
IR&DM ’13/’14

IV.4 Topic-Specific & Personalized PageRank

• PageRank produces “one-size-fits-all” ranking determined  
assuming uniform following of links and random jumps  

• How can we obtain topic-specific (e.g., for Sports) or  
personalized (e.g., based on my bookmarks) rankings?

• bias random jump probabilities (i.e., modify the vector j)

• bias link-following probabilities (i.e., modify the matrix T)

!

• What if we do not have hyperlinks between documents?

• construct implicit-link graph from user behavior or document contents

!46

IR&DM ’13/’14

Topic-Specific PageRank

• Input: Set of topics C (e.g., Sports, Politics, Food, …)  
 Set of web pages Sc for each topic c (e.g., from dmoz.org)

• Idea: Compute a topic-specific ranking for c by biasing the
random jump in PageRank toward web pages Sc of that topic  
 
 with  

• Method:

• Precompute topic-specific PageRank vectors πc

• Classify user query q to obtain topic probabilities P[c|q]

• Final importance score obtained as linear combination

!47

⇡ =
X

c2C

P [c|q]⇡c

Pc = (1� ✏)T+ ✏
⇥
1 . . . 1

⇤T
jc jci =

⇢
1/|Sc| : i 2 Sc

0 : i 62 Sc

IR&DM ’13/’14

Topic-Specific PageRank (cont’d)

• Full details: [Haveliwala ’03]
!48

example, most modern search engines incorporate some
sort of hierarchical directory, listing URLs for a small subset
of the Web, as part of their search interface.16 The current
node in the hierarchy that the user is browsing at
constitutes a source of query context. When browsing URLs
at TOP/ARTS, for instance, any queries issued could have
search results (from the entire Web index) ranked with the
ARTS rank vector, rather than either restricting results to
URLs listed in that particular category, or not making use of
the category whatsoever. In addition to these types of
context associated with the query itself, we can also
potentially utilize query independent user context. Sources
of user context include the users’ browsing patterns,
bookmarks, and email archives. As mentioned in
Section 3.2, we can integrate user context by selecting a
nonuniform prior, PkðcjÞ, based on how closely the user’s
context accords with each of the basis topics.

When attempting to utilize the aforementioned sources of
search context, mediating the personalization of PageRank
via a set of basis topics yields several benefits over attempting
to explicitly construct a personalization vector.

. Flexibility. For any kind of context, we can compute
the context-sensitive PageRank score by using a
classifier to compute the similarity of the context
with the basis topics and then weighting the topic-
sensitive PageRank vectors appropriately. We can
treat such diverse sources of search context such as
email, bookmarks, browsing history, and query
history uniformly.

. Transparency. The topically-biased rank vectors
have intuitive interpretations. If we see that our
system is giving undue preference to certain topics,
we can tune the classifier used on the search context,
or adjust topic weights manually. When utilizing
user context, the users themselves can be shown
what topics the system believes represent their
interests.

. Privacy. Certain forms of search context raise
potential privacy concerns. Clearly, it is inappropri-
ate to send the user’s browsing history or other
personal information to the search-engine server for
use in constructing a profile. However, a client-side
program could use the user context to generate the
user profile locally and send only the summary
information, consisting of the weights assigned to

790 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

16. See, for instance, http://directory.google.com/Top/Arts/ or http://
dir.yahoo.com/Arts/.

TABLE 4
Top Results for the Query “Bicycling” When Ranked Using Various Topic-Specific Vectors

levels of dangling pages [26], 80 million URLs remained in
the link graph, requiring 4.3 GB of storage. This subgraph
was used for all but the final two PageRank iterations, for
which the full graph was used. Using a straightforward
implementation [16], running PageRank for 25 iterations on
one CPU took roughly five hours, both for the standard
vector as well as for each topical vector. Utilizing two dual-
processor machines, we can generate all 16 topical vectors
in roughly 20 hours.

