Organizational matters

- Final exam: Tuesday, 19 February, at twelve o'clock noon
 - -Same room (might change later)
- Re-exam: Tuesday, 19 March, at twelve o'clock noon
- Guideline on returning the essay now on-line
 - Your name, matriculation number & e-mail address **must** be in every essay
 - Also essay topic must be clearly written
 - -Only PDFs
 - -Please start the e-mail subject with "DTDM" and have word "essay" somewhere in it

More organization

- Registration to the final exam in HISPOS
 - -DL: 4th of November
 - Can cancel until two weeks before final exam
 - Contact study office in case of problems
- The lecture on 27th of November might get cancelled
 - Will postpone the schedule by one week
 - Will be confirmed next week w/ more info about changes in the schedule

Topic I: Pattern Set Mining

Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13

Introduction to Pattern (Set) Mining

- 1. What is Pattern Mining
- 2. Frequent Itemsets
 - 2.1. Downwards closedness property
 - 2.2. The Apriori Algorithm
- 3. The Flood of Itemsets
 - 3.1. Closed, Maximal & Non-Derivable Itemsets
- 4. Global and Local Data Mining

Z & M, Ch. 8 & 9; T, S & K, Ch. 6

Pattern Mining

- Pattern mining is about finding patterns from the data
- But what are the patterns?
 - -Frequent itemsets (method-oriented)
 - -Any repeated (or anomalous) activity in the data
- US National Research Council says
 - -Pattern-based data mining looks for patterns (including anomalous data patterns) that might be associated with terrorist activity these patterns might be regarded as small signals in a large ocean of noise.

Frequent Itemsets

- Frequent itemsets are an important concept in pattern mining
 - Many other concepts are defined based on them
 - We'll meet these concepts a bit later
 - Yet, we'll see they're not without their faults...
- Mining all frequent itemsets was all the rage back in Nineties and early millenium
- An itemset is defined over transactional database

The market basket data

Items are: bread, milk, diapers, beer, and eggs

Transactions are: 1:{bread, milk}, 2:{bread, diapers, beer, eggs},

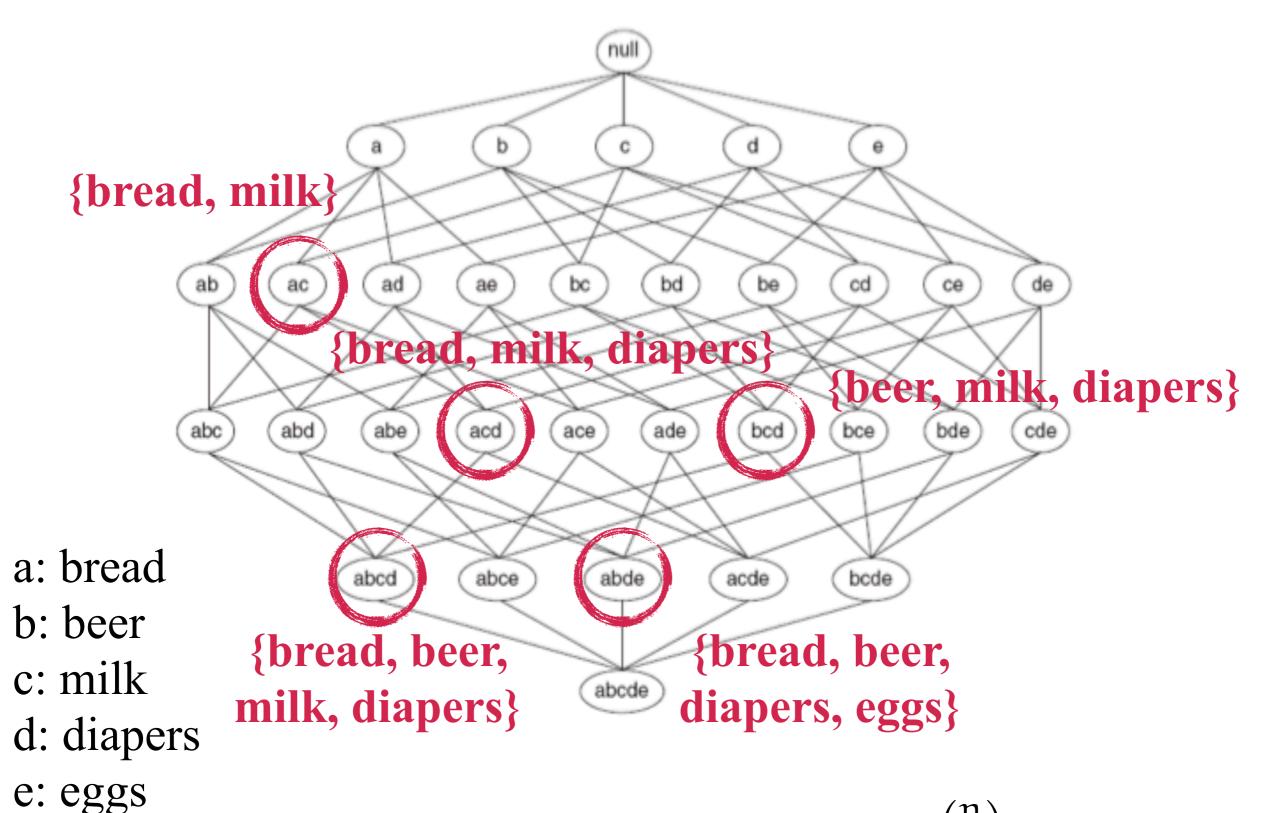
3:{milk, diapers, beer}, 4:{bread, milk, diapers, beer}, and

