
Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

T I.2-

Topic I.2: Pattern Sets that
Compress

1

DTDM, WS 12/13 6 November 2012 T I.2-

TI.2 Pattern Sets that Compress
1. The MDL Principle Revisited

1.1. The Principle & Motivation
1.2. Kolmogorov Complexity

2. Some Real-World Encodings
2.1. Shannon Entropy

3. The Krimp Algorithm
3.1. Motivation
3.2. Code Tables and Encodings
3.3. The Algorithm
3.4. Some comparisons

2

DTDM, WS 12/13 T I.2-6 November 2012

The MDL Principle – Revisited
• The Minimum Description Length (MDL) principle:

The best model is the one that leads to the best
compression
–A formalization of ”simplest” in Occam’s Razor using bits

• In order to measure how well a model compresses, we
need to consider two parts
–The explanation of the model itself (L(M))

–The explanation of the data given the model (L(D | M))

–This is so-called two-part (crude) MDL; in refined MDL we
encode model and the data together

3

DTDM, WS 12/13 T I.2-6 November 2012

The Kolmogorov Complexity
• The length of the shortest program that produces

some string x is the Kolmogorov complexity of x,
K(x)
–Depends on how the program itself is encoded
•Only constant effect, usually ignored

– Program can obviously be a general program encoded with
some input, but doesn’t have to be

• The optimum model (over all possible ones) is then
the Kolmogorov program of the data
–Unfortunately, Kolmogorov complexity of a string (and

hence the program to generate it) is uncomputable

4

DTDM, WS 12/13 T I.2-6 November 2012

The Uncomputability of K(x)
• Proposition. For any integer n, there is always a string x

with K(x) > n
–Otherwise we could express infinite number of strings with

finite number of programs
• Let P be a program that, given n, returns a string x with

K(x) > n
• Let Q be a program that calls P with parameter c and

returns what P returns
– Let c be such that c > C + log2(c), where C is the Kolmogorov

complexity of P and Q
• If x = Q(), then K(x) > c (output of P) and K(x) < c (can

be described with P, Q, and c)
5

DTDM, WS 12/13 T I.2-6 November 2012

The MDL Principle and Data Mining
• The MDL principle can be used to combat overfitting
–Overfitting: model explains the training data too well and

doesn’t generalize to unseen data
–MDL presents a natural penalty to too complex models

• The MDL principle can be used to select the output
–Among many possible sets of results (models), select the

one that compresses the data best
–Note: we must explain the whole data
•E.g. MDL does not allow lossy compression
•But we can circumvent this by having a lossy model and a

correction term (error)

6

DTDM, WS 12/13 T I.2-6 November 2012

Some Real-World Encodings
• Let’s consider the following task: how to encode a

binary n-by-m matrix
• Here’s 10000-by-10000 matrix with 5% 1s

7

DTDM, WS 12/13 T I.2-6 November 2012

Encoding Integers
• First we have to encode the size of the matrix (n, m)

8

DTDM, WS 12/13 T I.2-6 November 2012

Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers

8

DTDM, WS 12/13 T I.2-6 November 2012

Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

8

DTDM, WS 12/13 T I.2-6 November 2012

Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in
unary, add 0, and then the binary representation of n

8

DTDM, WS 12/13 T I.2-6 November 2012

Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in
unary, add 0, and then the binary representation of n
–This takes 2log2(n)+1 bits

8

DTDM, WS 12/13 T I.2-6 November 2012

Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in
unary, add 0, and then the binary representation of n
–This takes 2log2(n)+1 bits

• Third attempt: Iteratively re-encode the magnitude
using a refined approach

8

DTDM, WS 12/13 T I.2-6 November 2012

Encoding Integers
• First we have to encode the size of the matrix (n, m)
• First attempt: use 32 bit integers
–But what if n > 232?

• Second attempt: First encode the length of log2(n) in
unary, add 0, and then the binary representation of n
–This takes 2log2(n)+1 bits

• Third attempt: Iteratively re-encode the magnitude
using a refined approach
–E.g. Elias Delta coding that takes

bits

8

blog

2

(n)c+2blog

2

(blog

2

(n)c+1)c+1

DTDM, WS 12/13 T I.2-6 November 2012

Encoding the Values: Indices
• If we have a sparse matrix, we can encode the

locations of 1s by sending the index pairs
• As we know n and m, we can encode the row in

log2(n) bits and column in log2(m) bits
–Or we could again use the Elias Delta, but it can be less

effective now that we know the size
• Consequently, we need nnz(M)(log2(n) + log2(m)) bits