For generating a small number of topic-specific vectors,
the above approach is reasonable in terms of time complex-
ity. However, reducing the running time can be very useful
in minimizing the delay between the completion of a new
Web crawl and the generation of an updated search index.
To improve on the above running times, we use a scheme
introduced by Kamvar et al. [21] to accelerate PageRank
computations by using successive iterates to approximate
and subtract out the nonprincipal eigenvectors from the
current iterate. Intuitively, during the iterative computation,
the algorithm periodically uses a sequence of intermediate
iterates to extrapolate the value of the true rank vector.
Using this scheme, called Quadratic Extrapolation, the
convergence of PageRank can be sped up by 25-300 percent,
depending on the setting of the parameter !.

For generating a larger number of topic-specific vectors,
a different approach is required; speeding up the computa-
tion of individual rank vectors is insufficient. Jeh and
Widom [20] propose a scheme for efficiently computing
personalized PageRank vectors by exploiting the overlap in
the computation of the different vectors. The intuition
behind their scheme can be seen through an example.
Consider the simple graph given in Fig. 4. If we set the
personalization vector ~pp to add a complete set of artificial
transitions terminating at A (Graph 1), the induced random
walk is very similar to the case where we set ~pp so that each
of the children of A, namely, B and C, are targets of a
complete set of artificial transitions (Graph 2). By exploiting
this simple observation, they construct a dynamic program-
ming algorithm to generate a large basis set of personalized
PageRank vectors simultaneously, which can then be used
to compute arbitrary topic-specific vectors. As the time and
space overhead of this latter algorithm is high, which of the

above techniques is most suitable depends on the granu-
larity of the topical basis desired.

6.2 Query-Time Processing

For efficient query-time processing, it is desirable to keep
most (if not all) of the topic-specific ranking data in main
memory. Section 6.2.1 gives an overview of a scalable
keyword-search system to help make clear why this is the
case.17 In Section 6.2.2, we describe memory-efficient
encodings for PageRank vectors that minimize the effect
of the lossy encoding on final search rankings.

6.2.1 Overview of Keyword Search Processing

As depicted in Fig. 5, a Web search system utilizes an
inverted text index I and a set of auxiliary, numeric ranking
vectors f~RRig. In our case, f~RRig includes a set of topic-
specific PageRank vectors. For simplicity, consider a system
with only the standard PageRank vector ~RRp. The index I
contains information about the occurrences of terms in
documents and is used to retrieve the set of document IDs
for documents satisfying some query Q. The index ~RRp is
then consulted to retrieve the PageRank for each of these
candidate documents. Using the information retrieved from
I and ~RRp, a composite document score is generated for each
candidate result, yielding a final ranked listing.

The inverted index I is constructed offline and provides
the mapping ft ! fdtg, where fdt describes the occurrence
of term t in document d. In the simplest case, fdt could be
the within-document frequency of t. The number of random
accesses to I needed to retrieve the necessary information
for answering a query Q exactly equals the number of terms
in the query, jQj. Because queries are typically small,
consisting of only a few words, it is practical to keep the
index I on-disk and perform jQj seeks for answering each
query.

The auxiliary index ~RRp is also constructed offline and
provides the mapping fd ! rdg, where rd is the PageRank
of document d. Note that, in contrast to I , the index ~RRp

provides per-document information. The search system
typically must access ~RRp once for each candidate document
of the result set, which could potentially be very large.
These random accesses would be prohibitively expensive,
unless ~RRp can be kept entirely in main memory. Whereas

792 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Fig. 3. Precision @ 10 results for our test queries. The average precision

over the 10 queries is also shown.

17. For further information on large-scale search systems, we refer the
reader to [30], [9].

TABLE 6
Ranking Scheme Preferred by Majority of Users

Query: bicycling

IR&DM ’13/’14

Personalized PageRank

• Idea: Provide every user with a personalized ranking based  
on her favorite web pages F (e.g., from bookmarks or likes)  
 
 with  

• Problem: Computing and storing a personalized PageRank
vector for every single user is too expensive

• Theorem [Linearity of PageRank]: Let jF and jF’ be personalized
random jump vectors and let π and π’ denote the corresponding
personalized PageRank vectors. Then for all w, w’ ≥ 0 with  
w + w’ = 1 the following holds:

!49

PF = (1� ✏)T+ ✏
⇥
1 . . . 1

⇤T
jF jFi

=

⇢
1/|F | : i 2 F
0 : i 62 F

(w⇡ + w0 ⇡0) = (w⇡ + w0 ⇡0) (wPF + w0 PF 0)

