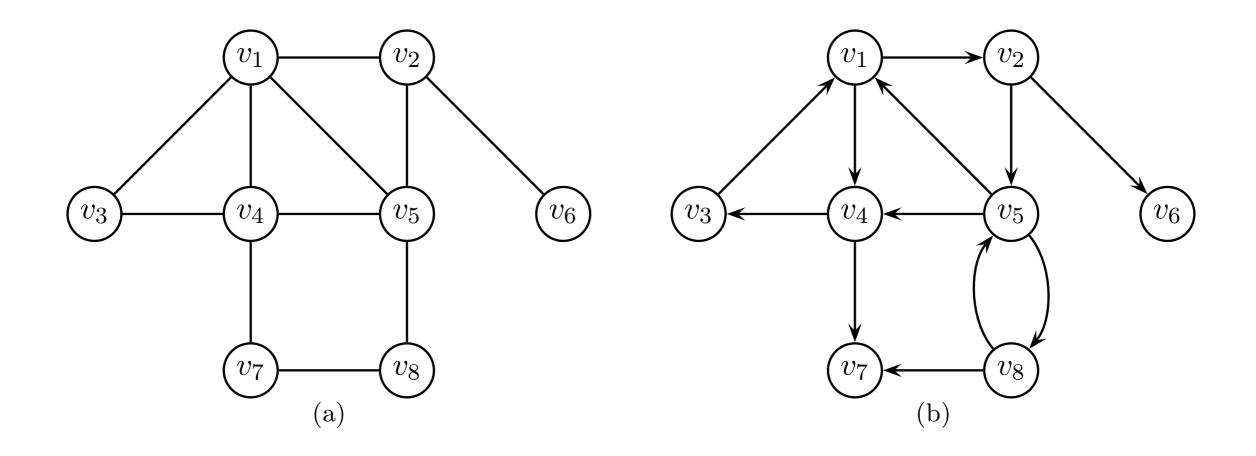
Paths and Distances

- A walk in graph G between vertices x and y is an ordered sequence $\langle x = v_0, v_1, v_2, ..., v_{t-1}, v_t = y \rangle$
 - $-\{v_{i-1}, v_i\} \in E \text{ for all } i = 1, ..., t$
 - $-\operatorname{If} x = y$, the walk is *closed*
 - The same vertex can re-appear in the walk many times
- A trail is a walk where edges are distinct
 - $-\{v_{i-1}, v_i\} \neq \{v_{j-1}, v_j\} \text{ for } i \neq j$
- A path is a walk where vertices are distinct
 - $-v_i \neq v_j$ for $i \neq j$
 - A closed path with $t \ge 3$ is a *cycle*
- The **distance** between x and y, d(x, y) is the length of the shortest path between them

Connectedness

- Two vertices x and y are **connected** if there is a path between them
 - A graph is connected if all pairs of its vertices are connected
- A connected component of a graph is a maximal connected subgraph
- A directed graph is **strongly connected** if there is a directed path between all ordered pairs of its vertices
 - It is weakly connected if it is connected only when considered as an undirected graph
- If a graph is not connected, it is disconnected

Example



Adjacency Matrix

- The **adjacency matrix** of an undirected graph G = (V, E) with |V| = n is the n-by-n symmetric binary matrix A with
 - $-a_{ij} = 1$ if and only if $\{v_i, v_j\} \in E$
 - A weighted adjacency matrix has the weights of the edges
- For directed graphs, the adjacency matrix is not necessarily symmetric
- The **bi-adjacency matrix** of a bipartite graph $G = (U \cup V, E)$ with |U| = n and |V| = m is the *n*-by-*m* binary matrix B with
 - $-b_{ij} = 1$ if and only if $\{u_i, v_j\} \in E$

Topological Attributes

- The weighted degree of a vertex v_i is $d(v_i) = \sum_j a_{ij}$
- The average degree of a graph is the average of the degrees of its vertices, $\sum_i d(v_i)/n$
 - Degree and average degree can be extended to directed graphs
- The average path length of a connected graph is the average of path lengths between all vertices

$$\sum_{i} \sum_{j>i} d(v_i, v_j) / \binom{n}{2} = \frac{2}{n(n-1)} \sum_{i} \sum_{j>i} d(v_i, v_j)$$

