111.4 Statistical Language Models

Basics of Statistical Language Models
Query-Likelihood Approaches
Smoothing Methods

Divergence Approaches

A o

Extensions

Based on MRS Chapter 12 and [Zha1 2008]
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1. Basics of Statistical Language Models

e Statistical language models (LMs) are generative models of
word sequences (or, bags of words, sets of words, etc.)

dog : 0.5
cat 0.4 1
hog : 01 . s
.... ...A
....... >® @ P((hog)) = 0.1x0.1
" P({cat, dog)) = 0.4x0.9x0.5x0.1
0.9 P((dog, dog, hog)) = 0.5%x0.9x0.5x0.9x0.1x0.1

» Application examples:

* Speech recognition, e.g., to select among multiple phonetically similar
sentences (“get up at 8 o’clock” vs. “get a potato clock’™)

 Statistical machine translation, e¢.g., to select among multiple candidate
translations (“logical closing” vs. “logical reasoning”)

 Information retrieval, e.g., to rank documents in response to a query
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Types of Language Models

e Unigram LM based on only single words (unigrams), considers
no context, and assumes independent generation of words

PWMWMD:HHM

* Bigram LM conditions on the preceding term

PWMW%»:WﬂHfWMQ

* n-Gram LM conditions on the preceding (n-1) terms

P(<t1>-°-7tm>):P(t1 t2|t1 Hpt‘tz n+1---0g
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Parameter Estimation

* Parameters (e.g., P(¢), P(¢ | ti-1)) of language model 0 are
estimated based on a sample of documents, which are
assumed to have been generated by 6

« Example: Unigram language models Osporis and Opoiisics
estimated from documents about sports and politics

0 Sports —
soccer : 020 4 .......... Sample ..................

goal ; 0.15

tennis : 0.10

player . 005 ................. generates .......... > H
HPolitics 'J:
party : 0.20 1 o . Qamnle  ceeerieinennn,

debate . 0.20 < Samp le

scandal 0.15

electiOl/l : 005 ................. generates .......... > [ |
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Probabilistic IR vs. Statistical Language Models

P[R|d, q] “User finds document d

relevant to query q”

PIR|d. q ? Plg,d|R]
x L%, X Plq,d|R]

Plg|d,R] P[R|d]
Plq|d,R] P[R|d]

x Plqg|d, R]
Probabilistic IR | Statistical LMs
ranks according to rank according to
relevance odds query likelihood
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2. Query-Likelihood Approaches

Oa1
P(agld .+ |apple : 020 g -+++-- SQamnle ------
(4| 1) aple s s | Sample d;
A
q v.
. Oa2
cake 020 | & +e-+-- SQamnle ......
Plglds) e (omet o ols | Sample d>

* P(g|d) 1s the likelihood that the query was generated by
the language model 6 estimated from document d

e Intuition:

« User formulates query ¢g by selecting words from a prototype document

* Which document 1s “closest” to that prototype document
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Multi-Bernoulli LM

* Query ¢ 1s seen as a set of terms and generated from document d
by tossing a coin for every word from the vocabulary V'

P(q|d)

¢

[[ P(tld) x

tEq

[[ P(t]d)

teq

[1 (1— P(tld)

teV\g

(assuming |q| << |V|)

 [Ponte and Croft 98] pioneered the use of LMs 1n IR
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Multinomial LM

* Query ¢ 1s seen as a bag of terms and generated from document d
by drawing terms from the bag of terms corresponding to d

‘Q| 1)t (isq)
( tf(tlaq) e tf(thMQ) > tzl_E[qP(tz‘d)

x [ P(t;|d)tf )

t;€q

P(q|d)

¢

|| P(t;|d) (assuming Vt; € q : tf(t;,q) =1)

t: €q

* Multinomial LM is more expressive than Multi-Bernoulli LM
and therefore usually preferred
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Multinomial LM (cont’d)

