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Chapter II

II.1 Linear Algebra 
  Vectors, Matrices, Eigenvalues, Eigenvectors,  
  Singular Value Decomposition 

II.2  Probability Theory  
  Events, Probabilities, Random Variables, Distributions,  
  Bounds, Limit Theorems 

II.3  Statistical Inference 
  Parameter Estimation, Confidence Intervals, Hypothesis Testing 
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II.3 Statistical Inference

1.  Parameter Estimation 

2.  Confidence Intervals 

3.  Hypothesis Testing 
 
 
 
 
 
 
 
 
 
 
 
Based on LW Chapters 6, 7, 9, 10
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Statistical Model

• A statistical model M is a set of distributions (or regression 
functions), e.g., all unimodal smooth distributions 

• M is called a parametric model if it can be completely described 
by a finite number of parameters, e.g., the family of Normal 
distributions for a finite number of parameters µ and σ
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Statistical Inference

• Given a parametric model M and a sample X1,…, Xm, 
how do we infer (learn) the parameters of M? 

• For multivariate models with observed variable X and  
response variable Y, this is called prediction or regression, 
for a discrete outcome variable this is also called classification
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Idea of Sampling

• Example: Suppose we want to estimate the average salary of 
employees in German companies 

• Sample 1: Suppose we look at n = 200 top-paid CEOs of major banks 

• Sample 2: Suppose we look at n = 1,000 employees across all sectors

!6

Distribution X 
(population of interest)

Samples  
X1, …, Xm 

(e.g., people)

Statistical Inference 
What can we say about X 

based on X1, …, Xm?
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Basic Types of Statistical Inference

• Given independent and identically distributed (iid.)  
samples X1, …, Xn ~ X of an unknown distribution X 

• e.g.: n single-coin-toss experiments X1, …, Xn ~ Bernoulli(p) 

• Parameter estimation 

• e.g.: what is the parameter p of Bernoulli(p)? 
  what is E[X], the cdf FX of X, the pdf fX of X, etc.? 

• Confidence intervals 

• e.g.: give me all values C = [a, b] such that P[p ∈ C] ≥ 0.95  
  with interval boundaries a and b derived from samples X1, …, Xn 

• Hypothesis testing 

• e.g.: H0 : p = 1/2 (i.e., coin is fair) vs. H1 : p ⧧ 1/2
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1. Parameter Estimation

• A point estimator for a parameter θ of a probability distribution 
X is a random variable θ   derived from an iid. sample X1, …, Xn 

• Examples: 

• Sample mean  

• Sample variance 

!

• An estimator       for parameter θ is unbiased if   
 
otherwise the estimator has bias 

• An estimator on sample size n is consistent if 
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Estimation Error

• Let      be an estimator for parameter θ over iid. samples X1, …, Xn 

• The distribution of      is called sampling distribution 

• The standard error for      is: 

• The mean squared error (MSE) for     is: 

!

• The estimator      is asymptotically Normal if  
 
                       converges in distribution to N(0,1)  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Types of Estimation

• Non-Parametric Estimation 

• no assumptions about the model M nor the parameters θ  
of the underlying distribution X 

• e.g.: “plug-in estimators” (e.g., histograms) to approximate X 

• Parametric Estimation 

• requires assumptions about the model M and the parameters θ  
of the underlying distribution X 

• analytical or numerical methods for estimating θ 

• Method of Moments 

• Maximum Likelihood 

• Expectation Maximization (EM)
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Empirical Distribution Function

• The empirical distribution function       is the cdf that puts  
probability mass 1/n at each data point Xi  
 
 
 
with indicator function 

!

!

• A statistical function (“statistics”) T(F) is any function over F, 
e.g., mean, variance, skewness, median, quantiles, correlation 

• The plug-in estimator of θ = T(F) is 

!11

F̂n

F̂n(x) =
1

n

nX

i=1

I(Xi  x)

I(Xi  x) =

⇢
1 : Xi  x

0 : Xi > x

✓̂n = T (F̂n)



IR&DM ’13/’14

Histograms as Density Estimators

• Instead of the full empirical distribution, often compact synopses  
can be used, such as histograms where X1, …, Xn are grouped  
into m cells (buckets) c1, …, cm with  
bucket boundaries lb(ci) and ub(ci)  
 
 
 
 

• Example: 
 
X1 = X2 = 1 
X3 = X4 = X5 = 2 
X6 = … X10 = 3 
X11 = … X14 = 4 
X15 = … X17 = 5 
X18 = X19 = 6 
X20 = 7
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lb(c1) = �1, ub(cm) = 1, ub(ci�1) = lb(ci) for (1  i  m), and
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Method of Moments

• Suppose parameter θ = (θ1, …, θk) has k components 

• Compute j-th moment for 1 ≤ j ≤ k: 
 

• Compute j-th sample moment for 1 ≤ j ≤ k: 
 
 

• Method-of-moments estimate of θ is obtained by solving a 
system of k equations in k unknowns
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Method of Moments (Example)

• Let X1, …, Xn ~ Normal(µ, σ2). 