9

DTDM, WS 12/13 T I.2-6 November 2012

Interlude: Shannon Entropy
• The Shannon entropy of a discrete random variable X

with values {x1, x2, …, xn} and probability mass
function P is

–The binary entropy function for Bernoulli(p) r.v. is

• Assuming a string of i.i.d. random variables, the
entropy of the string is a lower bound to the amount of
bits needed to represent a symbol in the string exactly
(lossless compression) in the limit
–Entropy is maximal with uniform distributions

10

H(X) = E[� logP(X)] =
n

Â
i=1

P(xi) log

1

P(xi)

H
b

(p) =�p log

2

p� (1� p) log

2

(1� p)

DTDM, WS 12/13 T I.2-6 November 2012

Encoding the Values: Prefix Codes
• We can leverage the entropy to give good codes
• Consider the matrix as an nm-dimensional binary

vector
– If p = |D|/mn is the fraction of 1s in the data, we should

need only –|D|log2(p) – (mn – |D|)log2(1 – p) bits
•Assuming we can use fractional bits…

• To be able to decode the data, we have to use prefix
codes
– In prefix codes, every symbol is encoded using a string that

has no prefixes that are valid encodings
•E.g. Huffman coding

11

DTDM, WS 12/13 T I.2-6 November 2012

Encoding the Values: Numbering
• We again treat the matrix as a long binary vector
• Count the number of 1s (denote by k)
• Enumerate all nm-dimensional binary vectors with k

1s (in lexicographical order, say)
–There are such vectors

• Send the number (encoded in binary)
–This takes bits plus log2(n) for encoding k

12

log

2

��n
k
��

�n
k
�

DTDM, WS 12/13 T I.2-6 November 2012

Encodings with the example data

13

Encoding	
 length	
 (rounded)

Indices

Prefix	
 Code

Numbering

132932746

28648613

28648600

DTDM, WS 12/13 T I.2-6 November 2012

The Krimp Algorithm

14

• The Krimp algorithm utilises the MDL principle to
select a set of itemsets to express the data
–Can be used either with all itemsets of data
–Or just those above some minimum frequency

• The Krimp covers transactions using itemsets
–All items in all transactions must be covered
–No overlapping of coverings is allowed

• The Krimp always returns all singleton items
–Guarantees the whole data can be explained (covered)
–The singletons can be interpret as noise

Vreeken, van Leeuwen & Siebes 2011

DTDM, WS 12/13 T I.2-6 November 2012

Encoding the Data: Code Tables
• To encode the data, Krimp uses a code table
• A code table is a table with two columns, key and

code
–To compress, we replace keys with their codes and vice

versa to decompress
–Here, keys are itemsets and codes are the compressed

representations of them
• The code table in Krimp always contains every

singleton itemset
–But not all of them have to have a code assigned

15

DTDM, WS 12/13 T I.2-6 November 2012

An Example Code Table

16

DTDM, WS 12/13 T I.2-6 November 2012

Encoding with the Code Table

17

• The rows in the code table are ordered descending:
– First on size of the itemset, then on the support, and finally

lexicographically
– Singletons are always at the bottom

• The keys used must not overlap
– For performance reasons

• The keys to cover transaction t using code table CT
are selected as follows:
– Pick the first key X in CT for which X ⊆ t (call this Y)
– If t \ Y is empty, return Y, else return Y together with the

output of a recursive call using t \ Y

DTDM, WS 12/13 T I.2-6 November 2012

Example

18

A	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 D

C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

A

B

C

D

E

Itemset Usage

0

0

0

0

0

0

0

0

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

Transaction t

DTDM, WS 12/13 T I.2-6 November 2012

Example

18

A	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 D

C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

A

B

C

D

E

Itemset Usage

0

0

0

0

0

0

0

0

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

Transaction t

DTDM, WS 12/13 T I.2-6 November 2012

Example

18

A	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 D

C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

A

B

C

D

E

Itemset Usage

0

0

0

0

0

0

0

0

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

Transaction t

+ 1
Cover of t

C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

DTDM, WS 12/13 T I.2-6 November 2012

Example

18

A	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 D

C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

A

B

C

D

E

Itemset Usage

0

0

0

0

0

0

0

B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E

Transaction t

Cover of t

C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E+ 1

1

B

DTDM, WS 12/13 T I.2-6 November 2012

Example of a Database Cover

19

DTDM, WS 12/13 T I.2-6 November 2012

Example of a Final Code Table

20

DTDM, WS 12/13 T I.2-6 November 2012

How to Compute the Codes

21

• For itemset X ∈ CT, define usage(X) to be the number
of transactions we used X to cover
–Define the probability of X, P(X), to be the fraction of

usage(X) of the sum of usage(Y)’s over all Y ∈ CT,
P(X) = usage(X) / ∑Y ∈ CT usage(Y)