 Maximum-likelihood estimate for parameters P(#|d)

tf(tivd)
d|

P(t;|d) =

1s prone to overfitting and leads to
* bias 1n favor of short documents / against long documents

e conjunctive query semantics, 1.¢., query can not be generated from
language models of documents that miss one of the query terms
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3. Smoothing
* Smoothing methods avoid overfitting to the sample (often: one
document) and are essential for LMs to work in practice
* Laplace smoothing (cf. Chapter I11.3)
* Absolute discounting
e Jelinek-Mercer smoothing
* Dirichlet smoothing

* Good-Turing smoothing

o Katz’s back-off model

* Choice of smoothing method and parameter setting still mostly
“black art” (or empirical, 1.e., based on training data)
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Jelinek-Mercer Smoothing

» Uses a linear combination (mixture) of document language
model §;and document-collection language model 6p

F(td) | t(t.D)
g TN

with document D as concatenation of entire document collection

P(t|d) = A

» Parameter A can be tuned by cross-validation with held-out data
* divide set of relevant (g, d) pairs into n partitions
 build LM on the pairs from n-1 partitions
 choose A to maximize precision (or recall or F1) on held-out partition

« iterate with different choice of n'" partition and average

* Parameter A can be made document- or term-dependent
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Jelinek-Mercer Smoothing vs. TF*IDF

P(qld) = tgl P(t|d)
q
- tf(t,d) | tf(t,D
— H ()\ |(d| ) | (1_)\) |(D| ))
teq

x Y log (A LGD 4 (1= 0 Y52
€q

. ;qulog (1 S 1-Xx [d]  tf(t,D)

* (Jelinek-Mercer) smoothing has effect similar to IDF weighting

* Jelinek-Mercer smoothing leads to a TF*IDF-style model
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Dirichlet-Prior Smoothing

* Uses Bayesian estimation with a conjugate Dirichlet prior
instead of the Maximum-Likelithood Estimation

tf(t,d) + a L5

d| + «

P(t|d) =

* Intuition: Document d 1s extended by a terms generated
by the document-collection language model

» Parameter a usually set as multiple of average document length
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Dirichlet Smoothing vs. Jelinek-Mercer Smoothing

d) ,D
P(tld) = XG4 (1 - ) 5P

O ld ) LF(£,D) 4
dta 14 T e 1o (set A= )

tf(t,D)

|d]+-a

 Jelinek-Mercer smoothing with document-dependent A
becomes a special case of Dirichlet smoothing
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4. Divergence Approaches

D<HQ ‘ |9d1 )
0,
...... p |apple 0.20
q muffin : 0.15 |
D<9q ‘ |(9d2 )

* Query-likelihood approaches see query as a sample from a LM

61

_. " |apple :

pie

0.20
0.15

042

. cake
" |apple

0.20
0.15

di

* Query expansion, relevance feedback, etc. are difficult to express
as query-likelihood approaches, since they would require

tinkering with the sample (i.e., the query) and more fine-grained

control than adding/removing terms
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Kullback-Leibler Divergence

» Kullback-Leibler divergence (aka. information gain or relative
entropy) 1s an information-theoretic non-symmetric measure of
distance between probability distributions

« Example:
0,
apple 0.50
muffin : 0.50
04
apple : 0.25
muffin : 0.25
recipe : 0.10
water : 0.10
sugar : 0.30

[R&DM °13/°14

D(604]|04)

D(04]|0a)

P(apple|0y) log

0.50 log

1.00

2 P(t]0,) log

teVv

0.50

0.25

P(t|64)

P(apple|6,) + P(mulcﬁn‘eq)

+0.50 log

P(apple|6q)

0.50
0.25

P(t]04)
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Relevance Feedback LM

 [Zha1 and Lafferty ’01] re-estimate query language model as
P(t0)) = (1 — a) P(t|0,) + o P(t|0F)
with F as the set of documents with positive feedback from user

 MLE of 6F obtained by maximizing log-likelihood function
log P(F|0p) =) tf(t,F)log((1—A)P(t|fF) + AP(t|6p))

teVv

with #/(z, F’) as the total term frequency of 7 in documents from F
and @p as the document-collection language model
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5. Extensions