5:{bread, milk, diapers}

Transaction	IDs

TID	Bread	Milk	Diapers	Beer	Eggs
1	✓	✓			
2	✓		✓	✓	✓
3		✓	✓	✓	
4	✓	✓	✓	✓	
5	✓	✓	✓		

Transaction data as subsets



 2^n subsets of *n* items. Layer *k* has $\binom{n}{k}$ subsets.

Transaction data as binary matrix

TID	Bread	Milk	Diapers	Beer	Eggs
1	1	1	0	0	0
2	1	0	1	1	1
3	0	1	1	1	0
4	1	1	1	1	0
5	1	1	1	0	0

Any data that can be expressed as a binary matrix can be used.

Itemsets, support, and frequency

- An itemset is a set of items
 - -A transaction t is an itemset with associated transaction ID, t = (tid, I), where I is the set of items of the transaction
- A transaction t = (tid, I) contains itemset X if $X \subseteq I$
- The **support** of itemset X in database D is the number of transactions in D that contain it:

$$supp(X, D) = |\{t \in D : t \text{ contains } X\}|$$

- The **frequency** of itemset X in database D is its support relative to the database size, supp(X, D) / |D|
- Itemset is frequent if its frequency is above userdefined threshold minfreq Mine these

Frequent itemset example

TID	Bread	Milk	Diapers	Beer	Eggs
1	1	1	0	0	0
2	1	0	1	1	1
3	0	1	1	1	0
4	1	1	1	1	0
5	1	1	1	0	0

```
Itemset {Bread, Milk} has support 3 and frequency 3/5
Itemset {Bread, Milk, Eggs} has support and frequency 0
For minfreq = 1/2, frequent itemsets are:
{Bread}, {Milk}, {Diapers}, {Beer}, {Bread, Milk}, {Bread, Diapers}, {Milk, Diapers}, and {Diapers, Beer}
```

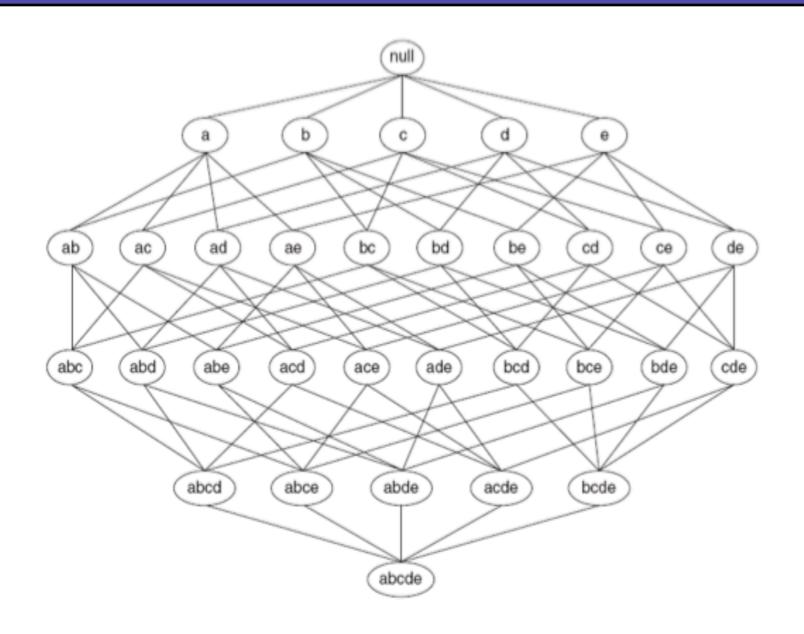
DTDM, WS 12/13 23 October 2012 T I.Intro-11