Eccentricity, Radius & Diameter

- The **eccentricity** of a vertex v_i , $e(v_i)$, is its maximum distance to any other vertex, $\max_j \{d(v_i, v_j)\}$
- The **radius** of a connected graph, r(G), is the minimum eccentricity of any vertex, $\min_i \{e(v_i)\}$
- The **diameter** of a connected graph, d(G), is the maximum eccentricity of any vertex, $\max_i \{e(v_i)\} = \max_{i,j} \{d(v_i, v_j)\}$
 - The *effective diameter* of a graph is smallest number that is larger than the eccentricity of a large fraction of the vertices in the graph
 - "Large fraction" e.g. 90%

Clustering Coefficient

- The clustering coefficient of vertex v_i , $C(v_i)$, tells how clique-like the neighbourhood of v_i is
 - Let n_i be the number of neighbours of v_i and m_i the number of edges *between* the neighbours of v_i (v_i excluded)

$$C(v_i) = m_i / \binom{n_i}{2} = \frac{2m_i}{n_i(n_i - 1)}$$

- Well-defined only for v_i with at least two neighbours
 - For others, let $C(v_i) = 0$
- The clustering coefficient of the graph is the average clustering coefficient of the vertices:

$$C(G) = n^{-1} \Sigma_i C(v_i)$$

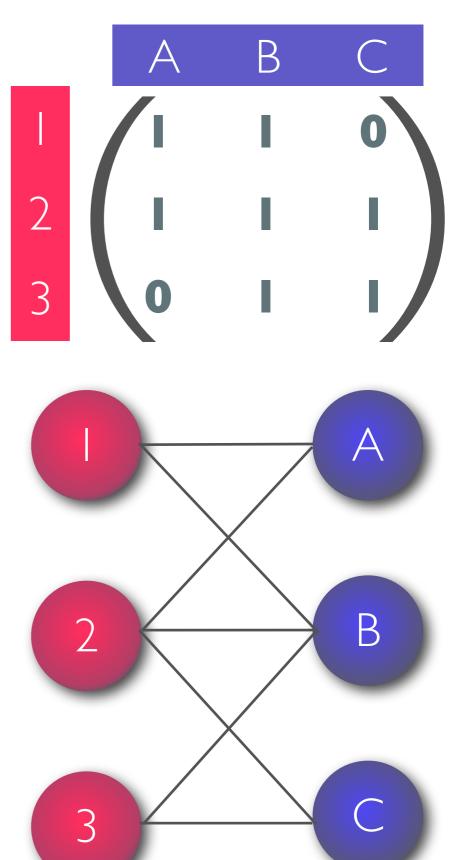
Graph Mining

- Graphs can explain relations between objects
- Finding these relations is the task of graph mining
 - The type of the relation depends on the task
- Graph mining is an umbrella term that encompasses many different techniques and problems
 - Frequent subgraph mining
 - -Graph clustering
 - -Path analysis/building
 - Influence propagation

— ...

Example: Tiling Databases

- Binary matrices define a bipartite graph
- A tile is a biclique of that graph
- Tiling is the task of finding a minimum number of bicliques to cover all edges of a bipartite graph
 - Or to find k bicliques to cover most of the edges



DTDM, WS 12/13 T II.Intro-15

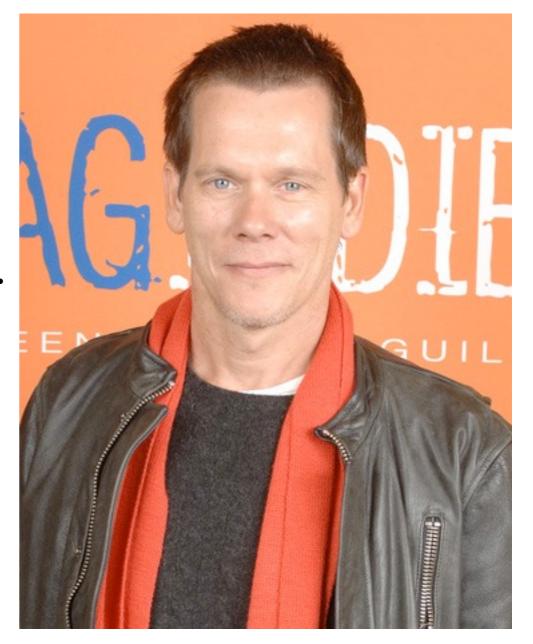
Example: The Characteristics of Erdős Graph