» Statistical language models have been one of the highly active
areas in IR research during the past decade and continue to be

 Extensions:

* Term-specific and document-specific smoothing
(JM-style smoothing with term-specific At or document-specific Ad)

* (Semantic) Translation LMs
(e.g., to consider synonyms or support cross-lingual IR)

 Time-based LMs
(e.g., with time-dependent document prior to favor recent documents)

 LMs for (semi-)structured XML and RDF data
(e.g., for entity search or question answering)
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Translation LM for Cross-Lingual IR

* Cross-Lingual IR:

» Users 1ssue queries in their native language (¢.g., German)
(e.g., spionage usa bundesregierung )

e System returns documents in another known language (¢.g., English)
(e.g., reactions of the German government to U.S. eavesdropping on ...

P(qld) = ][> P(tlw) P(wl|d)

* Translation probabilities P(#/w) obtained from a dictionary or
estimated based on a parallel cross-lingual corpus

 [Federico and Bertold1 ’01] as more advanced approach based
on a Hidden-Markov Model that also considers term contexts

[R&DM °13/°14
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Time-Based LMs

* Intuition: For news-related queries (e.g., german election)
documents published more recently are often preferable

 [L1 and Croft ’03] rank documents according to

P(q|d) P (HP tldt ) (A e_)‘(now—t))

with document publication timestamp ¢ and time-dependent
exponentially decaying document prior P(d)

* [Peetz and de Rijke *13] consider other document priors
motivated by cognitive psychology research on human memory
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LM for Entity Search

* Objective: Retrieve entities (e.g., people, locations, organizations)
relevant to query g as opposed to only documents [N1 et al. ‘07]

Candidate Entities:
Queryq 1. Arjen Robben ;
dutc h soccer e 2 Rafael van der Vaart
laver mumch 3 Louis van Gaal '
py """""""""""""""""" 4 Daniel van Buyten

5 Toni Kroos

» Language model &. for entity e can be estimated from contexts
in which the entity is mentioned 1n the document collection,
possibly taking into account extraction accuracy

...............................................................................................................................................................

...munich’s flying dutchman...

...one of bayern s most valuable players...

...winning soccer’s most prestigious champions league...

...with the dutch national team...
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Summary of II1.4

 Statistical language models
widely used 1n natural language applications other than IR

* Query-likelihood approaches
see the query as a sample from the document LM

* Divergence approaches
are more expressive comparing query LM against document LM

* Smoothing methods
are absolutely essential to make LMs work in practice

* Various extensions
for advanced tasks such as cross-lingual IR or entity search
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Additional Literature for 111.4

D. Hiemstra: Using Language Models for Information Retrieval, Ph.D. Thesis,
University of Twente, 2001

M. Federico and N. Bertoldi: Statistical Cross-Language Information Retrieval using
N-Best Query Translations, SIGIR 2001

Z.. Nie, Y. Ma, S. Shi, J.-R. Wen and W.-Y. Ma: Web Object Retrieval,
WWW 2007

H. M. Peetz and M. de Rijke: Cognitive Temporal Document Priors,
ECIR 2013

J. M. Ponte and B. Croft: 4 Language Modeling Approach to Information Retrieval,
SIGIR 1998

e C. Zhai and J. Lafferty: Model-based Feedback in the Language Modeling Approach
for Information Retrieval, CIKM 2001

» C. Zhai: Statistical Language Models for Information Retrieval A Critical Review,
Foundations and Trends in Information Retrieval 2(3):137-213, 2008
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111.5 Latent Topic Models

1. Latent Semantic Indexing
2.  Probabilistic Latent Semantic Indexing

3. Latent Dirichlet Allocation

Based on MRS Chapter 18 and [Ble1 ‘12]
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Latent Topic Models

» Retrieval models seen so far (e.g., TF*IDF, LMs) do not handle
synonymy (e.g., car and automobile), polysemy (e.g., java), etc.

