## Organizational matters

- Final exam: Tuesday, 19 February, at twelve o'clock noon
  - -Same room (might change later)
- Re-exam: Tuesday, 19 March, at twelve o'clock noon
- Guideline on returning the essay now on-line
  - Your name, matriculation number & e-mail address **must** be in every essay
  - Also essay topic must be clearly written
  - -Only PDFs
  - -Please start the e-mail subject with "DTDM" and have word "essay" somewhere in it

## More organization

- Registration to the final exam in HISPOS
  - -DL: 4th of November
  - Can cancel until two weeks before final exam
  - Contact study office in case of problems
- The lecture on 27th of November might get cancelled
  - Will postpone the schedule by one week
  - Will be confirmed next week w/ more info about changes in the schedule

# Topic I: Pattern Set Mining

Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13

# Introduction to Pattern (Set) Mining

- 1. What is Pattern Mining
- 2. Frequent Itemsets
  - 2.1. Downwards closedness property
  - 2.2. The Apriori Algorithm
- 3. The Flood of Itemsets
  - 3.1. Closed, Maximal & Non-Derivable Itemsets
- 4. Global and Local Data Mining

Z & M, Ch. 8 & 9; T, S & K, Ch. 6

# Pattern Mining

- Pattern mining is about finding patterns from the data
- But what are the patterns?
  - -Frequent itemsets (method-oriented)
  - -Any repeated (or anomalous) activity in the data
- US National Research Council says
  - -Pattern-based data mining looks for patterns (including anomalous data patterns) that might be associated with terrorist activity these patterns might be regarded as small signals in a large ocean of noise.

## Frequent Itemsets

- Frequent itemsets are an important concept in pattern mining
  - Many other concepts are defined based on them
  - We'll meet these concepts a bit later
  - Yet, we'll see they're not without their faults...
- Mining all frequent itemsets was all the rage back in Nineties and early millenium
- An itemset is defined over transactional database

#### The market basket data

Items are: bread, milk, diapers, beer, and eggs

Transactions are: 1:{bread, milk}, 2:{bread, diapers, beer, eggs},

3:{milk, diapers, beer}, 4:{bread, milk, diapers, beer}, and

5:{bread, milk, diapers}

| Transaction | IDs |
|-------------|-----|
|             |     |

| TID | Bread    | Milk     | Diapers  | Beer     | Eggs     |
|-----|----------|----------|----------|----------|----------|
| 1   | <b>✓</b> | <b>✓</b> |          |          |          |
| 2   | <b>✓</b> |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| 3   |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |
| 4   | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |
| 5   | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |          |

#### Transaction data as subsets



 $2^n$  subsets of *n* items. Layer *k* has  $\binom{n}{k}$  subsets.

# Transaction data as binary matrix

| TID | Bread | Milk | Diapers | Beer | Eggs |
|-----|-------|------|---------|------|------|
| 1   | 1     | 1    | 0       | 0    | 0    |
| 2   | 1     | 0    | 1       | 1    | 1    |
| 3   | 0     | 1    | 1       | 1    | 0    |
| 4   | 1     | 1    | 1       | 1    | 0    |
| 5   | 1     | 1    | 1       | 0    | 0    |

Any data that can be expressed as a binary matrix can be used.

## Itemsets, support, and frequency

- An itemset is a set of items
  - -A transaction t is an itemset with associated transaction ID, t = (tid, I), where I is the set of items of the transaction
- A transaction t = (tid, I) contains itemset X if  $X \subseteq I$
- The **support** of itemset X in database D is the number of transactions in D that contain it:

$$supp(X, D) = |\{t \in D : t \text{ contains } X\}|$$

- The **frequency** of itemset X in database D is its support relative to the database size, supp(X, D) / |D|
- Itemset is frequent if its frequency is above userdefined threshold minfreq Mine these

## Frequent itemset example

| TID | Bread | Milk | Diapers | Beer | Eggs |
|-----|-------|------|---------|------|------|
| 1   | 1     | 1    | 0       | 0    | 0    |
| 2   | 1     | 0    | 1       | 1    | 1    |
| 3   | 0     | 1    | 1       | 1    | 0    |
| 4   | 1     | 1    | 1       | 1    | 0    |
| 5   | 1     | 1    | 1       | 0    | 0    |

```
Itemset {Bread, Milk} has support 3 and frequency 3/5
Itemset {Bread, Milk, Eggs} has support and frequency 0
For minfreq = 1/2, frequent itemsets are:
{Bread}, {Milk}, {Diapers}, {Beer}, {Bread, Milk}, {Bread, Diapers}, {Milk, Diapers}, and {Diapers, Beer}
```