IR&DM ’13/’14

Personalized PageRank (cont’d)

• Corollary: For a random jump vector jF and basis vectors ek 
 
 with corresponding PageRank vectors πk 
 
we obtain the personalized PageRank vector πF as  
 
 

• Full details: [Jeh and Widom ‘03]

!50

eki =

⇢
1 : i = k
0 : i 6= k

jF =
X

k

wk ek ⇡F =
X

k

wk ⇡k

IR&DM ’13/’14

Link Analysis based on Users’ Browsing Sessions

• Simple data mining on browsing sessions of many users, where
each session i is a sequence (pi1, pi2, …) of visited web pages:

• consider all pairs (pij, pij+1) of successively visited web pages

• determine for each pair of web pages (i, j) its frequency f(i, j)

• select pairs with f(i, j) above minimum support threshold

• Construct implicit-link graph with the selected page pairs as
edges and their normalized total frequencies as edge weights

• Apply edge-weighted PageRank to this implicit-link graph

• Approach has been extended to factor in how much time users
spend on web pages and whether they tend to go there directly

• Full details: [Xue et al. ’03] [Liu et al. ‘08]

!51

IR&DM ’13/’14

PageRank without Hyperlinks

• Objective: Re-rank documents in an initial query result to bring
up representative documents similar to many other documents  

• Consider implicit-link graph derived from contents of documents

• weighted edge (i, j) present if document dj is among the k documents  
having the highest likelihood P[di|dj] of generating document di  
(estimated using unigram language model with Dirichlet smoothing)  

• Apply edge-weighted PageRank to this implicit-link graph  
 
 
 

• Full details: [Kurland and Lee ‘10]

!52

Tij =

8
<

:

w(i,j)P
(i,k)2E

w(i,k) : (i, j) 2 E

0 : (i, j) 62 E

IR&DM ’13/’14IR&DM ’13/’14

Summary of IV.4

• Topic-Specific PageRank  
biases random jump j toward web pages known to belong to a
specific topic (e.g., Sports) to favor web pages in their vicinity

• Personalized PageRank  
biases random jump j toward user’s favorite web pages  
linearity of PageRank allows for more efficient computation

• PageRank on Implicit-Link Graphs  
can be derived from user behavior or documents’ contents  
biases link-following probabilities T 

!53

IR&DM ’13/’14IR&DM ’13/’14

Additional Literature for IV.4
• D. Fogaras, B. Racz, K. Csolgany, and T. Sarlos: Towards Fully Scaling Personalized

PageRank: Algorithms, Lower Bounds, and Experiments, Internet Mathematics 2(3):
333-358, 2005

• D. Gleich, P. Constantine, A. Flaxman, A. Gunawardana: Tracking the Random
Surfer: Empirically Measured Teleportation Parameters in PageRank, WWW 2010

• T. H. Haveliwala: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm
for Web Search, TKDE 15(4):784-796, 2003

• G. Jeh and J. Widom: Scaling Personalized Web Search, KDD 2003

• O. Kurland and L. Lee: PageRank without Hyperlinks: Structural Reranking using
Links Induced by Language Models, ACM TOIS 28(4), 2010

• Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li: BrowseRank: Letting
Web Users Vote for Page Importance, SIGIR 2008

• G.-R. Xue, H.-J. Zeng, Z. Chen, W.-Y. Ma, H.-J. Zhang, C.-J. Lu: Implicit Link
Analysis for Small Web Search, SIGIR 2003

!54

IR&DM ’13/’14

IV.5 Online Link Analysis

• PageRank and HITS operate on a (partial) snapshot of the Web

• Web changes all the time!

• Search engines continuously crawl the Web to keep up with it  

• How can we compute a PageRank-style measure of importance
online, i.e., as new/modified pages & hyperlinks are discovered?