* Word co-occurrence can help us, e.g.:
* car and automobile both occur together with garage, exhaust, fuel, ...

* java occurs together with class and method but also with grind and coffee

* Latent topic models assume that documents are composed from
a small number k of latent (i.e., hidden, unknown) topics

» Latent Semantic Indexing (LSI) [Deerwester et al. ‘90]
 Probabilistic Latent Semantic Indexing (pLSI) [Hofmann ‘99]

 Latent Dirichlet Allocation (LDA) [Blei et al. ‘03]
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1. Latent Semantic Indexing (LSI)

 Idea: Apply SVD to m-by-n term-document matrix A4

document topic topic document

§ A ~ E U @
Utk 2k Vil

« Ui, Vi, Xk contain the first k singular vectors and values
* Ux maps terms to topics

e 'k maps documents to topics
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Operations 1n Latent Topic Space

* We can map a query ¢ from m-dimensional term space
into the k-dimensional topic space by ¢ — Uil g = ¢’

* Ranking of documents can then be determined by comparing ¢’
against the columns of Vi! using dot product or cosine similarity

* We can fold in a new document from m-dimensional term space
by mapping it to k-dimensional topic space asd — Uil d = d’
and appending it as a new column to Vi! (with quality
deteriorating over time)
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LSI (Example)

m = 6 (terms)

t] ; bak(e,ing) n =5 (documents)

6 recipe(s) di how to bqke bread .without recipes

b bread d the clats*szc artoof viennese pastry |

o cake d3 numerical rec.lpess.the art of scientific computing
e pastr(yies) da breads, pastries, pies and cakes.'.quantzty baking recipes
o pie ds pastry: a book of best french recipes

0.5774 0.0000 0.0000 0.4082 0.0000)
0.5774 0.0000 1.0000 0.4082 0.7071
0.5774 0.0000 0.0000 0.4082 0.0000
0.0000 0.0000 0.0000 0.4082 0.0000
0.0000 1.0000 0.0000 0.4082 0.7071
L 0.0000 0.0000 0.0000 0.4082 0.0000 )
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LSI (Example)

(0.2670 —0.2567 0.5308 —0.2847)
0.7479 —0.3981 —0.5249 0.0816
0.2670 —0.2567 0.5308 —0.2847 U
0.1182 -0.0127 0.2774 0.6394
0.5198 0.8423 0.0838 —0.1158
\0.1182 —-0.0127 0.2774 0.6394 )

(1.6950 0.0000 0.0000 0.0000°
0.0000 1.1158 0.0000 0.0000 )
0.0000 0.0000 0.8403 0.0000
. 0.0000 0.0000 0.0000 0.4195)

[ 0.4366 0.3067 0.4412 0.4909 0.5288 "
-0.4717 0.7549 -0.3568 —0.0346 0.2815 24
0.3688 0.0998 —0.6247 0.5711 —0.3712
\—0.6715 -0.2760 0.1945 0.6571 —0.0577)
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LSI (Example)

[ 0.4971 —0.0330 0.0232 0.4867 —0.0069"
0.6003 0.0094 0.9933 0.3858 0.7091
0.4971 —0.0330 0.0232 0.4867 —0.0069
0.1801 0.0740 —0.0522 0.2320 0.0155

—0.0326 0.9866 0.0094 0.4402 0.7043

. 0.18301 0.0740 —0.0522 0.2320 0.0155 )

= Uxz X357
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LSI (Example)

* Query: baking bread
cq=(101000)
e ¢’ = Us"q =(0.5340 -0.5134 1.0616)"

e Dot-product similarity in topic space

e sim(q, d1) = 0.86 / sim(q, d2) =-0.12 / sim(q, d3) = -0.24

e Adding d¢ = “algorithmic recipes for the computation of pie”
ed=(00.07071 00 0 0.07071)"
e d’= Usd=(0.5-0.28 -0.15)7

e d’ becomes a new column of Vi!
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Issues with LLSI