The Apriori Algorithm

- To find all the frequent itemsets we can just try all the possible itemsets
 - -But there are $2^{|I|}$ itemsets (|I| is the number of items)
- We can make this faster by reducing
 - the number of itemsets we consider
 - the number of transactions in the data
 - the number of comparisons of itemsets to transactions
- The Apriori algorithm reduces the number of itemsets we consider

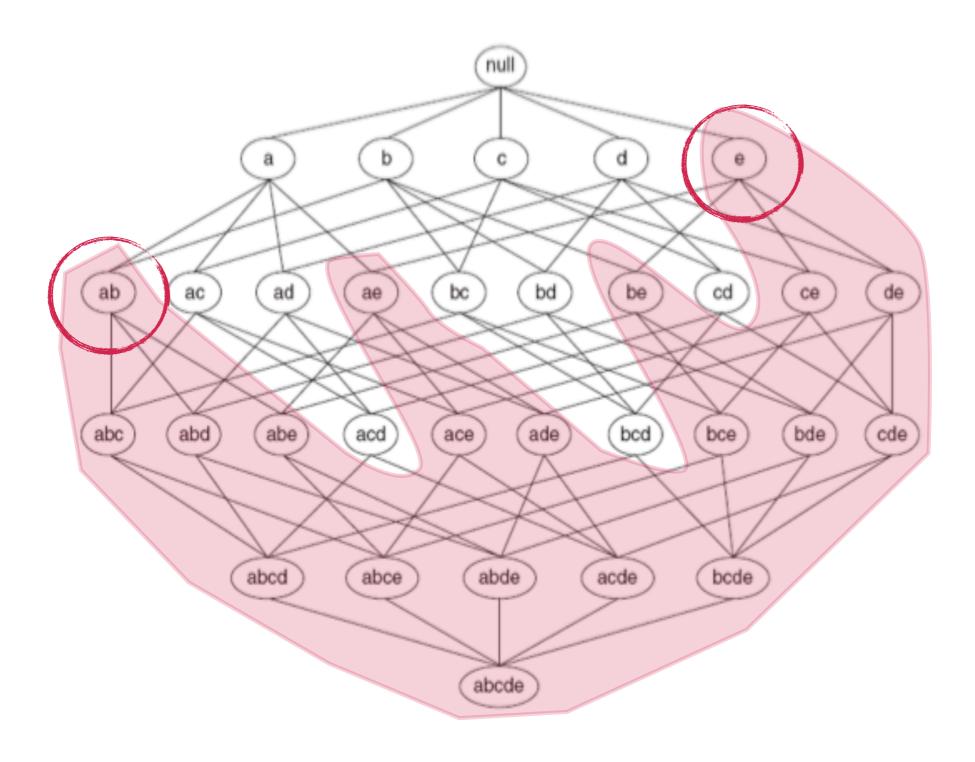
The Downwards Closedness Property

If X and Y are two itemsets such that $X \subset Y$, then $supp(Y) \leq supp(X)$.



Example of pruning itemsets

If {e} and {ab} are infrequent



Comments on Apriori

- The worst-case running time of Apriori is still $O(|I| \times |D| \times 2^{|I|})$
 - If all itemsets are frequent
- This can be improved to $O(|D| \times 2^{|I|})$ by storing the *tid*-lists of the itemsets together with them
 - The *Eclat* algorithm
 - -Better I/O, as we don't have to query the data base for the support of each candidate itemset
- Third well-known method is the FP-growth algorithm
- In practice all these algorithms are very fast unless the data is very dense or the threshold is too low

The Flood of Itemsets

Consider the following table:

tid	Α	В	С	D	Е	F	G	н
1	~	/	/	/	/			
2		✓	✓	✓	~	~	✓	
3			/	/	/	/	/	✓
4	•	✓			✓	~	✓	✓
5		/	/		/	/		✓
6	~			✓	✓	~		~
7	•	✓						

- How many itemsets with minimum frequency of 1/7 it has?
- 255!
- Still 31 frequent itemsets with 50% minfreq

- "Data mining is ... to summarize the data"
 - Hardly a summarization!

