Chapter XI: Two Matrix Factorizations

Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2013/14

Chapter XI: Two Matrix Factorizations

- **1. Non-Negative Matrix Factorization**
 - 1.1. Idea and motivation
 - **1.2. Algorithms**
- 2. Boolean Matrix Factorization
 - 2.1. Idea and motivation
 - 2.2. Algorithms

Non-Negative Matrix Factorization

- Recall SVD: $A = U\Sigma V^T$
 - $-\Sigma$ is non-negative diagonal, but U and V can contain arbitrary real values
 - If the data is non-negative by nature and "direction of variance" is not a good interpretation of the data, SVD can be hard to interpret
- Non-negative data can be
 - -Counting data (e.g. term frequencies)
 - -Physical measurements (degrees of Kelvin, height, ...)

–Images

Definition of NMF

- Given a nonnegative *n*-by-*m* matrix X (i.e. x_{ij} ≥ 0 for all *i* and *j*) and a positive integer k, find an *n*-by-k nonnegative matrix W and a k-by-m nonnegative matrix H s.t. ||X WH||_F is minimized.
 - If $k = \min(n,m)$, we can do W = X and $H = I_m$ (or vice versa)

-Otherwise the problem is NP-hard

• If either *W* or *H* is fixed, we can find the other factor matrix in polynomial time

– Which gives us our first algorithm...

The alternating least squares (ALS)

- Let's forget the nonnegativity constraint for a while
- The alternating least squares algorithm is the following:
 - -Intialize W to a random matrix
 - -repeat
 - Fix W and find H s.t. $||X WH||_F$ is minimized
 - Fix H and find W s.t. $||X WH||_F$ is minimized
 - -until convergence
- For unconstrained least squares we can use $H = W^+X$ and $W = XH^+$
- ALS will typically converge to *local optimum*

NMF and ALS

- With the nonnegativity constraint the pseudo-inverse doesn't work
 - The problem is still **convex** with either of the factor matrices fixed (but not if both are free)
 - -We can use constrained convex optimization
 - In theory, polynomial time
 - In practice, often too slow
- Poor man's nonnegative ALS:
 - -Solve *H* using pseudo-inverse
 - -Set all $h_{ij} < 0$ to 0
 - -Repeat for W

Geometry of NMF

NMF factors Data points Convex cone Projections

Multiplicative update rules

- Idea: update *W* and *H* in small steps towards the locally optimum solution
 - Honor the non-negativity constraint
 - -Lee & Seung, Nature, '99:
 - 1. Initialize *W* and *H* randomly to non-negative matrices 2. repeat
 - 2.1. $H = H.*(W^TX)./(W^TWH + \varepsilon)$
 - 2.2. $W = W.*(XH^T)./(WHH^T + \varepsilon)$
 - 3. until convergence in $||X WH||_F$
 - Here .* is element-wise product, $(A.*B)_{ij} = a_{ij}*b_{ij}$, and ./ is element-wise division, $(A./B)_{ij} = a_{ij}/b_{ij}$
 - \bullet Little value ϵ is added to avoid division by 0

Discussion on multiplicative updates

- If *W* and *H* are initialized to strictly positive matrices, they stay strictly positive throughout the algorithm

 Multiplicative form of updates
- If *W* and *H* have zeros, the zeros stay
- Converges slowly
 - -And has issues when the limit point lies in the boundary
- Lots of computation per update
 - -Clever implementation helps
 - -Simple to implement

Discussion on multiplicative updates

- If *W* and *H* are initialized to strictly positive matrices, they stay strictly positive throughout the algorithm

 Multiplicative form of updates
- If *W* and *H* have zeros, the zeros stay
- Converges slowly
 - -And has issues when the limit point lies in the boundary
- Lots of computation per update
 - -Clever implementation helps
 - -Simple to implement