!55

IR&DM ’13/’14

OPIC

• Ideas:

• integrate computation of page importance into the crawl process

• compute small fraction of importance as crawler proceeds without
having to store the Web graph and keeping track of its changes

• each page holds some “cash” that reflects its importance

• when a page is visited, it distributes its cash among its successors

• when a page is not visited, it can still accumulate cash

• this random process has a stationary limit that captures the importance  
but is generally not the same as PageRank’s stationary distribution  
 
 

• Full details: [Abiteboul et al. ’03]

!56

IR&DM ’13/’14

OPIC (cont’d)

• OPIC: Online Page Importance Computation

• Maintain for each page i (out of n pages):

• C[i] – cash that page i currently has and can distribute

• H[i] – history of how much cash page has ever had in total

• Global counter

• G – total amount of cash that has ever been distributed

!57

 G = 0; for each i do { C[i] = 1/n ; H[i] = 0 }; 
 do forever { 
 choose page i // (e.g., randomly or greedily)  
 H[i] += C[i] // update history  
 for each successor j of i do  
 C[j] += C[i] / out(i) // distribute cash  
 G += C[i] // update global counter  
 C[i] = 0 // reset cash  
 }

IR&DM ’13/’14

OPIC (cont’d)

• Assumptions:

• Web graph is strongly connected

• for convergence, every page needs to be visited infinitely often

• At each step, an estimate of the importance of page i can be obtained as:

!

!

• Theorem: Let Xt denote the vector of cash fractions accumulated by pages
until step t. The limit  
 
 
exists with

!58

X[i] =
H[i]

G

X = lim
t!1

Xt

kXk1 =
X

i

Xi = 1

IR&DM ’13/’14

Adaptive OPIC for Evolving Graphs

• Idea: Consider a time window [now-T, now] where time
corresponds to the value of G

• Estimate importance of page i as

!

!

• For crawl time now, update history Hnow[i] by interpolation

• Let Hnow-T[i] be the cash acquired by page i until time (now-T)

• Cnow[i] the current cash of page i

• Let G[i] denote the time G at which i was crawled previously

!59

X
now

[i] =
H

now

[i]�H
now�T

[i]

T
G[i]

now-T now

G

Hnow[i] Hnow-T[i]
time

H
now

[i] =

8
<

:
H

now�T

· T�(G�G[i])
T

+ C
now

[i] : G�G[i] < T

C
now

[i] · T

G�G[i] : otherwise

IR&DM ’13/’14IR&DM ’13/’14

Summary of IV.5

• OPIC  
integrates page importance computation into crawl process  
can be made adaptive to handle the evolving Web graph  

!60

IR&DM ’13/’14IR&DM ’13/’14

Additional Literature for IV.5
• S. Abiteboul, M. Preda, G. Cobena: Adaptive on-line page importance computation,

WWW 2003

!61

IR&DM ’13/’14

IV.6 Similarity Search

• How can we use the links between objects (not only web pages)  
to figure out which objects are similar to each other? 

• Not limited to the Web graph but also applicable to

• k-partite graphs derived from relational database (students, lecture, etc.)

• implicit graphs derived from observed user behavior

• word co-occurrence graphs

• … 

• Applications:

• Identification of similar pairs of objects (e.g., documents or queries)

• Recommendation of similar objects (e.g., documents based on a query)

!62

IR&DM ’13/’14

SimRank

• Intuition: Two objects are similar if similar objects point to them  
 
 
 
 
with confidence constant C < 1, in-neighbors I(u) and I(v),  
and Ii(u) and Ij(v) as the i-th and k-th in-neighbor of u and v 

• Example: Universities, Professors, Students

!63

s(u, v) =
C

|I(u)| |I(v)|

|I(u)|X

i=1

|I(v)|X

j=1

s(Ii(u), Ij(v))

U1

P1

P2

S1

S2

s(P1, P2) = 0.414
s(S1, S2) = 0.331
s(U1, P2) = 0.132 
s(P1, S2) = 0.106
s(P2, S2) = 0.088
s(P2, S1) = 0.042
s(U1, S2) = 0.034

With C = 0.8:

IR&DM ’13/’14

SimRank (cont’d)

• SimRank score s(u, v) can be interpreted as the expected number
of steps that it takes two random surfers to meet if they

• start at nodes u and v

• walk the graph backwards in lock step (i.e., their steps are synchronous)  

• Full details: [Jeh and Widom ’03]