Closed and maximal itemsets

- Let F be the set of all frequent itemsets (w.r.t. some minfreq) in data D
- Frequent itemset $X \in F$ is **maximal** if it does not have any frequent supersets
 - That is, for all $Y \supset X$, $Y \notin F$
- Frequent itemset $X \in F$ is **closed** if it has no superset with the same frequency
 - That is, for all $Y \supset X$, supp(Y, D) < supp(X, D)
 - It can't be that supp(Y, D) > supp(X, D). Why?

Example of maximal frequent itemsets

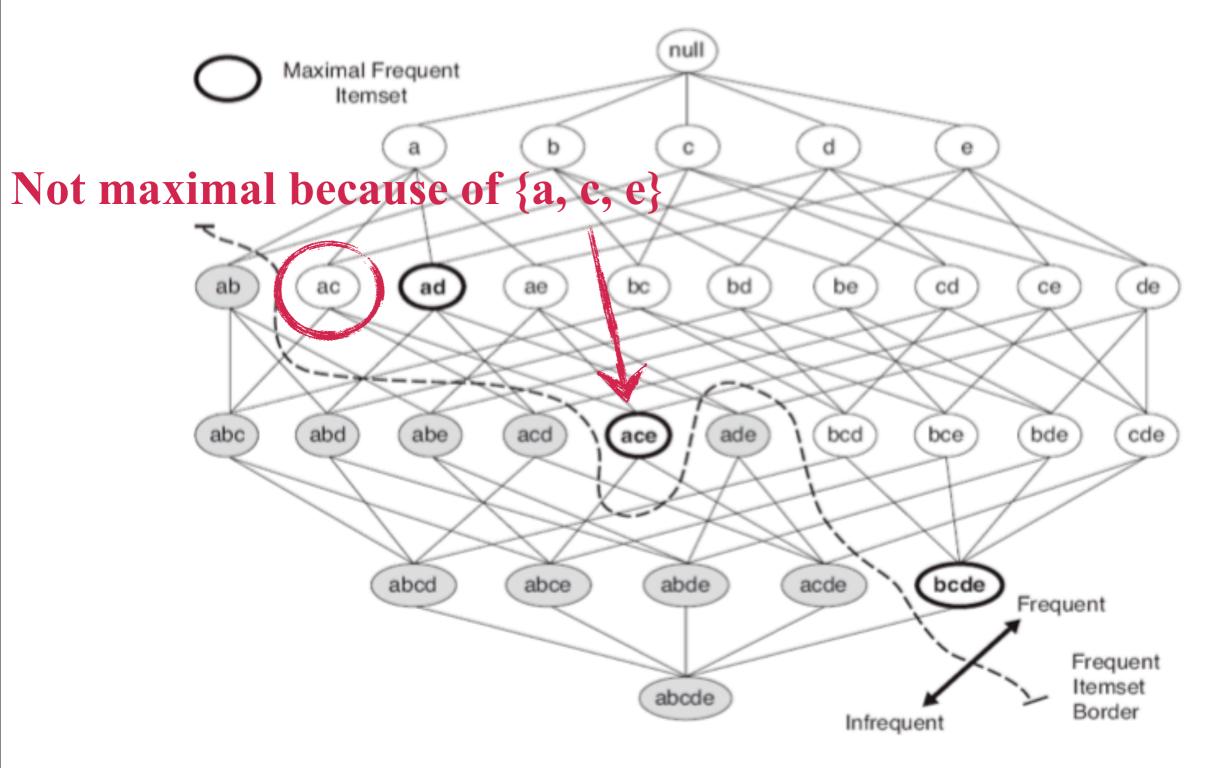


Figure 6.16. Maximal frequent itemset.