- Co-authorship graph of mathematicians
- 401K authors (vertices), 676K co-authorships (edges)
 - Median degree = 1, mean = 3.36, standard deviation = 6.61
- Large connected component of 268K vertices
 - The radius of the component is 12 and diameter 23
 - Two vertices with eccentricity 12
 - Average distance between two vertices 7.64 (based on a sample)
 - "Eight degrees of separation"
- The clustering coefficient is 0.14

http://www.oakland.edu/enp/

Centrality

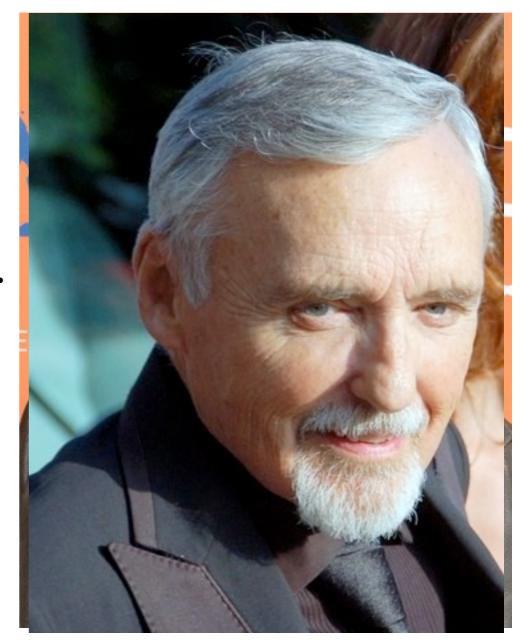
- Six degrees of Kevin Bacon
 - -"Every actor is related to Kevin Bacon by no more than 6 hops"
 - -Kevin Bacon has acted with many, that have acted with many others, that have acted with many others...
- That makes Kevin Bacon a *centre* of the co-acting graph
 - Although he's not the centre: the average distance to him is 2.994
 but to Dennis Hopper it is only 2.802



http://oracleofbacon.org

Centrality

- Six degrees of Kevin Bacon
 - -"Every actor is related to Kevin Bacon by no more than 6 hops"
 - -Kevin Bacon has acted with many, that have acted with many others, that have acted with many others...
- That makes Kevin Bacon a *centre* of the co-acting graph
 - Although he's not the centre: the average distance to him is 2.994
 but to Dennis Hopper it is only 2.802



Degree and Eccentricity Centrality

- Centrality is a function $c: V \to \mathbb{R}$ that induces a total order in V
 - The higher the centrality of a vertex, the more important it is
- In degree centrality $c(v_i) = d(v_i)$, the degree of the vertex
- In eccentricity centrality the least eccentric vertex is the most central one, $c(v_i) = 1/e(v_i)$
 - The lest eccentric vertex is *central*
 - The most eccentric vertex is *peripheral*

Closeness Centrality

• In **closeness centrality** the vertex with least distance to *all other* vertices is the centre

$$c(v_i) = \left(\sum_j d(v_i, v_j)\right)^{-1}$$

- In eccentricity centrality we aim to minimize the maximum distance
- In closeness centrality we aim to minimize the average distance
 - This is the distance used to measure the centre of Hollywood

Betweenness Centrality

- The betweenness centrality measures the number of shortest paths that travel through v_i
 - -Measures the "monitoring" role of the vertex
 - -"All roads lead to Rome"
- Let η_{jk} be the number of shortest paths between v_j and v_k and let $\eta_{jk}(v_i)$ be the number of those that include v_i
 - $-\operatorname{Let}\,\gamma_{jk}(\nu_i)=\eta_{jk}(\nu_i)/\eta_{jk}$
 - -Betweenness centrality is defined as

$$c(v_i) = \sum_{\substack{j \neq i \\ k > j}} \sum_{\substack{k \neq i \\ k > j}} \gamma_{jk}$$

Prestige

- In **prestige**, the vertex is more central if it has many incoming edges from other vertices of high prestige
 - -A is the adjacency matrix of the directed graph G
 - -p is *n*-dimensional vector giving the prestige of the vertices

$$-\boldsymbol{p} = \boldsymbol{A}^T \boldsymbol{p}$$

-Starting from an initial prestige vector p_0 , we get

$$p_k = A^T p_{k-1} = A^T (A^T p_{k-2}) = (A^T)^2 p_{k-2} = (A^T)^3 p_{k-3} = \dots$$

