
IR&DM ’13/’14

III.3 Probabilistic Retrieval Models

1.  Probabilistic Ranking Principle 

2.  Binary Independence Model 

3.  Okapi BM25 

4.  Tree Dependence Model 

5.  Bayesian Networks for IR 
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!

Based on MRS Chapter 11 
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TF*IDF vs. Probabilistic IR vs. Statistical LMs

• TF*IDF and VSM produce sufficiently good results in practice  
but often criticized for being “too ad-hoc” or “not principled” 

• Typically outperformed by probabilistic retrieval models and 
statistical language models in IR benchmarks (e.g., TREC) 

• Probabilistic retrieval models 

• use generative models of documents as bags-of-words 

• explicitly model probability of relevance P[R |d, q] 

• Statistical language models 

• use generative models of documents and queries as sequences-of-words 

• consider likelihood of generating query from document model or  
divergence of document model and query model (e.g., Kullback-Leibler)
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• Generative model 

• probabilistic mechanism for producing documents (or queries) 

• usually based on a family of parameterized probability distributions  
 
 
 
 
 

• Powerful model but restricted through practical limitations 

• often strong independence assumptions required for tractability 

• parameter estimation has to deal with sparseness of available data  
(e.g., collection with M terms has 2M distinct possible documents, but  
model parameters need to be estimated from N << 2M documents)

Probabilistic Information Retrieval

!50
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Multivariate Bernoulli Model

• For generating document d from joint (multivariate)  
term distribution Φ  

• consider binary random variables: dt = 1 if term in d, 0 otherwise 

• postulate independence among these random variables  
 
 
 
 

• Problems: 

• underestimates probability of short documents 

• product for absent terms underestimates probability of likely documents 

• too much probability mass given to very unlikely term combinations

!51

P [d|�] =
Y

t2V

�dt
t (1� �1�dt

t )

�t = P [term t occurs in a document]
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1. Probability Ranking Principle (PRP)

• PRP with costs [Robertson 1977] defines cost of retrieving d  
as the next result in a ranked list for query q as  
 
 
with cost constants 

• C1 as cost of retrieving a relevant document  

• C2 as cost of retrieving an irrelevant document 

• For C1 < C0, cost is minimized by choosing

!52

“If a reference retrieval system’s response to each request is a ranking of the 
documents in the collection in order of decreasing probability of relevance to the 

user who submitted the request, where the probabilities are estimated as accurately 
as possible on the basis of whatever data have been made available to the system 
for this purpose, the overall effectiveness of the system to its user will be the best 

that is obtainable on the basis of those data.”
[van Rijsbergen 1979]

cost(d, q) = C1 P [R|d, q] + C0 P [R̄|d, q]

argmax

d
P [R|d, q]
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Derivation of Probability Ranking Principle

• Consider document d to be retrieved next, because it is preferred 
(i.e, has lower cost) over all other candidate documents d’

!53

cost(d, q)  cost(d0, q)

, C1 P [R|d, q] + C0 P [R̄|d, q]  C1 P [R|d0, q] + C0 P [R̄|d0, q]

, C1 P [R|d, q] + C0 (1� P [R|d, q])  C1 P [R|d0, q] + C0 (1� P [R|d0, q])

, C1 P [R|d, q]� C0 P [R|d, q]  C1 P [R|d0, q]� C0 P [R|d0, q]

, (C1 � C0)P [R|d, q]  (C1 � C0)P [R|d0, q]

, P [R|d, q] � P [R|d0, q] (assuming C1 < C0)
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Probability Ranking Principle (cont’d)

• Probability ranking principle makes two strong assumptions 

• P[R |d, q] can be determined accurately 

• P[R |d, q] and P[R |d’, q] are pairwise independent for documents d, d’  

• PRP without costs (based on Bayes’ optimal decision rule)  

• returns set of documents d for which P[R |d, q] > (1 - P[R |d, q]) 

• minimizes the expected loss (aka. Bayes’ risk) under the 1/0 loss function  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2. Binary Independence Model (BIM)

• Binary independence model [Robertson and Spärck-Jones 1976]  
has traditionally been used with the probabilistic ranking principle 

• Assumptions: 

• relevant and irrelevant documents differ in their term distribution 

• probabilities of term occurrences are pairwise independent 

• documents are sets of terms, i.e., binary term weights in {0,1} 

• non-query terms have the same probability of occurring in  
relevant and non-relevant documents 

• relevance of a document is independent of relevance others document
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O(R|d) = P [R|d]
P [R̄|d] (odds for ranking)

= P [d|R]⇥P [R]
P [d|R̄]⇥P [R̄]

(Bayes’ theorem)

/ P [d|R]
P [d|R̄]

(rank equivalence)

=
Q
t2V

P [dt|R]
P [dt|R̄]

(independence assumption)

=
Q
t2q

P [dt|R]
P [dt|R̄]

(non-query terms)

=
Q
t2d
t2q

P [Dt|R]
P [Dt|R̄]

⇥
Q
t 62d
t2q

P [D̄t|R]
P [D̄t|R̄]

Ranking Proportional to Relevance Odds

!