!64

s(0)(u, v) = 1 (for u = v) s(0)(u, v) = 0 (for u ≠ v)

Repeat until convergence:

 (for u ≠ v)  
 
 (for u = v)

s(k+1)(u, v) =
C

|I(u)| |I(v)|

|I(u)|X

i=1

|I(v)|X

j=1

s(k)(Ii(u), Ij(v))

s(k+1)(u, v) = 1

IR&DM ’13/’14

Random Walks on the Click Graph

• Consider bi-partite click graph with queries  
and documents as vertices and weighted  
edges (q, d) indicating users’ tendency to click  
on document d for query q

• Perform PageRank-style random walk  
with link-following probabilities proportional  
to edge weights and random jump to single query or document

• Applications:

• query-to-document search

• query-to-query suggestion

• document-by-query annotation

• document-to-document suggestion

!65

giant panda

panda bear

d1

d2

d3fiat panda

1.0

2.0

2.0

1.0

1.0

k=

Annotation using a random walk:

P Query Distance

0.075 boxer dog puppies 3

0.066 boxer puppy pics 3

0.060 boxer puppies 1

0.056 puppy boxer 3

0.056 boxer puppy pictures 3

0.049 boxer pups 3

0.049 boxer puppy 3

0.038 puppy boxers 5

0.034 boxer pup 3

0.030 baby boxer 3

Annotation using distance alone:

Query Distance

boxer puppies 1

boxer dog 3

boxer dog puppies 3

boxer 3

pictures of boxer dogs 3

akc puppies pics 3

boxer dogs 3

boxer pups 3

boxers dog 3

puppies for sale 3

Figure 10: Annotation. The given image k has only
been clicked for one query ‘boxer puppies’, which
can be interpreted as annotation [14]. We employ
a 101-0.9-backward walk to find ten annotations, as
well as showing ten annotations based on graph dis-
tance alone.

are promising that the system can be e↵ective, even without
any special noise reduction. This is perhaps not surprising,
given positive results of previous studies using Web docu-
ment co-click information, such as Xue et al [15].

Given our probabilistic model, another possible step would
be to incorporate document content and query content, by
incorporating a language model. This could further extend
the reach of our click-based models, in particular when lan-
guage models can be applied to find relevant documents that
are not yet part of the click graph.

6. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web

search ranking by incorporating user behavior
information. In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference on
research and development in information retrieval,
pages 19–26, New York, NY, USA, 2006. ACM Press.

[2] E. Agichtein, E. Brill, S. Dumais, and R. Ragno.
Learning user interaction models for predicting web
search result preferences. In SIGIR ’06: Proceedings of
the 29th annual international ACM SIGIR conference

on research and development in information retrieval,
pages 3–10, New York, NY, USA, 2006. ACM Press.

[3] R. Baeza-Yates, C. Hurtado, M. Mendoza, and
G. Dupret. Modeling user search behavior. In
LA-WEB ’05: Proceedings of the Third Latin
American Web Congress, page 242, Washington, DC,
USA, 2005. IEEE Computer Society.

[4] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In KDD ’00: Proceedings
of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
407–416, New York, NY, USA, 2000. ACM Press.

[5] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and
T. White. Evaluating implicit measures to improve
web search. ACM Trans. Inf. Syst., 23(2):147–168,
2005.

[6] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–142,
New York, NY, USA, 2002. ACM Press.

[7] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In SIGIR ’05: Proceedings of the
28th annual international ACM SIGIR conference on
research and development in information retrieval,
pages 154–161, New York, NY, USA, 2005. ACM
Press.

[8] J. La↵erty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In SIGIR 01, pages 111–119, 2001.

[9] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Trans. Pattern Analysis and
Mach. Intell. (PAMI), 22(8):888–905, Aug. 2000.

[10] M. Szummer and T. Jaakkola. Partially labeled
classification with Markov random walks. In Advances
in Neural Information Processing Systems (NIPS),
volume 14, pages 945–952. MIT Press, Jan. 2002.

[11] N. Tishby and N. Slonim. Data clustering by
Markovian relaxation and the information bottleneck
method. In Advances in Neural Information Processing
Systems (NIPS), volume 13, pages 640–646, 2001.