 Parameter tuning
« How to select proper number of latent topics £?
* Memory consumption
e Term-by-document matrix A4 1s usually sparse
* SVD factors U and V are almost never sparse
e Computational cost
* SVD still expensive to compute when m and » at the order of millions
* Retrieval effectiveness

» LSI achieved only mediocre performance on TREC datasets
with good gains for some queries but losses for others
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2. Probabilistic Latent Semantic Indexing (pLSI)

 Idea: Model documents as (probabilistic) mixtures of topics
» Each topic generates terms with topic-specific probabilities

* Assume conditional independence of word w and document d
given topic ¢:

Plw,d,t] = Plw,d|t] P[t] = Plwl|t] P[d|t] P[t

e Generative model
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pLSI Generative Model

Plw|d] =~ Plwlt] P[t|d]

t

i Jight

dn
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Computing pLSI

* Parameters P[¢|d] and P[w|t] can be determined using
the 1terative method Expectation Maximization (EM)

* Query g 1s folded in by estimating the topic distribution P[#|g]
that provides the best explanation of the query terms

* Ranking of documents can then be determined by comparing the
topic distributions P[#q] and P[td], e.g., using KL divergence
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pLSI vs. LSI

t
......... document =~ . topic __topic
o
X gl
g A ~ U S S
Ui 2k Vil

e Differences to SVD:

 probabilities P[w|t], P[d|t], and P[¢] are non-negative and normalized

* loss function 1s Kullback-Leibler divergence instead of squared loss
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pLSI (Example)

* Topics (10 of 128) extracted from 12K Science Magazine articles

A Itiverse 00429 | | drug 0.0672 cells 0.0675 SEUENCE 00818
: galaxies 00375 | patents 0.0493 stermn 0.0478 SECUENCES 0.0493
- . clusters 00279 | | drugs 0.0444 hurman 00421 SENOME 0.033
= 0| matter 0.0233| | clinical 0.0346 | | cell 0.0309 | | dna 0.0257
S E alazxy 00232 | |treatment 0028 gEne 0.025 sequencing  (0.0172
— clister 00214 | | trials 0.0277 tizsue 00185 map 0.0123
Qﬂ . cosmic 0.0137| |therapy 0.0213 | | cloning 0.0169 | § genes 0.0122
. darle 00121/ |tral 00164 transfer 00155 chromosome 001189
E light 0.010%| | disease 0.0157 blood 00113 regions 00119
’ density 001 medical 0.00%97 | embryos 00111 human 00111
A bacteria 00883 male 00555 theory 00811 TN 0.0909 | | stars 0.0524
: bacterial 0.0561 females 0.0541 physics 00792 || response 00375 [ | star 0.0458
- . resistance 0.0431 female 00523 physicists 00146 system 0.0358 | | astrophys 0.0237
i: coli 0.0381 males 0.0477 e 0014> || responses 00522 | | mass 0.021
S straits 0.025 SEX 00339 university Rk atitioen 00263 | | disk 00173
— rricrobiol 0.0214 reproductive 00172 gravity 0013 antigens 0.0184 | | black 0.0161
Qq . microbial 00194 offspring 00168 black 00127 || trunudty 0.0176 | | gzas 001459
. strat 0.0165 sexal 0.0166 thserias 001 wnmunelogy 0.0145 | | stellar 00127
E salmonella 0.0163 reproduction 00143 aps 0 apan7| | antbody 0.014 astron 00125
* resistant 0.0145 Bogs 00135 matter 0.00954| | autormmune  0.0128 | | hele 0.00824

Source: Thomas Hofmann, Tutorial at ADFOCS 2004
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3. Latent Dirichlet Allocation (LDA)

* Multiple-cause mixture model (MCMM)
* Documents contain multiple topics
* Topics are expressed by specific word distributions

* LDA provides a generative model for this

Seeking Life's Bare (Genetic) Necessities

UOHLD SPRING HARBOR, NEW YORE
| 1 lisess im Tk I |
1 week ar the
ETols T i i
e e
th i
el 1
b
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LLDA Generative Model