DTDM, WS 12/13 23 October 2012 T I.Intro-11

# The Apriori Algorithm

- To find all the frequent itemsets we can just try all the possible itemsets
  - -But there are  $2^{|I|}$  itemsets (|I| is the number of items)
- We can make this faster by reducing
  - the number of itemsets we consider
  - the number of transactions in the data
  - the number of comparisons of itemsets to transactions
- The Apriori algorithm reduces the number of itemsets we consider

## The Downwards Closedness Property

If X and Y are two itemsets such that  $X \subset Y$ , then  $supp(Y) \leq supp(X)$ .



# Example of pruning itemsets

If {e} and {ab} are infrequent



# Comments on Apriori

- The worst-case running time of Apriori is still  $O(|I| \times |D| \times 2^{|I|})$ 
  - If all itemsets are frequent
- This can be improved to  $O(|D| \times 2^{|I|})$  by storing the *tid*-lists of the itemsets together with them
  - The *Eclat* algorithm
  - -Better I/O, as we don't have to query the data base for the support of each candidate itemset
- Third well-known method is the FP-growth algorithm
- In practice all these algorithms are very fast unless the data is very dense or the threshold is too low

#### The Flood of Itemsets

Consider the following table:

| tid | Α        | В        | С        | D        | Е        | F        | G        | н        |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| 1   | <b>~</b> | <b>/</b> | <b>/</b> | <b>/</b> | <b>/</b> |          |          |          |
| 2   |          | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>✓</b> |          |
| 3   |          |          | <b>/</b> | <b>/</b> | <b>/</b> | <b>/</b> | <b>/</b> | <b>✓</b> |
| 4   | •        | <b>✓</b> |          |          | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b> |
| 5   |          | <b>/</b> | <b>/</b> |          | <b>/</b> | <b>/</b> |          | <b>✓</b> |
| 6   | <b>~</b> |          |          | <b>✓</b> | <b>✓</b> | <b>~</b> |          | <b>~</b> |
| 7   | •        | <b>✓</b> |

- How many itemsets with minimum frequency of 1/7 it has?
- 255!
- Still 31 frequent itemsets with 50% minfreq

- "Data mining is ... to summarize the data"
  - Hardly a summarization!

#### Closed and maximal itemsets

- Let F be the set of all frequent itemsets (w.r.t. some minfreq) in data D
- Frequent itemset  $X \in F$  is **maximal** if it does not have any frequent supersets
  - That is, for all  $Y \supset X$ ,  $Y \notin F$
- Frequent itemset  $X \in F$  is **closed** if it has no superset with the same frequency
  - That is, for all  $Y \supset X$ , supp(Y, D) < supp(X, D)
    - It can't be that supp(Y, D) > supp(X, D). Why?

## Example of maximal frequent itemsets



Figure 6.16. Maximal frequent itemset.

## Example of closed frequent itemsets



Figure 6.17. An example of the closed frequent itemsets (with minimum support count equal to 40%).

#### Closed & Maximal Itemsets



- 31 frequent itemsets with 50% minfreq
- 16 frequent *closed* itemsets with 50% minfreq
- 9 frequent *maximal* itemsets with 50% minfreq

### Itemset taxonomy



## Mining Maximal Itemsets

- The naïve approach:
  - Find all frequent itemsets and test each for maximality
  - When considering itemset X, if it is not a subset of existing maximal itemset Y, add it to set of *candidates*  $\mathcal{M}$ 
    - If  $\mathcal{M}$  has itemset Y s.t.  $Y \subset X$ , remove Y
  - Time complexity  $O(|\mathcal{M}|)$
- Better approach (GenMax)
  - Search the itemset lattice in depth-first order
    - Only add X to M when sure X is maximal
    - Can prune whole branches when they're already contained in some maximal itemset