!

!

!

!

!

!

!

 

with dt indicating if document d includes term t 
and Dt indicating if random document includes term t
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Ranking Proportional to Relevance Odds (cont’d)

!57

=
Q
t2d
t2q

P [Dt|R]
P [Dt|R̄]

⇥
Q
t 62d
t2q

P [D̄t|R]
P [D̄t|R̄]

=
Q
t2d
t2q

pt

qt
⇥

Q
t 62d
t2q

(1�pt)
1�qt

(shortcuts pt and qt)

=
Q
t2q

p
dt
t

q
dt
t

⇥
Q
t2q

(1�pt)
1�dt

(1�qt)1�dt

/
P
t2q

log

⇣
p
dt
t (1�pt)
(1�pt)dt

⌘
� log

⇣
q
dt
t (1�qt)
(1�qt)dt

⌘

=
P
t2q

dt log
pt

1�pt
+

P
t2q

dt log
1�qt
qt

+
P
t2q

log

1�pt

1�qt

/
P
t2q

dt log
pt

1�pt
+

P
t2q

dt log
1�qt
qt

(invariant of d)
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Estimating pt and qt with a Training Sample

• We can estimate pt and qt based on a training sample obtained  
by evaluating the query q on a small sample of the corpus and  
asking the user for relevance feedback about the results 

• Let N be the # documents in our sample  
 R be the # relevant documents in our sample  
 nt be the # documents in our sample that contain t 
 rt be the # relevant documents in our sample that contain t 
we estimate  
 
 
 
or with Lidstone smoothing (λ = 0.5) 

!58

pt =
rt
R

qt =
nt � rt
N �R

pt =
rt + 0.5

R+ 1
qt =

nt � rt + 0.5

N �R+ 1
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Smoothing (with Uniform Prior)

• Probabilities pt and qt for term t are estimated by  
MLE for Binomial distribution 

• repeated coin tosses for term t in relevant documents (pt) 

• repeated coin tosses for term t in irrelevant documents (qt) 

• Avoid overfitting to the training sample by smoothing estimates 

• Laplace smoothing (based on Laplace’s law of succession)  
 
 

• Lidstone smoothing (heuristic generalization with λ > 0)

!59

pt =
rt + �

R+ 2�
qt =

nt � rt + �

N �R+ 2�

pt =
rt + 1

R+ 2
qt =

nt � rt + 1

N �R+ 2
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Binary Independence Model (Example)

• Consider query q = {t1, …, t6} and sample of four documents 

!

!

!

!

!

!

• For document d6 = {t1, t2, t6} we obtain

!60

t1 t2 t3 t4 t5 t6 R

d1 1 0 1 1 0 0 1
d2 1 1 0 1 1 0 1
d3 0 0 0 1 1 0 0
d4 0 0 1 0 0 0 0
nt 2 1 2 3 2 0
rt 2 1 1 2 1 0
pt 5/6 1/2 1/2 5/6 1/2 1/6
qt 1/6 1/6 1/2 1/2 1/2 1/6

R = 2 
N = 4

P [R|d6, q] / log 5 + log 1 + log

1

5
+ log 5 + log 5 + log 5
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Estimating pt and qt without a Training Sample

• When no training sample is available, we estimate pt and qt as  
 
 

• pt reflects that we have no information about relevant documents 

• qt under the assumption that # relevant documents <<< # documents  

• When we plug in these estimates of pt and qt, we obtain  
 
 
 
 
which can be seen as TF*IDF with binary term frequencies  
and logarithmically dampened inverse document frequencies

!61

pt = (1� pt) =
1

2
qt =

dft
|D|

P [R|d, q] =
X

t2q

dt log 1 +
X

t2q

dt log
|D|� dft

dft
⇡

X

t2q

dt log
|D|
dft
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Poisson Model

• For generating document d from joint (multivariate)  
term distribution Φ  

• consider counting random variables: dt = tft,d 

• postulate independence among these random variables 

• Poisson model with term-specific parameters µt: 

!

!

• MLE for µt from n sample documents {d1, …, dn}: 

• no penalty for absent words 

• no control of document length  

!62

P [d|µ] =
Y

t2V

e�µt · µdt
t

dt!
= e�

P
t2V µt

Y

t2d

µdt
t

dt!

