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The MDL Principle – Revisited
• The Minimum Description Length (MDL) principle:

The best model is the one that leads to the best 
compression
–A formalization of ”simplest” in Occam’s Razor using bits

• In order to measure how well a model compresses, we 
need to consider two parts
–The explanation of the model itself (L(M))

–The explanation of the data given the model (L(D | M))

–This is so-called two-part (crude) MDL; in refined MDL we 
encode model and the data together
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The Kolmogorov Complexity
• The length of the shortest program that produces 

some string x is the Kolmogorov complexity of x, 
K(x) 
–Depends on how the program itself is encoded 
•Only constant effect, usually ignored

– Program can obviously be a general program encoded with 
some input, but doesn’t have to be

• The optimum model (over all possible ones) is then 
the Kolmogorov program of the data
–Unfortunately, Kolmogorov complexity of a string (and 

hence the program to generate it) is uncomputable

4



DTDM, WS 12/13 T I.2-6 November 2012

The Uncomputability of K(x)
• Proposition. For any integer n, there is always a string x 

with K(x) > n
–Otherwise we could express infinite number of strings with 

finite number of programs
• Let P be a program that, given n, returns a string x with 

K(x) > n
• Let Q be a program that calls P with parameter c and 

returns what P returns
– Let c be such that c > C + log2(c), where C is the Kolmogorov 

complexity of P and Q 
• If x = Q(), then K(x) > c (output of P) and K(x) < c (can 

be described with P, Q, and c)
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The MDL Principle and Data Mining
• The MDL principle can be used to combat overfitting
–Overfitting: model explains the training data too well and 

doesn’t generalize to unseen data
–MDL presents a natural penalty to too complex models

• The MDL principle can be used to select the output
–Among many possible sets of results (models), select the 

one that compresses the data best
–Note: we must explain the whole data
•E.g. MDL does not allow lossy compression
•But we can circumvent this by having a lossy model and a 

correction term (error)
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Some Real-World Encodings 
• Let’s consider the following task: how to encode a 

binary n-by-m matrix
• Here’s 10000-by-10000 matrix with 5% 1s
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Encoding Integers
• First we have to encode the size of the matrix (n, m)
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Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
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Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?
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Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in 
unary, add 0, and then the binary representation of n 
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Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in 
unary, add 0, and then the binary representation of n 
–This takes 2log2(n)+1 bits
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Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in 
unary, add 0, and then the binary representation of n 
–This takes 2log2(n)+1 bits

• Third attempt: Iteratively re-encode the magnitude 
using a refined approach
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Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in 
unary, add 0, and then the binary representation of n 
–This takes 2log2(n)+1 bits

• Third attempt: Iteratively re-encode the magnitude 
using a refined approach
–E.g. Elias Delta coding that takes 

bits
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Encoding the Values: Indices
• If we have a sparse matrix, we can encode the 

locations of 1s by sending the index pairs
• As we know n and m, we can encode the row in 

log2(n) bits and column in log2(m) bits
–Or we could again use the Elias Delta, but it can be less 

effective now that we know the size
• Consequently, we need nnz(M)(log2(n) + log2(m)) bits
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Interlude: Shannon Entropy
• The Shannon entropy of a discrete random variable X 

with values {x1, x2, …, xn} and probability mass 
function P is 

–The binary entropy function for Bernoulli(p) r.v. is 

• Assuming a string of i.i.d. random variables, the 
entropy of the string is a lower bound to the amount of 
bits needed to represent a symbol in the string exactly 
(lossless compression) in the limit
–Entropy is maximal with uniform distributions
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Encoding the Values: Prefix Codes
• We can leverage the entropy to give good codes
• Consider the matrix as an nm-dimensional binary 

vector
– If p = |D|/mn is the fraction of 1s in the data, we should 

need only –|D|log2(p) – (mn – |D|)log2(1 – p) bits
•Assuming we can use fractional bits…

• To be able to decode the data, we have to use prefix 
codes
– In prefix codes, every symbol is encoded using a string that 

has no prefixes that are valid encodings
•E.g. Huffman coding
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Encoding the Values: Numbering
• We again treat the matrix as a long binary vector
• Count the number of 1s (denote by k)
• Enumerate all nm-dimensional binary vectors with k 

1s (in lexicographical order, say)
–There are      such vectors

• Send the number (encoded in binary)
–This takes                  bits plus log2(n) for encoding k 
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Encodings with the example data
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Encoding	
  length	
  (rounded)

Indices

Prefix	
  Code
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The Krimp Algorithm
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• The Krimp algorithm utilises the MDL principle to 
select a set of itemsets to express the data
–Can be used either with all itemsets of data
–Or just those above some minimum frequency

• The Krimp covers transactions using itemsets
–All items in all transactions must be covered
–No overlapping of coverings is allowed