!

!

• By solving the system of 2 equations in 2 unknowns  
 
 
 
 
 
 
we obtain as solutions
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Maximum Likelihood

• Let X1, …, Xn be iid. with pdf f(x;θ) 

• Estimate parameter θ of a postulated distribution f(x;θ) such that 
the likelihood that the sample values x1, …, xn are generated by  
the distribution are maximized 

• Maximize L(x1, …, xn, θ) ≈ P[x1, …, xn originate from f(x;θ)] 

• Usually formulated as: 

!

!

• The value    that maximizes Ln[θ] is called the  
maximum-likelihood estimate (MLE) of θ 

• If analytically intractable, MLE can be determined using 
numerical iteration methods
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Maximum Likelihood (Example)

• Let X1, …, Xn ~ Bernoulli(p) (corresponding to n coin tosses) 

• Assume that we observed h times head and (n-h) times tail 

• Maximum-likelihood estimation of parameter p 

!

!

• Maximize log-likelihood function
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Maximum Likelihood for Normal Distributions
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2. Confidence Intervals

• Determine interval estimator T for parameter θ such that 
 
 
T±a is the confidence interval and 1-α the confidence level 

• For the distribution of a random variable X, a value xγ (0 < γ < 1) 
is with P[X ≤  xγ] ≥ γ and P[X ≥ xγ] ≥ 1-γ is called γ-quantile 

• the 0.5-quantile is known as median 

• for the standard Normal distribution N(0,1) the γ-quantile is denoted Φγ 

• For a given a or α, find a value z of N(0,1) 
that denotes the [T-a,T+a] confidence  
interval or a corresponding γ-quantile 
for 1-α

!18
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Confidence Intervals for Expectations (I)

• Let X1, …, Xn be a sample from a distribution X with unknown 
expectation µ and known variance σ2 

• For sufficiently large n, the sample mean      is N(µ, σ2/n) 
distributed and 

!19

X̄

P [�z  (X̄�µ)
p
n

�  z] = �(z)� �(�z)
= �(z)� (1� �(z))
= 2�(z)� 1
= P [X̄ � z �p

n
 µ  X̄ + z �p

n
]

) P [X̄ � �1�↵/2 �p
n

 µ  X̄ +
�1�↵/2 �p

n
] = 1� ↵



IR&DM ’13/’14

Confidence Intervals for Expectations (I) (cont’d)

!

!

• For confidence interval                           compute 
 
                   and lookup Φ(z) to determine 1-α 

!

• For confidence level 1-α set 
 
                   (i.e., as (1-α/2)-quantile of N(0,1))  
 
then                 to determine  
 
confidence interval  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Confidence Intervals for Expectations (I) (Example)

• Based on a random sample of n = 100 queries, we observe an 
average response time of               . We further know that the 
standard deviation is                 

• Q: What is the confidence of the interval 64±0.5?  
 
 
 
 
A: 78.87% 

• Q: What’s the 99% confidence interval?  
 
 
 
A: 64±1.032
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� = 4
X̄ = 64

a = 0.5

z = 0.5
p
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Confidence Intervals for Expectations (II)

• Let X1, …, Xn be an iid. sample from a distribution X with 
unknown expectation µ, unknown variance σ2, but  
known sample variance S2 

• For sufficiently large n, the random variable  
 
 
 
has a Student’s t distribution with (n-1) degrees of freedom  
 
 
 
with the Gamma function

!22
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Confidence Intervals for Expectations (II) (cont’d)

!

!

• For confidence interval                           compute 
 
                   and lookup fT(n-1)(t) to determine 1-α 

!