## Mining Closed Itemsets

- Again, naïve approach is very expensive
- Three properties to reduce the itemsets to consider:
  - 1. If  $\mathbf{t}(X_i) = \mathbf{t}(X_j)$ , then  $\mathbf{c}(X_i) = \mathbf{c}(X_j) = \mathbf{c}(X_i \cup X_j)$ 
    - $\mathbf{t}(X_i)$  = transactions of itemset  $X_i$ ;  $\mathbf{c}(X_i)$  the *closure* of  $X_i$
    - We can replace every  $X_i$  with  $X_i \cup X_j$  and prune away the branch under  $X_j$
  - 2. If  $\mathbf{t}(X_i) \subset \mathbf{t}(X_j)$ , then  $\mathbf{c}(X_i) \neq \mathbf{c}(X_j)$  but  $\mathbf{c}(X_i) = \mathbf{c}(X_i \cup X_j)$ 
    - We can replace every occurrence of  $X_i$  with  $X_i \cup X_j$ , but cannot prune  $X_j$
  - 3. If  $\mathbf{t}(X_i) \neq \mathbf{t}(X_j)$ , then  $\mathbf{c}(X_i) \neq \mathbf{c}(X_j) \neq \mathbf{c}(X_i \cup X_j)$ 
    - There's nothing we can do
- The CHARM algorithm uses these properties

#### Non-Derivable Itemsets

- Let F be the set of all frequent itemsets. Itemset  $X \in F$  is **non-derivable** if we cannot derive its support from its subsets.
  - We can derive the support of X from its subsets if, by knowing the supports of all of the subsets of X we can compute the support of X
- If X is derivable, it doesn't add any new information
  - -Knowing just the non-derivable frequent itemsets, we can construct every frequent itemset
  - We only return itemsets that add new information on top of what we already knew

#### Generalized Itemsets



## The Support of a Generalized Itemset

- A generalized itemset is an itemset of form  $X\bar{Y}$ 
  - -All items is X and no items in Y
- The *support* of a generalized itemset  $X\bar{Y}$  is the number of transactions that contain all the items in X, but no items in Y
- To compute the support of a generalized itemset *ABC*, we can
  - Take the support of A
  - -Remove the supports of AB and AC
  - -Add the support of ABC that was removed twice
  - $-supp(A\overline{BC}) = supp(A) supp(AB) supp(AC) + supp(ABC)$

## The Inclusion-Exclusion Principle

- Let  $X\bar{Y}$  be a generalized itemset and let  $I = X \cup Y$
- Now  $supp(X\bar{Y})$  can be expressed as a combination of supports of supersets  $J \supseteq X$  such that  $J \subseteq I$  using the inclusion-exclusion principle

$$supp(X\bar{Y}) = \sum_{X \subset J \subset I} (-1)^{|J \setminus X|} supp(J)$$

-Example:

$$supp(\overline{ABC}) = supp(\emptyset)$$

$$-supp(A) - supp(B) - supp(C)$$

$$+supp(AB) + supp(AC) + supp(BC)$$

$$-supp(ABC)$$

## Support Bounds

- The inclusion-exclusion formula gives us bounds for the supports of itemsets in  $X \cup Y$  that are supersets of X
  - All supports are non-negative!
  - $-supp(A\overline{BC}) = supp(A) supp(AB) supp(AC) + supp(ABC)$ 
    - $\geq 0 \text{ implies } supp(ABC) \geq -supp(A) + supp(AB) + supp(AC)$ 
      - This is a lower bound, but we can also get upper bounds
- In general the bounds for itemset I w.r.t.  $X \subset I$ :
  - $-\operatorname{If}|I\setminus X| \text{ is odd:} \quad supp(I) \leq \sum_{X\subseteq J\subseteq I} (-1)^{|I\setminus J|+1} supp(J)$
  - -If  $|I \setminus X|$  is even:  $supp(I) \ge \sum_{X \subseteq J \subseteq I} (-1)^{|I \setminus J|+1} supp(J)$

# Deriving the Support

- Given the formula for the bounds, we can define
  - -the least upper bound lub(I) and
  - the *greatest lower bound glb(I)* for itemset *I*
- We know that  $supp(I) \in [glb(I), lub(I)]$
- If glb(I) = lub(I), then we can compute supp(I) by just knowing its subsets' supports
  - -Hence, I is derivable
- Otherwise *I* is non-derivable

# Local and Global Data Mining

- Frequent itemset mining is *local* 
  - Each itemset is evaluated on its own, irrespective of other itemsets
- Purely local evaluation tends to yield to explosion of patterns
- In *global* data mining the patterns are evaluated given the other patterns we know and the data as a whole
  - -E.g. clustering
  - -Closed, maximal, and non-derivable itemsets move from local towards global, but don't care about the data
- Next two lectures: more global take on pattern mining