= $(A^T)^k p_0$

- Vector p converges to the dominant eigenvector of A^T
 - Under some assumptions

PageRank

- PageRank uses normalized prestige to rank web pages
- If there is a vertex with no out-going edges, the prestige cannot be computed
 - PageRank evades this problem by adding a small probability of a random jump to another vertex
 - Random Surfer model
- Computing the PageRank is equivalent to computing the stationary distribution of a certain Markov chain
 - Which is again equivalent to computing the dominant eigenvector

Graph Properties

- Several real-world graphs exhibit certain characteristics
 - -Studying what these are and explaining why they appear is an important area of network research
- As data miners, we need to understand the consequences of these characteristics
 - -Finding a result that can be explained merely by one of these characteristics is not interesting
- We also want to *model* graphs with these characteristics

Small-World Property

- A graph G is said to exhibit a **small-world property** if its average path length scales logarithmically, $\mu_L \propto \log n$
 - The six degrees of Kevin Bacon is based on this property
 - Also the Erdős number
 - How far a mathematician is from Hungarian combinatorist Paul Erdős
 - A radius of a large, connected mathematical co-authorship network (268K authors) is 12 and diameter 23

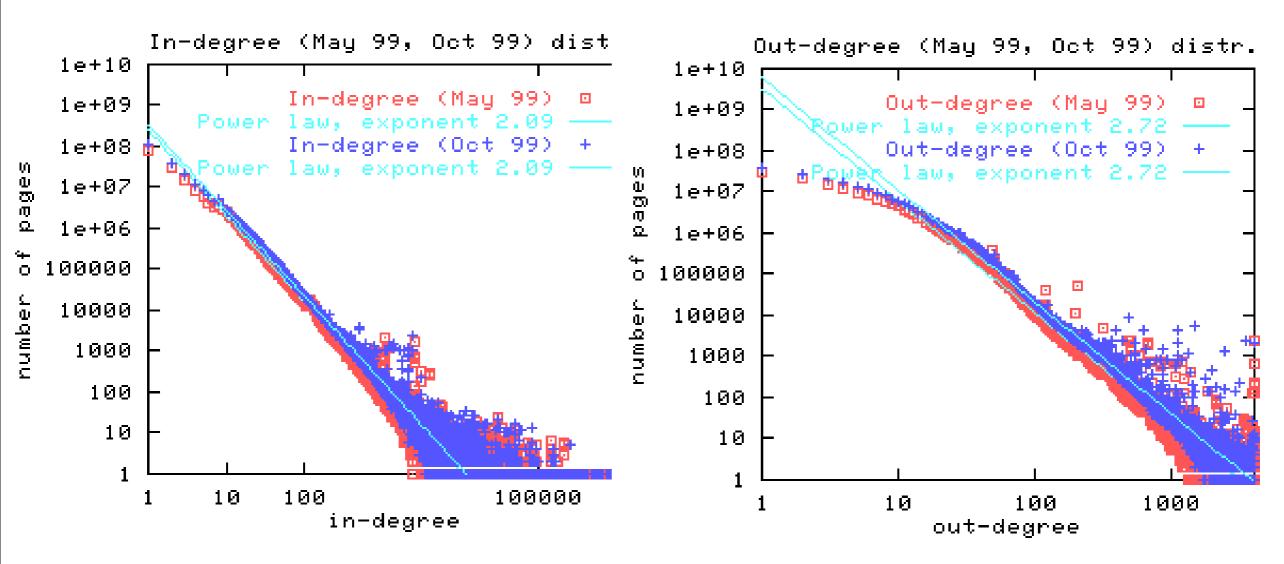
Scale-Free Property

- The degree distribution of a graph is the distribution of its vertex degrees
 - -How many vertices with degree 1, how many with degree 2, etc.
 - -f(k) is the number of edges with degree k
- A graph is said to exhibit scale-free property if $f(k) \propto k^{-\gamma}$
 - So-called power-law distribution
 - -Majority of vertices have small degrees, few have very high degrees
 - Scale-free: $f(ck) = \alpha(ck)^{-\gamma} = (\alpha c^{-\gamma})k^{-\gamma} \propto k^{-\gamma}$