µ̂t =
1

n

nX

i=1

tft,di
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3. Okapi BM25

• Generalizes term weight  
 
 
 
into  
 
 
 
where pi and qi denote the probability that term occurs i times  
in a relevant or irrelevant document, respectively 

• Postulates Poisson (or 2-Poisson-mixture) distributions for terms

!63

w = log

p(1� q)

q(1� p)

qtf = e�µ µtf

tf !
ptf = e�� �tf

tf !

w = log

ptfq0

qtfp0
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Okapi BM25 (cont’d)

• Reduces the number of parameters that have to be learned and  
approximates Poisson model by similarly-shaped function 

!

!

• Finally leads to Okapi BM25 as state-of-the-art retrieval model  
(with top-ranked results in TREC) 

!

!

• k1 controls impact of term frequency (common choice k1 = 1.2) 

• b controls impact of document length (common choice b = 0.75)

!64

w =
tf

k1 + tf

log

p(1� q)

q(1� p)

wt,d =
(k1 + tft,d)

k1((1� b) + b

|d|
avdl ) + tft,d

log

|D|� dfj + 0.5

dfj + 0.5



IR&DM ’13/’14

Okapi BM25 (Example)

!

!

!

!

• 3D plot of a simplified  
BM25 scoring function  
using k1 = 1.2 as parameter  
(DF mirrored for better readability) 

• Scores for dft > N/2 are negative  

!65

wt =
(k1 + 1) tft,d
k1 + tft,d

log

|D|� dft + 0.5

dft + 0.5
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4. Tree Dependence Model

• Consider term correlations in documents (with binary RV Xi)  
requires estimating m-dimensional probability distribution 

!

• Tree dependence model [van Rijsbergen 1979] 

• considers only 2-dimensional probabilities for term pairs (i, j) 

!

!

!

• estimates for each (i, j) the error made by independence assumptions 

• constructs a tree with terms as nodes and m-1 weighted edges 
connecting the highest-error term pairs

!66

fij(Xi, Xj) = P [Xi = .., Xj = ..]

=
P
X1

. . .
P

Xi�1

P
Xi+1

. . .
P

Xj�1

P
Xj+1

. . .
P
Xm

P [X1 = .., . . . , Xm = ..]

P [X1 = .., . . . , Xm = ..] = fX(X1, . . . , Xm)
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Two-Dimensional Term Correlations

• Kullback-Leibler divergence estimates error of approximating f 
by g assuming pairwise term independence 

!

!

• Correlation coefficient for term pairs 

!

!

• p-values of Χ 2 test of independence

!67

✏(f, g) =
X

X2{0,1}m

f(X) log
f(X)

g(X)
=

X

X2{0,1}m

f(X) log
f(X)

mQ
i=1

g(Xi)

⇢(Xi, Xj) =
Cov(Xi, Xj)p

V ar(Xi)
p

V ar(Xj)
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Kullback-Leibler Divergence (Example)

• Given are documents d1=(1,1), d2=(0,0), d3=(1,1), d4=(0,1) 

• 2-dimensional probability distribution f: 
f(1,1) = P[X1 = 1, X2 = 1] = 2/4 
f(0,0) = 1/4, f(0,1) = 1/4, f(1,0) = 0 

• 1-dimensional marginal distributions g1 and g2 
g1(1) = P[X1=1] = 2/4, g1(0) = 2/4  
g2(1) = P[X2=1] = 3/4, g2(0) = 1/4 

• 2-dimensional probability distribution assuming independence  
g(1,1) = g1(1) g2(1) = 3/8  
g(0,0) = 1/8, g(0,1) = 3/8, g(1,0) = 1/8 

• approximation error ε (Kullback-Leibler divergence)  
ε = 2/4 log 4/3 + 1/4 log 2 + 1/4 log 2/3 + 0

!68
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Constructing the Term Dependence Tree

• Input: Complete graph (V, E ) with m nodes Xi ∈ V and m2 
undirected edges (i, j) ∈ E with weights ε   

• Output: Spanning tree (V, E’) with maximum total edge weight 

• Algorithm: 

• Sort m2 edges in descending order of weights 

• E’ = ∅ 

• Repeat until |E’| = m-1 

• E’ = E’ ∪  
  {(i, j) ∈ E \ E’ | (i, j) has maximal weight and E’ remains acyclic} 

• Example:

!69

web surf

net swim

0.7

0.1

0.30.9
0.5

0.1

web

surfnet

swim
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Estimation with Term Dependence Tree

• Given a term dependence tree (V={X1, …, Xm}, E’) with preorder-
labeled nodes (i.e., X1 is root) and assuming that  
Xi and Xj are independent for (i, j) ∉ E’ 

!