* For each of the D documents d
* Choose document length N (# word occurrences) ~ Poisson(\)
* Choose topic-probability distribution parameters f ~ Dirichlet(a)

* For each of the N word occurrences in d (at position n)
* Choose one of & topics ¢, ~Multinomial(p, k)

* Choose one of M words w, from per-topic distribution ~ Multinomial(0, M)

() Latent (hidden) RV

Multinomial(0, M) Q ‘ Observable RV (data)

Q >©_*Q—’ ‘ __________________________________________________

Dirichlet(a) Multinomial(, k) topic ¢ word w D
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Comparison to Other Generative Models

Multinomial(0, M) Q

O ’Q—*Qﬁﬁ LDA
Dirichlet(a) Multinomial(, k) topic ¢ word w D
o —o
document d topic ¢ word w
Q__, ‘ Single-Cause
Mixture of Unigrams
topic ¢ word w

Simple
‘ Unigram Model

word w

[R&DM °13/°14
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Computing LDA

 Dirichlet(a) probability density function

witha; >0, fi>0and X ;=1
* Probability of document d given a and 6

N

Pld|a, 0] = /f(ﬂ\oé) (H Z 5tn9tn,wn) dp

n=1t,=1

» Log-likelihood function (for corpus of D documents)
1s analytically intractable
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Computing LDA (cont’d)

» Parameters a and @ can be estimated using Expectation
Maximization (EM) with lower-bound distributions

Dirichlet(y) Multinomial(e, k)

\ L

Dirichlet(a) Multinomial(, k) topic ¢ word w D ) topicz N D

Multinomial(0, M)

 E-Step: Determine optimal parameters y* and ¢* of
lower-bound distributions given a - and § (-1

« M-Step: Given fixed lower-bound distributions determine
parameters a ) and ) that maximize log-likelihood

 Full details: [Ble1 et al *03]
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LDA (Example)

* Topics from 5K scientific articles and 16K newswire articles

“Arts” “Children” “Education”

NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS

SHOW PROGRAM PEOPLE SCHOOLS

MUSIC BUDGET CHILD EDUCATION

MOVIE BILLION YEARS TEACHERS

PLAY FEDERAL FAMILIES HIGH

MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER

ACTOR NEW SAYS BENNETT

FIRST STATE FAMILY MANIGAT

YORK PLAN WELFARE NAMPHY

OPERA MONEY MEN STATE

THEATER, PROGRAMS PERCENT PRESIDENT

ACTRESS GOVERNMENT CARE ELEMENTARY

LOVE CONGRESS LIFE HAITI
The William Randolph Hearst will give to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act
every bit as important as our traditional areas of in health, medical education
and the social Hearst Randolph A. Hearst said Monday in

the Lincoln Center’s share will be for its new which
will young artists and new The Metropolitan Opera Co. and
New York Philharmonic will each. The Juilliard School, where music and
the performing arts are taught, will get The Hearst a leading supporter
of the Lincoln Center Consolidated Corporate will make its usual

donation, too.

Source: [Blei et al. *03]
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Summary of I1I.5

* Latent topic models
consider word co-occurrence and implicitly handle synonymy etc.

* Latent Semantic Indexing (LSI)
applies SVD to term-document matrix 4

* Probabilistic Latent Semantic Indexing (pLSI)
uses a non-negative probabilistic decomposition of A4

e Latent Dirichlet Allocation (LDA)
uses a probabilistic generative model
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Additional Literature for I11.5

D. M. Blei, A. Y. Ng, M. 1. Jordan: Latent Dirichlet Allocation,
Journal of Machine Learning Research 3:993-1022, 2003

D. M. Blei: Probabilistic Topic Models,
CACM 55(4):77-84, 2012

S. Deerwester, S. Dumais, G. W. Furnas, T. K. Landauer, R. Hashman:
Indexing by Latent Semantic Analysis, 1990

T. Hofmann: Probabilistic Latent Semantic Indexing,
SIGIR 1999
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