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Non-Negative Matrix Factorization
• Recall SVD: A = UΣVT 
–Σ is non-negative diagonal, but U and V can contain 

arbitrary real values
– If the data is non-negative by nature and “direction of 

variance” is not a good interpretation of the data, SVD can 
be hard to interpret

• Non-negative data can be
–Counting data (e.g. term frequencies)
– Physical measurements (degrees of Kelvin, height, …)
– Images
–…

3



IR&DM ’13/14 XI-28 January 2014

Definition of NMF
• Given a nonnegative n-by-m matrix X (i.e. xij ≥ 0 for 

all i and j) and a positive integer k, find an n-by-k 
nonnegative matrix W and a k-by-m nonnegative 
matrix H s.t. ||X – WH||F is minimized.
– If k = min(n,m), we can do W = X and H = Im (or vice versa)
–Otherwise the problem is NP-hard

• If either W or H is fixed, we can find the other factor 
matrix in polynomial time
–Which gives us our first algorithm…
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The alternating least squares (ALS)
• Let’s forget the nonnegativity constraint for a while
• The alternating least squares algorithm is the 

following:
– Intialize W to a random matrix
– repeat 
• Fix W and find H s.t. ||X – WH||F is minimized
• Fix H and find W s.t. ||X – WH||F is minimized

– until convergence
• For unconstrained least squares we can use 
H = W+X and W = XH+

• ALS will typically converge to local optimum
5
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NMF and ALS
• With the nonnegativity constraint the pseudo-inverse 

doesn’t work
–The problem is still convex with either of the factor 

matrices fixed (but not if both are free)
–We can use constrained convex optimization 
• In theory, polynomial time
• In practice, often too slow

• Poor man’s nonnegative ALS:
– Solve H using pseudo-inverse
– Set all hij < 0 to 0
–Repeat for W
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Geometry of NMF
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Multiplicative update rules
• Idea: update W and H in small steps towards the 

locally optimum solution
–Honor the non-negativity constraint
–Lee & Seung, Nature, ’99: 

•Here .* is element-wise product, (A.*B)ij = aij*bij, and ./ is 
element-wise division, (A./B)ij = aij/bij
•Little value ε is added to avoid division by 0
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1.Initialize W and H randomly to non-negative matrices
2.repeat 

2.1. H = H.*(WTX)./(WTWH + ε)
2.2. W = W.*(XHT)./(WHHT + ε)

3.until convergence in ||X – WH||F
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Discussion on multiplicative updates
• If W and H are initialized to strictly positive matrices, 

they stay strictly positive throughout the algorithm
–Multiplicative form of updates

• If W and H have zeros, the zeros stay
• Converges slowly
–And has issues when the limit point lies in the boundary

• Lots of computation per update
–Clever implementation helps
– Simple to implement
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Gradient descent
• Consider the representation error as a function of W 

and H
– f: ℝn×k × ℝk×m → ℝ+, f(W, H) = ||X – WH||F2

–We can compute the partial derivatives ∂f/∂W and ∂f/∂H
• Observation: The biggest decrease in f at point (W, 
H) happens at the opposite direction of the gradient
–But this only holds in an ε-neighborhood of (W,H)
–Therefore, we make small steps opposite to gradient and re-

compute the gradient
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Example of gradient descent
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Image: Wikipedia
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NMF and gradient descent
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1.Initialize W and H randomly to non-negative matrices
2.repeat 

2.1. H = H – εH ∂f/∂H
2.2. W = W – εW ∂f/∂W

3.until convergence in ||X – WH||F

Step size

Step size
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Issues with gradient descent
• Step sizes are important
– Too big step size: error increases, not decrease
– Too small step size: very slow convergence
– Fixed step sizes don’t work
• Have to adjust somehow

– Lots of research work put on this
• Ensuring the non-negativity
– The updates can make factors negative
– Easiest option: change all negative values to 0 after each update

• Updates are expensive
• Multiplicative update is a type of gradient  descent
– Essentially, the step size is adjusted 
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ALS vs. gradient descent
• Both are general techniques
–Not tied to NMF

• More general version of ALS is called alternating 
projections
– Like ALS, but not tied to least-squares optimization
–We must know how to optimize one factor given the other
•Or we can approximate this, too…

• In gradient descent function must be derivable
– (Quasi-)Newton methods study also the second derivative
• Even more computationally expensive

– Stochastic gradient descent updates random parts of factors
• Computationally cheaper but can yield slower convergence
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NMF example: Face recognition
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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Boolean Matrix Factorization
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Can we find the groups?
• The data seems to have some patterns
–Can we recover them?
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SVD?
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SVD?

Could we find the groups using SVD?

The data U
1

⌃
1,1V

T
1

SVD cannot find the groups.

5 / 44

The data

SVD?

Could we find the groups using SVD?

The data U
2

⌃
2,2V

T
2

SVD cannot find the groups.

5 / 44

Not good!
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NMF?
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The data

NMF?

The data is non-negative, so what about NMF?

The data W
1

H
1

Already closer, but is the middle element in the group or out of the
group?

7 / 44

NMF?

The data is non-negative, so what about NMF?

The data W
2

H
2

Already closer, but is the middle element in the group or out of the
group?

7 / 44

Better, but not perfect
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Clustering?
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The data

Clustering?

So NMF’s problem was that the results were not precise yes/no.
Clustering can do that. . .

The data Cluster assignment matrix

Precise, yes, but arbitrarily assigns and “well-known” to one of
the groups

8 / 44

Cluster assignment matrix

Why is         assigned to one group but 
not to the other?
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Boolean factors

• We would like to have rank-1 factors like this
• Problem: the sum of right-hand matrices is not the 

left-hand matrix
• Solution: don’t care about multiplicity
–Define 1 + 1 = 1

22

Boolean matrix factorization

What we want looks like this:

= +

The problem: the sum of these two components is not the data
I The center element will have value 2

Solution: don’t care about multiplicity, but let 1 + 1 = 1

9 / 44
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Boolean matrix multiplication and 
factorization
• The Boolean matrix multiplication of two binary 

matrices A and B is the binary matrix C s.t.

• In Boolean matrix factorization (BMF) we are 
given a binary matrix X and rank k and we want to 
find binary factor matrices A and B that minimize 
(||X – A○B||F)2 
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BMF example
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Solving BMF
• Finding the least-error BMF is NP-hard
–Also finding the Boolean rank is NP-hard

• Fixing one factor doesn’t help
– Finding B that minimizes ||X – A○B||F when X and A are 

given is still NP-hard
• All problems are also very hard to approximate
• Practical algorithms rely on greedy heuristics to solve 

the problem
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Summary
• Two new matrix factorization methods
–Though we’ve seen something similar earlier

• Both work on anti-negative semi-rings
–No subtractions here!

• Both are motivated by interpretability and the ability 
to find different types of structures than what SVD 
finds
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