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Non-Negative Matrix Factorization
e Recall SVD: 4 = UXV!

—2'1s non-negative diagonal, but U and V can contain
arbitrary real values

—If the data 1s non-negative by nature and “direction of
variance” 1s not a good interpretation of the data, SVD can
be hard to interpret

* Non-negative data can be
— Counting data (e.g. term frequencies)
— Physical measurements (degrees of Kelvin, height, ...)
— Images



Definition of NMF

* Given a nonnegative n-by-m matrix X (1.€. x;; > 0 for
all 7 and j) and a positive integer k, find an n-by-k
nonnegative matrix W and a k-by-m nonnegative
matrix H s.t. || X — WH||r 1s minimized.

—If k= min(n,m), we can do W= X and H = I, (or vice versa)

— Otherwise the problem 1s NP-hard

 [f either W or H 1s fixed, we can find the other factor
matrix in polynomial time

— Which gives us our first algorithm...



The alternating least squares (ALS)

* Let’s forget the nonnegativity constraint for a while

* The alternating least squares algorithm 1s the

following:

— Intialize W to a random matrix

—repeat
 Fix W and find H s.t.
 Fix H and find W s.t.

—until convergence

£ 1S minimized
£ 1S minimized

* For unconstrained least squares we can use
H=W<Xand W=XH"

* ALS will typically converge to local optimum



NMF and ALS

* With the nonnegativity constraint the pseudo-inverse
doesn’t work

— The problem 1s still convex with either of the factor
matrices fixed (but not if both are free)

— We can use constrained convex optimization
* In theory, polynomial time
* In practice, often too slow

* Poor man’s nonnegative ALS:

— Solve H using pseudo-inverse
—Setall 4; <0to 0

— Repeat for W



Geometry of NMF

NMF factors
Data points
Convex cone

Projections




Multiplicative update rules

* Idea: update W and H in small steps towards the
locally optimum solution

— Honor the non-negativity constraint
—Lee & Seung, Nature, "99.

Initialize W and H randomly to non-negative matrices
repeat

2.1.H=H*(W'X)./(W'WH + ¢)
22.W=W*XXH").(WHH'" + ¢)

until convergence in || X — WH||F

* Here .* 1s element-wise product, (4.*B);; = a;*b;;, and ./ 1s
element-wise division, (A./B);; = a;i/b;;

* Little value € 1s added to avoid division by 0



Discussion on multiplicative updates

* If W and H are 1nitialized to strictly positive matrices,
they stay strictly positive throughout the algorithm

— Multiplicative form of updates
 If Wand H have zeros, the zeros stay
* Converges slowly
— And has 1ssues when the limit point lies in the boundary

* Lots of computation per update
— Clever implementation helps
— Simple to implement
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Gradient descent

* Consider the representation error as a function of W
and H

—f: REx R — Ry, AW, H) = || X — WH||
— We can compute the partial derivatives of/0oW and of/oH

* Observation: The biggest decrease 1n f at point (W,
H) happens at the opposite direction of the gradient

— But this only holds 1n an e-neighborhood of (W ,H)

— Theretfore, we make small steps opposite to gradient and re-
compute the gradient



Example of gradient descent

Image: Wikipedia

IR&DM °13/14 28 January 2014 XI-12



NMF and gradient descent

S’rep size

. Imtialize W and to non-negative matrices
2 .repeat

2.1. H=H — SH@f/ﬁH
22. W=W—cydfloWw
3. until convergentein || X — WH||r

" Step size
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Issues with gradient descent

* Step sizes are important

— Too big step size: error increases, not decrease
— Too small step size: very slow convergence

— Fixed step sizes don’t work
* Have to adjust somehow

— Lots of research work put on this

* Ensuring the non-negativity
— The updates can make factors negative
— Easiest option: change all negative values to 0 after each update

* Updates are expensive
* Multiplicative update 1s a type of gradient descent

— Essentially, the step size 1s adjusted



ALS vs. gradient descent

* Both are general techniques
— Not tied to NMF

* More general version of ALS 1s called alternating
projections
— Like ALS, but not tied to least-squares optimization
— We must know how to optimize one factor given the other

* Or we can approximate this, too...

* In gradient descent function must be derivable
— (Quasi-)Newton methods study also the second derivative
* Even more computationally expensive

— Stochastic gradient descent updates random parts of factors

« Computationally cheaper but can yield slower convergence



Face recognition

NMF exame

Original

III_III_III_II| E
_ _ .1_

_ |
-n.__---_...i.--_. w.,",
| wl

-

:%___

N

| S
|
|

-_1;__*__

L |

ﬁ

L il

XI-16

28 January 2014

IR&DM °13/14



Boolean Matrix Factorization

Fone-haired

Well-knewn
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Can we find the groups?

* The data seems to have some patterns

— Can we recover them?

Long-haired 1 1 0

Well-known 1 1 1

Male 0 1 1



SVD?

The data



NME?
Better, but not perfect
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The data W-sH>



Clustering?

Why is ﬁ assigned to one group but
not to the other?

The data Cluster assignment matrix



Boolean factors

* We would like to have rank-1 factors like this

* Problem: the sum of right-hand matrices 1s not the
left-hand matrix

* Solution: don’t care about multiplicity
—Define 1 +1=1



Boolean matrix multiplication and
factorization

* The Boolean matrix multiplication of two binary
matrices A and B 1s the binary matrix C s.t.

k
(C)ij =(AoB);j=\/ aib;
=1

* In Boolean matrix factorization (BMF) we are
given a binary matrix X and rank & and we want to

find binary factor matrices A and B that minimize
(/X — AoBl|F)*
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Solving BMF

* Finding the least-error BMF 1s NP-hard
— Also finding the Boolean rank 1s NP-hard

* Fixing one factor doesn’t help

— Finding B that minimizes || X — AoB||r when X and A4 are
given 1s still NP-hard

* All problems are also very hard to approximate

* Practical algorithms rely on greedy heuristics to solve
the problem



Summary

 Two new matrix factorization methods

—Though we’ve seen something similar earlier

* Both work on anti-negative semi-rings
— No subtractions here!

* Both are motivated by interpretability and the ability
to find different types of structures than what SVD

finds