• The optimal code to code distribution P assigns a
code code(X) to X ∈ CT with length
L(code(X)) = –log(P(X))
–We can use prefix codes for (near) optimal coding
–But we don’t need to realize any coding, we only need the

length

DTDM, WS 12/13 T I.2-6 November 2012

The Length of a Code Table
• The code table is our model, which we need to encode
–The prefix codes are ready as-is

• To encode the itemsets, we first encode the singletons
using just their frequencies
–Called standard code table, ST
–We can just give the codes in order
•Or we can ignore them, as they are in every code table

• Then we encode the itemsets with non-zero usage
using ST
• Therefore:

22

L(CT) = Â
X2CT

usage(X) 6=0

(LST(X)+LCT(X))

DTDM, WS 12/13 T I.2-6 November 2012

The Length of the Data and Everything
• The length of a transaction is

• The length of the whole data is

• The overall description length then is

23

L(t | CT) = Â
X2cover(t)

L(code(X))

L(D | CT) = Â
t2D

L(t | CT)

L(D,CT) = L(CT)+L(D | CT)

DTDM, WS 12/13 T I.2-6 November 2012

The Krimp Algorithm
• Problem. Given a data, find the code table that

minimizes the description length.
• Quite a large search space
–Because we have to have the singletons, the number of

possible keys in code table is

– For one transaction over I, the number of possible ways to
cover it is

24

2|I |�|I |�1

Â
k=0

✓
2|I |� |I |�1

k

◆
= 22|I |�|I |�1

2|I |�|I |�1

Â
k=0

✓
2|I |� |I |�1

k

◆
⇥ (k+ |I|)!

DTDM, WS 12/13 T I.2-6 November 2012

Krimp: A Sketch
1. Cover everything with singletons
2. Consider itemsets one-by-one

2.1. Add the itemset to the code table
2.2. If encoding length reduces, keep it, else discard it

• Questions
– In which order do we consider the itemsets?
–How the itemsets are used to cover the data?
– Should we prune the code table after adding a new itemset?

25

DTDM, WS 12/13 T I.2-6 November 2012

Some Details
• The order to consider itemsets
–Descending on support, then size, then lexicographically
•High-support itemsets are intuitively the ones with short codes

• How to cover
–Keep the itemsets in code table sorted by length (then

support)
–After adding a new itemset, re-compute the cover for the

data (and the coding lengths)
• Finally, we can do some pruning after adding a new

itemset to the code table
–Not straight forward; see the paper

26

DTDM, WS 12/13 T I.2-6 November 2012

Time Complexity
• If f is the number of frequent itemsets, d is the

number of transactions and i is the number of items,
Krimp without pruning takes

–Quadratic in the number of frequent itemsets!
• But that estimates the size of the code table by f
– If code table is of constant size, we get

27

O
�

f log f + f ⇥ (d f i+ f)
�

O(f log f +d f i)

DTDM, WS 12/13 T I.2-6 November 2012

Some Results

28

KRIMP in Action

DTDM, WS 12/13 T I.2-6 November 2012

More Results

29

KRIMP in Action

Dataset |  | | | | CT\| L%

Accidents 340183 2881487 467 55.1

Adult 48842 58461763 1303 24.4

Letter Recog. 20000 580968767 1780 35.7

Mushroom 8124 5574930437 442 24.4

Wine 178 2276446 63 77.4

DTDM, WS 12/13 T I.2-6 November 2012

Essay Topics

30

• Choose one of the following
– The hints below give you idea how to approach the question; you should cover

other questions than just those (and you don’t necessarily cover all of them)
– Justify your opinions and give arguments!

• 0/1 Tiling versus Density Tiling
– Pros and cons of both methods? When they can be used? When they should be

used? When one is better than the other? Can we use one to get other? Better
algorithms?

• 0/1 Tiling versus Krimp
– How the approaches differ? Pros and cons? Can we use parts of one in other

(e.g. MDL in tiling? Set Cover in Krimp?)?
• MDL versus Bayesian Information Criterion
– Requires extra reading
– Differences/similarities? Pros and cons? When one is better than the other?

Which one should I use?

DTDM, WS 12/13 T I.2-6 November 2012

Some feedback from the 1st Essays
• Overall good essays, but…
–Remember to give good justification for your arguments
•Tell what others said and why and then tell what you think and

why
•Are these others reliable? Why? Why not?

–Remember to cite! (within the text)
•On-line sources require: Author (if known), title, URL, and

access date
•Google queries are not valid sources!

–Think big and think small!
•All of you seemed to think data mining as a bag of tricks…

31