Example of closed frequent itemsets

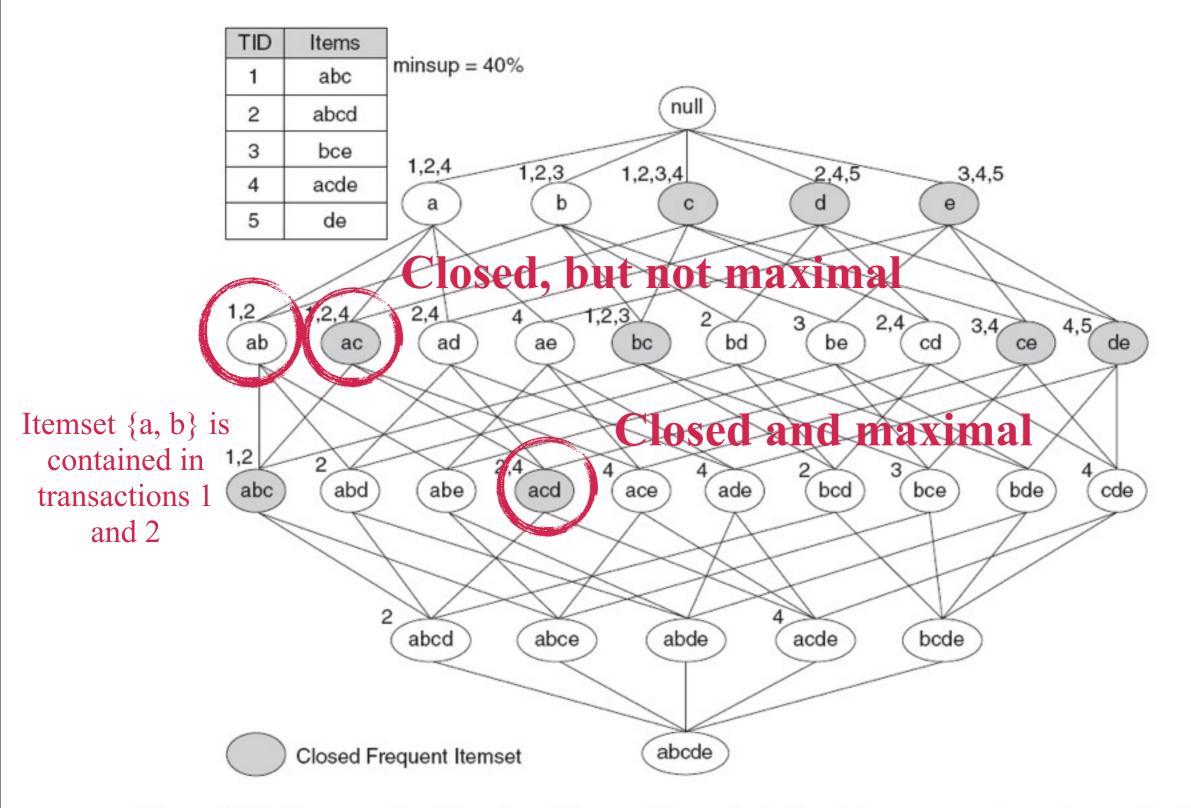
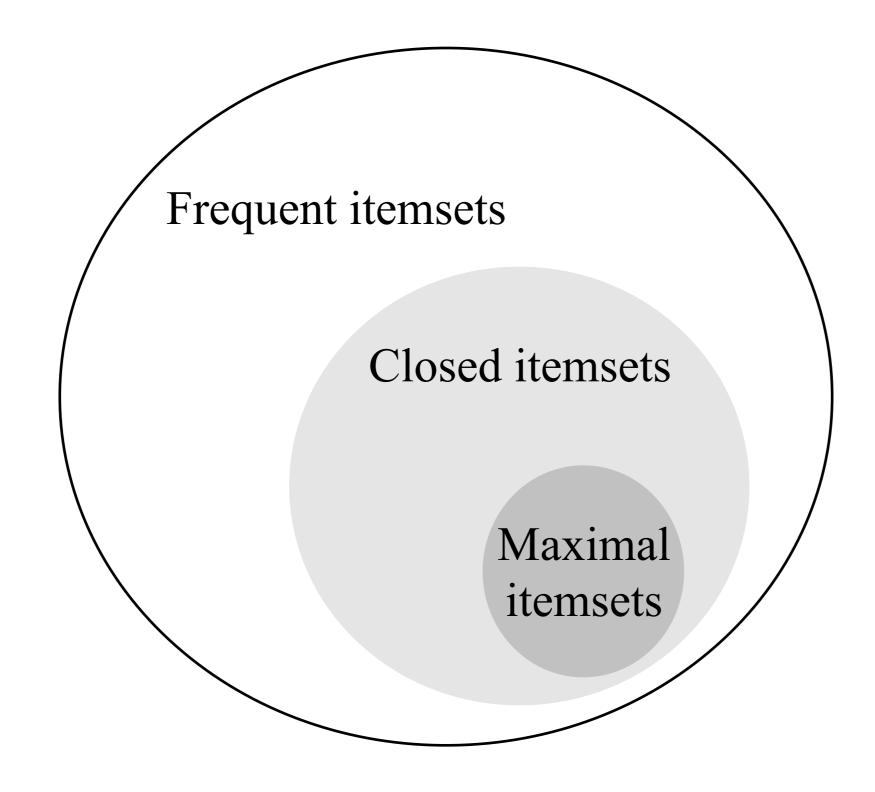