• For confidence level 1-α set 
 
                            (i.e., as (1-α/2)-quantile of  fT(n-1))  
 
then                 to determine  
 
confidence interval 
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3. Hypothesis Testing

• Suppose we throw a coin n times and want to know whether  
the coin is fair, i.e., P(H) = P(T) 

• Let X1, …, Xn ~ Bernoulli(p) be the iid. coin flips, so that the  
coin is fair if p = 0.5 

• Let the null hypothesis H0 be “the coin is fair” 

• The alternative hypothesis H1 is then “the coin is not fair” 

• Intuitively, if                  is large, we should reject H0

!24

|X̄ � 0.5|
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Normal Distribution Table
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Hypothesis Testing Terminology

• θ = θ0 is called a simple hypothesis 

• θ > θ0 or θ < θ0 is called a compound hypothesis 

• H0 : θ = θ0 vs. H1 : θ ⧧ θ0 is called a two-sided test 

• H0 : θ ≤ θ0 vs. H1 : θ > θ0 and H0 : θ ≥ θ0 vs. H1 : θ < θ0  
are called a one-sided test 

• Rejection region R : if X ∈ R, reject H0 otherwise retain H0 

• The rejection region is typically defined using a test statistic T  
and a critical value c

!25

R = {X : T (X) > c }
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p-Values

• The p-value is the probability that if H0 holds, we observe values  
at least as extreme of the test statistic 

• It is not the probability that H0 holds 

• The smaller the p-value, the stronger is the evidence against H0, i.e.,  
if we observe a small enough p-value, we can reject H0 

• How small the p-value needs to be depends on the application 

• Typical p-value scale: 

• < 0.01   very strong evidence against H0 

• 0.01 – 0.05 strong evidence against H0 

• 0.05 – 0.10 weak evidence against H0 

• > 0.1   little or no evidence against H0
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Types of Errors & Statistical Significance

!

!

!

!

• Hypothesis tests often performed at a level of significance α 

• means that H0 is rejected if the p-value is less than α 

• reported as “results is statistically significant at the α level” 

• specifying p-values is more informative 

• Don’t confuse statistical significance with practical significance 

• e.g.: “blue hyperlinks increase click rate by 0.0001% over black ones”  
  “fuel consumption is reduced by 0.0001 l/km by new part” 
  …

"27
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The Wald Test

• Two-sided test for H0 : θ = θ0 vs. H1 : θ ⧧ θ0 

• Test statistic                          with sample estimate  
 
and  

• W converges in probability to N(0, 1) 

• If w is the observed value of the Wald statistic,  
the p-value is 2Φ(-|w|)

"28
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The Wald Test (Example)

• We can use the Wald test to test if our coin is fair 

• Suppose the observed sample mean is 0.6 and  
the observed standard error is 0.049 

• We obtain as a test statistic value w = (0.6 - 0.5) / 0.049 ≈ 2.04 

• The p-value is therefore 2Φ(-|2.04|) ≈ 0.042 (i.e., a fair coin would lead to 
such an extreme value w only with probability 0.042), which gives us  
strong evidence to reject the null hypothesis H0

"29
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Pearson’s 𝜒2  Test for Multinomial Data

• Let X1, …, Xm ~ Multinomial(n, p),  
the MLE of p is (X1/n, X2/n, …, Xn/n) 

• Let p0 = (p01, p02, …, p0n) and we want to test  
H0 : p = p0 vs. H1 : p ⧧ p0 

• Pearson’s 𝜒2 statistic is  
 
 
 
 
with expected value Ej = E[Xj] = n p0j of Xj under H0 

• The p-value is                        where t is the observed value  
of the test statistic and there are (k-1) degrees of freedom
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Pearson’s 𝜒2  Test for Multinomial Data (Example)

• We can use Pearson’s 𝜒2  test to test whether a dice is fair 

• Suppose after 1,000 throws of the dice, we observed  
① x 173, ② x 167, ③ x 167, ④ x 176, ⑤ x 167, ⑥ x 150 
=> p = (0.173, 0.167, 0.167, 0.176, 0.167, 0.150) (based on MLE) 

• p0 = (0.167, 0.167, 0.167, 0.167, 0.167, 0.167) 

• T = 2.43 => p-value is 0.80 giving us no evidence to reject H0

"31
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Pearson’s 𝜒2  Test of Independence

• Pearson’s 𝜒2 test can also be used to test if two random variables  
X and Y are independent 

• Let X1, …, Xn and Y1, …, Yn be the two samples 

• Divide outcomes into r (for X) and c (for Y) disjoint intervals 

• Populate r-by-c table O with frequencies, so that Olk tells how  
many (Xi, Yi) pairs have values l-th and k-interval respectively 

• Assuming independence (H0) the expected value of Olk is
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Pearson’s 𝜒2  Test of Independence (cont’d)

• The value of the test statistic is 

!

!

• There are (r-1)(c-1) degrees of freedom
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Summary of II.3

• Statistical inference based on a sample from a population 

• Empirical distribution function and histograms as  
non-parametric estimation methods 

• Method of moments and maximum likelihood as  
parametric estimation methods 

• Confidence intervals 

• Wald test and Pearson’s 𝜒2  test for hypothesis testing
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Normal Distribution Table
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𝜒2 Distribution Table
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Student’s t Distribution Table
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