Example: WWW Links

In-degree

Out-degree



Broder et al. Graph structure in the web. WWW'00

$$s = 2.09$$

$$s = 2.72$$

Clustering Effect

- A graph exhibits **clustering effect** if the distribution of average clustering coefficient (per degree) follow the power law
 - If C(k) is the average clustering coefficient of all vertices of degree k, then $C(k) \propto k^{-\gamma}$
- The vertices with small degrees are part of highly clustered areas (high clustering coefficient) while "hub vertices" have smaller clustering coefficients

Random Graph Models

- Begin able to generate random graphs that exhibit these properties is very useful
 - They tell us something how such graphs have come to be
 - They let us study what we find in an "average" graph
 - With some graph models, we can also make analytical studies of the properties
 - What to expect

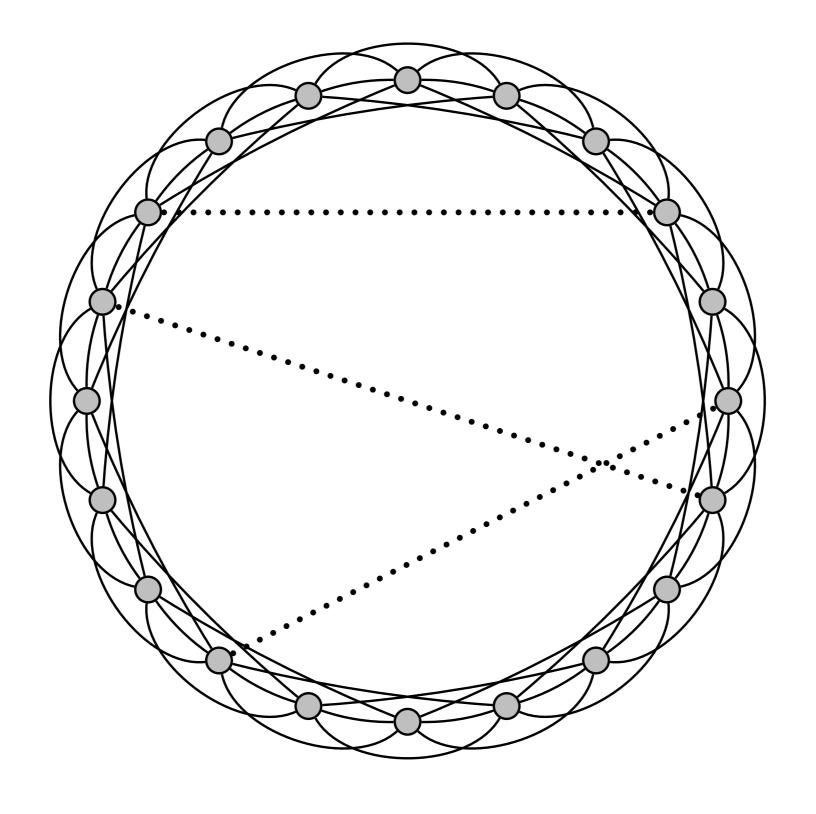
Erdős–Rényi Graphs

- Two parameters: number of vertices *n* and number of edges *m*
- Samples uniformly from all such graphs
 - Sample m edges u.a.r. without replacement
- Average degree is 2m/n
- Degree distribution follows Poisson, not power law
- Clustering coefficient is uniform
- Exhibits small-world property

Watts-Strogatz Graphs

- Aims for high local clustering
- Starts with vertices in a ring, each connected to *k* neighbours left and right
- Adds random perturbations
 - Edge rewiring: move the end-point of random edges to random vertices
 - Edge shortcuts: add random edges between vertices
- Not scale-free
- High clustering coefficient for small amounts of perturbations
- Small diameter with some amount of perturbations

Example



Barabási–Albert Graphs

- Mimics dynamic evolution of graphs
 - Preferential attachment
- Starts with a regular graph
- At each time step, adds a new vertex u
 - -From u, adds q edges to other vertices
 - Vertices are sampled proportional to their degree
 - High degree, high probability to get more edges
- Degree distribution follows power law (with $\gamma = 3$)
- Ultra-small world behaviour
- Very small clustering coefficient