Figure 6.17. An example of the closed frequent itemsets (with minimum support count equal to 40%).

Closed & Maximal Itemsets

- 31 frequent itemsets with 50% minfreq
- 16 frequent *closed* itemsets with 50% minfreq
- 9 frequent *maximal* itemsets with 50% minfreq

Itemset taxonomy



Mining Maximal Itemsets

- The naïve approach:
 - Find all frequent itemsets and test each for maximality
 - When considering itemset X, if it is not a subset of existing maximal itemset Y, add it to set of *candidates* \mathcal{M}
 - If \mathcal{M} has itemset Y s.t. $Y \subset X$, remove Y
 - Time complexity $O(|\mathcal{M}|)$
- Better approach (GenMax)
 - Search the itemset lattice in depth-first order
 - Only add X to M when sure X is maximal
 - Can prune whole branches when they're already contained in some maximal itemset

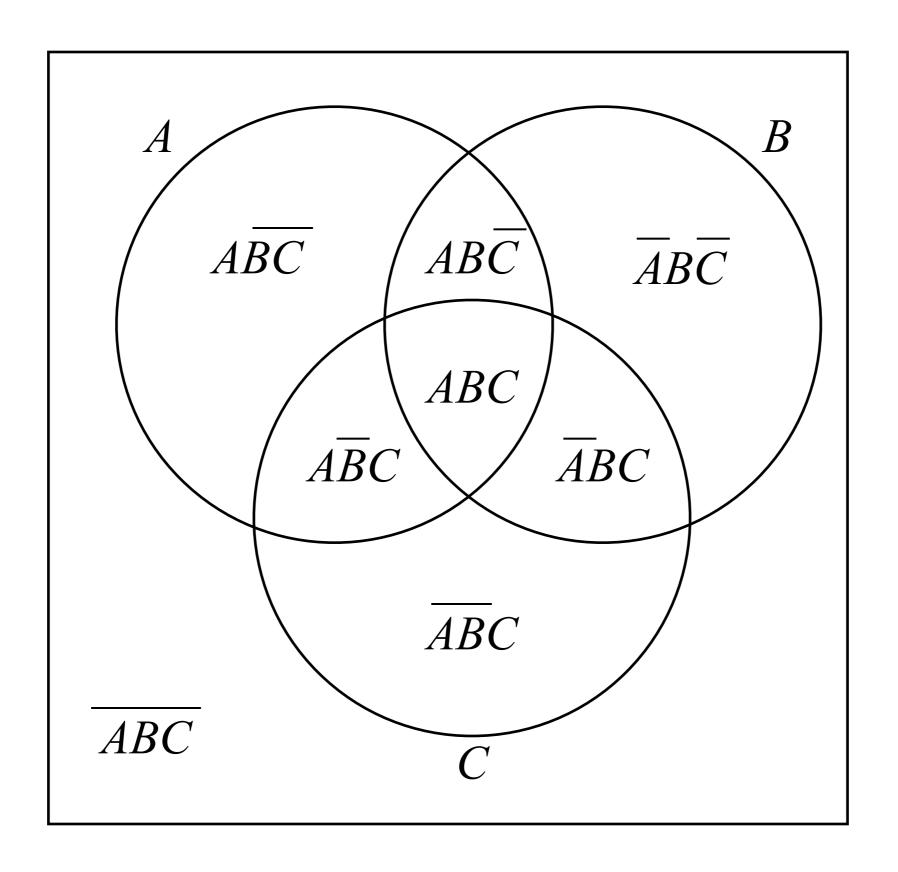
Mining Closed Itemsets

- Again, naïve approach is very expensive
- Three properties to reduce the itemsets to consider:
 - 1. If $\mathbf{t}(X_i) = \mathbf{t}(X_j)$, then $\mathbf{c}(X_i) = \mathbf{c}(X_j) = \mathbf{c}(X_i \cup X_j)$
 - $\mathbf{t}(X_i)$ = transactions of itemset X_i ; $\mathbf{c}(X_i)$ the *closure* of X_i
 - We can replace every X_i with $X_i \cup X_j$ and prune away the branch under X_j
 - 2. If $\mathbf{t}(X_i) \subset \mathbf{t}(X_j)$, then $\mathbf{c}(X_i) \neq \mathbf{c}(X_j)$ but $\mathbf{c}(X_i) = \mathbf{c}(X_i \cup X_j)$
 - We can replace every occurrence of X_i with $X_i \cup X_j$, but cannot prune X_j
 - 3. If $\mathbf{t}(X_i) \neq \mathbf{t}(X_j)$, then $\mathbf{c}(X_i) \neq \mathbf{c}(X_j) \neq \mathbf{c}(X_i \cup X_j)$
 - There's nothing we can do
- The CHARM algorithm uses these properties

Non-Derivable Itemsets

- Let F be the set of all frequent itemsets. Itemset $X \in F$ is **non-derivable** if we cannot derive its support from its subsets.
 - We can derive the support of X from its subsets if, by knowing the supports of all of the subsets of X we can compute the support of X
- If X is derivable, it doesn't add any new information
 - -Knowing just the non-derivable frequent itemsets, we can construct every frequent itemset
 - We only return itemsets that add new information on top of what we already knew

Generalized Itemsets



The Support of a Generalized Itemset

- A generalized itemset is an itemset of form $X\bar{Y}$
 - -All items is X and no items in Y