• The Krimp always returns all singleton items
–Guarantees the whole data can be explained (covered)
–The singletons can be interpret as noise

Vreeken, van Leeuwen & Siebes 2011
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Encoding the Data: Code Tables
• To encode the data, Krimp uses a code table
• A code table is a table with two columns, key and 

code
–To compress, we replace keys with their codes and vice 

versa to decompress
–Here, keys are itemsets and codes are the compressed 

representations of them
• The code table in Krimp always contains every 

singleton itemset
–But not all of them have to have a code assigned
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An Example Code Table

16
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Encoding with the Code Table

17

• The rows in the code table are ordered descending:
– First on size of the itemset, then on the support, and finally 

lexicographically
– Singletons are always at the bottom

• The keys used must not overlap
– For performance reasons

• The keys to cover transaction t using code table CT 
are selected as follows:
– Pick the first key X in CT for which X ⊆ t (call this Y)
– If t \ Y is empty, return Y, else return Y together with the 

output of a recursive call using t \ Y
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Example

18
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Example of a Database Cover

19
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Example of a Final Code Table
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How to Compute the Codes

21

• For itemset X ∈ CT, define usage(X) to be the number 
of transactions we used X to cover
–Define the probability of X, P(X), to be the fraction of 

usage(X) of the sum of usage(Y)’s over all Y ∈ CT, 
P(X) = usage(X) / ∑Y ∈ CT usage(Y)

• The optimal code to code distribution P assigns a 
code code(X) to X ∈ CT with length 
L(code(X)) = –log(P(X))
–We can use prefix codes for (near) optimal coding
–But we don’t need to realize any coding, we only need the 

length
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The Length of a Code Table
• The code table is our model, which we need to encode
–The prefix codes are ready as-is

• To encode the itemsets, we first encode the singletons 
using just their frequencies
–Called standard code table, ST
–We can just give the codes in order
•Or we can ignore them, as they are in every code table

• Then we encode the itemsets with non-zero usage 
using ST
• Therefore: 

22
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The Length of the Data and Everything
• The length of a transaction is

• The length of the whole data is

• The overall description length then is

23

L(t | CT) = Â
X2cover(t)

L(code(X))
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The Krimp Algorithm
• Problem. Given a data, find the code table that 

minimizes the description length.
• Quite a large search space
–Because we have to have the singletons, the number of 

possible keys in code table is

– For one transaction over I, the number of possible ways to 
cover it is

24
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Krimp: A Sketch
1. Cover everything with singletons
2. Consider itemsets one-by-one

2.1. Add the itemset to the code table
2.2. If encoding length reduces, keep it, else discard it

• Questions
– In which order do we consider the itemsets?
–How the itemsets are used to cover the data?
– Should we prune the code table after adding a new itemset?

25
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Some Details
• The order to consider itemsets
–Descending on support, then size, then lexicographically
•High-support itemsets are intuitively the ones with short codes

• How to cover
–Keep the itemsets in code table sorted by length (then 

support)
–After adding a new itemset, re-compute the cover for the 

data (and the coding lengths)
• Finally, we can do some pruning after adding a new 

itemset to the code table
–Not straight forward; see the paper
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Time Complexity
• If f is the number of frequent itemsets, d is the 

number of transactions and i is the number of items, 
Krimp without pruning takes

–Quadratic in the number of frequent itemsets!
• But that estimates the size of the code table by f
– If code table is of constant size, we get

27
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Some Results

28

KRIMP in Action
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More Results

29

KRIMP in Action

Dataset |  | | | | CT\| L%

Accidents 340183 2881487 467 55.1

Adult 48842  58461763 1303 24.4

Letter Recog. 20000 580968767 1780 35.7

Mushroom 8124 5574930437 442 24.4

Wine 178 2276446 63 77.4
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Essay Topics
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• Choose one of the following
– The hints below give you idea how to approach the question; you should cover 

other questions than just those (and you don’t necessarily cover all of them)
– Justify your opinions and give arguments!

• 0/1 Tiling versus Density Tiling
– Pros and cons of both methods? When they can be used? When they should be 

used? When one is better than the other? Can we use one to get other? Better 
algorithms?

• 0/1 Tiling versus Krimp
– How the approaches differ? Pros and cons? Can we use parts of one in other 

(e.g. MDL in tiling? Set Cover in Krimp?)? 
•  MDL versus Bayesian Information Criterion
– Requires extra reading
– Differences/similarities? Pros and cons? When one is better than the other? 

Which one should I use?
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Some feedback from the 1st Essays
• Overall good essays, but…
–Remember to give good justification for your arguments
•Tell what others said and why and then tell what you think and 

why
•Are these others reliable? Why? Why not?

–Remember to cite! (within the text)
•On-line sources require: Author (if known), title, URL, and 

access date
•Google queries are not valid sources!

–Think big and think small!
•All of you seemed to think data mining as a bag of tricks…
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