!

!

!

!

!

• Example:

!70

P [X1 = .., . . . , Xm = ..]

= P [X1 = ..]P [X2 = .., . . . , Xm = ..|X1 = ..] (conditional probability)

=
mQ
i=1

P [Xi = ..|X1 = .., . . . , Xi�1 = ..] (chain rule)

= P [X1]
Q

(i,j)2E0
P [Xj |Xi] (independence assumption)

= P [X1]
Q

(i,j)2E0

P [Xj ,Xi]
P [Xi]

(conditional probability)

web

surfnet

swim

P [web, net, surf, swim]
= P [web]P [net|web]P [surf|web]P [swim|surf]
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5. Bayesian Networks

• A Bayesian network (BN) is a directed, acyclic graph (V, E) with 

• Vertices V representing random variables 

• Edges E representing dependencies 

• For a root R ∈ V the BN captures the prior probability P[R = …] 

• For a vertex X ∈ V with parents parents(x) = {P1, …, Pk} 
the BN captures the conditional probability P[X |P1, …, Pk ] 

• The vertex X is conditionally independent of a non-parent node Y  
given its parents parents(x) = {P1, …, Pk}, i.e.:

!71

P [X|P1, . . . , Pk, Y ] = P [X|P1, . . . , Pk]
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Bayesian Networks (cont’d)

• We can determine any joint probability using the BN

!72

P [X1, . . . , Xn]

= P [X1|X2, . . . , Xn]P [X2, . . . , Xn]

=

Qn
i=1 P [Xi|Xi+1, . . . , Xn] (chain rule)

=

Qn
i=1 P [Xi|parents(Xi), other nodes] (conditional independence)

=

Qn
i=1 P [Xi|parents(Xi)]
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Bayesian Networks (Example)

!73

Cloudy

Sprinklers Rain

Wet

P[C] P[C̄]
0.5 0.5

C P[S] P[S̄]
F 0.5 0.5
T 0.1 0.9

C P[R] P[R̄]
F 0.2 0.8
T 0.8 0.2

S R P[W] P[W̄]
F F 0.0 1.0
F T 0.9 0.1
T F 0.9 0.1
T T 1.0 0.0

P [C, S, R̄,W ] = P [C]P [S|C]P [R̄|C]P [W |S, R̄] = 0.5⇥ 0.1⇥ 0.2⇥ 0.9
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Bayesian Networks for IR

!74

P [ti|dj ] =
⇢

1 : ti 2 dj
0 : otherwise

P [dj ] = 1/N

d1 dj dN

t1 ti tMtk

q

… …

……

P [q, dj ] =
P

(t1,...,tM )

P [q, dj , t1, . . . , tM ]

=
P

(t1,...,tM )

P [q|dj , t1, . . . , tM ]P [dj , t1, . . . , tM ]

=
P

(t1,...,tM )

P [q|t1, . . . , tM ]P [t1, . . . , tM |dj ]P [dj ]

P [q|parents(q)] =
⇢

1 : 9 t 2 parents(q) : rel(t, q)
0 : otherwise
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Advanced Bayesian Networks for IR

• BN not widely adopted in IR due to challenges in parameter 
estimation, representation, efficiency, and practical effectiveness

!75

d1 dj dN

t1 ti tMtk

q

… …

……

c1 cK… concepts/topics cl:

P [ck|ti, tl] ⇡
dfil

dfi + dfl � dfil
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Summary of III.3

• Probabilistic IR as a family of (more) principled approaches  
relying on generative models of documents as bags of words 

• Probabilistic ranking principle as the foundation  
establishing that ranking documents by P[R| d, q] is optimal 

• Binary independence model puts that principle into practice  
based on a multivariate Bernoulli model 

• Smoothing to avoid overfitting to the training sample 

• Okapi BM25 as a state-of-the-art retrieval model  
based on an approximation of a 2-Poisson mixture model 

• Term dependence model and Bayesian networks  
can consider term correlations (but are often intractable)
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Relevant? ... Probably”: A Survey of Probabilistic Models in Information Retrieval, 
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• S.E. Robertson, K. Spärck Jones: Relevance Weighting of Search Terms,  
JASIS 27(3), 1976 

• S.E. Robertson, S. Walker: Some Simple Effective Approximations to the 2-Poisson 
Model for Probabilistic Weighted Retrieval, SIGIR 1994 

• T. Roelleke: Information Retrieval Models: Foundations and Relationships  
Morgan & Claypool Publishers, 2013 

• K. Spärck-Jones, S. Walter, S. E. Robertson: A probabilistic model of information 
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