- The *support* of a generalized itemset $X\bar{Y}$ is the number of transactions that contain all the items in X, but no items in Y
- To compute the support of a generalized itemset *ABC*, we can
 - Take the support of A
 - -Remove the supports of AB and AC
 - -Add the support of ABC that was removed twice
 - $-supp(A\overline{BC}) = supp(A) supp(AB) supp(AC) + supp(ABC)$

The Inclusion-Exclusion Principle

- Let $X\bar{Y}$ be a generalized itemset and let $I = X \cup Y$
- Now $supp(X\bar{Y})$ can be expressed as a combination of supports of supersets $J \supseteq X$ such that $J \subseteq I$ using the inclusion-exclusion principle

$$supp(X\bar{Y}) = \sum_{X \subset J \subset I} (-1)^{|J \setminus X|} supp(J)$$

-Example:

$$supp(\overline{ABC}) = supp(\emptyset)$$

$$-supp(A) - supp(B) - supp(C)$$

$$+supp(AB) + supp(AC) + supp(BC)$$

$$-supp(ABC)$$

Support Bounds

- The inclusion-exclusion formula gives us bounds for the supports of itemsets in $X \cup Y$ that are supersets of X
 - All supports are non-negative!
 - $-supp(A\overline{BC}) = supp(A) supp(AB) supp(AC) + supp(ABC)$
 - $\geq 0 \text{ implies } supp(ABC) \geq -supp(A) + supp(AB) + supp(AC)$
 - This is a lower bound, but we can also get upper bounds
- In general the bounds for itemset I w.r.t. $X \subset I$:
 - $-\operatorname{If}|I\setminus X| \text{ is odd:} \quad supp(I) \leq \sum_{X\subseteq J\subseteq I} (-1)^{|I\setminus J|+1} supp(J)$
 - -If $|I \setminus X|$ is even: $supp(I) \ge \sum_{X \subseteq J \subseteq I} (-1)^{|I \setminus J|+1} supp(J)$

Deriving the Support

- Given the formula for the bounds, we can define
 - -the least upper bound lub(I) and
 - the *greatest lower bound glb(I)* for itemset *I*
- We know that $supp(I) \in [glb(I), lub(I)]$
- If glb(I) = lub(I), then we can compute supp(I) by just knowing its subsets' supports
 - -Hence, I is derivable
- Otherwise *I* is non-derivable

Local and Global Data Mining

- Frequent itemset mining is *local*
 - Each itemset is evaluated on its own, irrespective of other itemsets
- Purely local evaluation tends to yield to explosion of patterns
- In *global* data mining the patterns are evaluated given the other patterns we know and the data as a whole
 - -E.g. clustering
 - -Closed, maximal, and non-derivable itemsets move from local towards global, but don't care about the data
- Next two lectures: more global take on pattern mining