Gradient descent

- Consider the representation error as a function of *W* and *H*
 - $-f: \mathbb{R}^{n \times k} \times \mathbb{R}^{k \times m} \longrightarrow \mathbb{R}_{+}, f(W, H) = ||X WH||_{F}^{2}$
 - We can compute the partial derivatives $\partial f/\partial W$ and $\partial f/\partial H$
- Observation: The biggest decrease in *f* at point (*W*, *H*) happens at the opposite direction of the gradient
 - -But this only holds in an ε -neighborhood of (*W*,*H*)
 - Therefore, we make small steps opposite to gradient and recompute the gradient

Example of gradient descent

Image: Wikipedia

NMF and gradient descent

Step size

1. Initialize *W* and *H* randomly to non-negative matrices 2. repeat 2.1. $H = H - \varepsilon_H \partial f / \partial H$ 2.2. $W = W - \varepsilon_W \partial f / \partial W$ 3. until convergence in $||X - WH||_F$

Step size

Issues with gradient descent

- Step sizes are important
 - Too big step size: error increases, not decrease
 - Too small step size: very slow convergence
 - Fixed step sizes don't work
 - Have to adjust somehow
 - Lots of research work put on this
- Ensuring the non-negativity
 - The updates can make factors negative
 - Easiest option: change all negative values to 0 after each update
- Updates are expensive
- Multiplicative update is a type of gradient descent
 - Essentially, the step size is adjusted

ALS vs. gradient descent

- Both are *general* techniques
 Not tied to NMF
- More general version of ALS is called **alternating projections**
 - Like ALS, but not tied to least-squares optimization
 - We must know how to optimize one factor given the other
 - Or we can approximate this, too...
- In gradient descent function must be derivable
 - (Quasi-)Newton methods study also the second derivative
 - Even more computationally expensive
 - Stochastic gradient descent updates random parts of factors
 - Computationally cheaper but can yield slower convergence

NMF example: Face recognition

Boolean Matrix Factorization

Long-haired	4	T	ě 🔪
Well-known	1	1	1
Male	X	1	*

Can we find the groups?

• The data seems to have some patterns -Can we recover them?

Not good!

The data

 $\mathbf{U}_2 \mathbf{\Sigma}_{2,2} \mathbf{V}_2^T$

Better, but not perfect

The data

 W_2H_2

The data

Cluster assignment matrix

Boolean factors

- We would like to have rank-1 factors like this
- Problem: the sum of right-hand matrices is not the left-hand matrix
- Solution: don't care about multiplicity
 - -Define 1 + 1 = 1

Boolean matrix multiplication and factorization

• The **Boolean matrix multiplication** of two binary matrices *A* and *B* is the binary matrix *C* s.t.

$$(\boldsymbol{C})_{ij} = (\boldsymbol{A} \circ \boldsymbol{B})_{ij} = \bigvee_{l=1}^{k} a_{il} b_{lj}$$

• In Boolean matrix factorization (BMF) we are given a binary matrix *X* and rank *k* and we want to find binary factor matrices *A* and *B* that minimize $(||X - A \circ B||_F)^2$

BMF example

 \mathbf{a}_1

$$X = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{A} \circ \mathbf{B}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{b}_{1}$$

$$\begin{aligned} & \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} = \mathbf{b}_2 \\ \mathbf{a}_2 &= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{a}_2 \mathbf{b}_2 \end{aligned}$$

Solving BMF

- Finding the least-error BMF is NP-hard
 - -Also finding the Boolean rank is NP-hard
- Fixing one factor doesn't help
 - -Finding **B** that minimizes $||X A \circ B||_F$ when X and A are given is still NP-hard
- All problems are also very hard to approximate
- Practical algorithms rely on greedy heuristics to solve the problem

Summary

- Two new matrix factorization methods
 - -Though we've seen something similar earlier
- Both work on anti-negative semi-rings
 –No subtractions here!
- Both are motivated by interpretability and the ability to find different types of structures than what SVD finds