[12] K. Toutanova, C. D. Manning, and A. Y. Ng.
Learning random walk models for inducing word
dependency distributions. In Intl. Conf. Machine
Learning (ICML), 2004.

[13] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user
queries of a search engine. In WWW ’01: Proceedings
of the 10th international conference on World Wide
Web, pages 162–168, New York, NY, USA, 2001.
ACM Press.

[14] L. Wenyin, S. Dumais, Y. Sun, H. Zhang,
M. Czerwinski, and B. Field. Semi-automatic image
annotation. INTERACT2001, 8th IFIP TC. 13
Conference on Human-Computer Interaction, 2001.

[15] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma,
W. Xi, and W. Fan. Optimizing web search using web
click-through data. In CIKM ’04: Proceedings of the
thirteenth ACM international conference on
Information and knowledge management, pages
118–126, New York, NY, USA, 2004. ACM Press.

SIGIR 2007 Proceedings Session 10: Web IR I

246

IR&DM ’13/’14

Random Walks on the Query-Flow Graph

• Consider query-flow graph with  
queries as vertices and  
weighted edges (q, q’) reflecting  
how often q’ is issued after q

• Recommend related queries by performing  
PageRank-style random walk on the query-flow graph  
with link-following probabilities proportional to edge weights  
and random jump to current query (or last few queries)  
 
 
 
 
 

• Full details: [Boldi et al. ’08]
!66

panda bear

endangered species

giant panda

2.0

1.0

3.0

classical weighting schemes used for document retrieval, like
tf-idf, where the term frequency within a document needs to
be discounted by the absolute importance of the term (the
idf part of the formula).

Instead of using the pure random-walk score sq(q
′) of

the query q′ with respect to q, we can consider the ratio
ŝq(q

′) = sq(q
′)/r(q′) where r(q′) is the absolute random-

walk score of q′ (i.e., the one computed using a uniform pref-
erence vector). Experiments performed show that indeed in
most cases ŝq(q

′) produces rankings that are more reason-
able, but sometimes tend to boost too much scores having a
very low absolute score r(q′). To use a bigger denominator,
we also tried with

√
r(q′) as r(q′) < 1; this corresponds also

to the geometric mean between sq(q
′) and ŝq(q

′), that is

s̄q(q
′) =

√
sq(q′) · ŝq(q′) =

sq(q
′)√

r(q′)
.

Table 3 shows the output of the random-walk scoring and
the adjusted variants discussed above: note that, except for
the first few queries, the baseline soon “gets lost” in com-
pletely unrelated queries; sq works well, but as expected
popular queries (like“ebay”) pollute the results; on the other
hand ŝq tends to overpenalize common queries, and tends to
produce exotic recommendations (“apple belgium”), whereas
s̄q gives the most pertinent results.

6.3 Recommendation with history
A further step in the same direction is providing recom-

mendation that depends not only on the last query input
by the user, but on some of the last queries in the user’s
history. This approach may help to alleviate the data spar-
sity problem –the current query may be rare, but among the
previous queries there might be queries for which we have
enough information in the query flow graph. Basing the rec-
ommendation on the user’s query history may also help to
solve ambiguous queries, as we have more informative sug-
gestions based on what the user is doing during the current
session.

Using the same notation as before, suppose that q1, . . . , qk

is the current query chain (ordered starting from the most
recent); then, we consider the Markov process whose transi-
tion matrix is defined by

A = αP + (1 − α)1eT
q1,...,qk

where v = eq1,...,qk is a vector whose entries are such that
vq1 > vq2 > · · · > vqk > 0. Equivalently, the overall process
may be described using the random surfer metaphor, where
v is the distribution used to choose the teleportation node,
when teleportation is decided. Although other choices are
possible, we always fixed v to be such that vq = 0 for all
q ̸∈ {q1, . . . , qk}, and vqi ∝ βi for some β < 1.

Also in this case, we are not going to use the pure random-
walk score sq1,...,qk (q′) of the query q′ with respect to the
sequence q1, . . . , qk, but the adjusted score s̄q1,...,qk (q′) in-
stead.

It is interesting to compare the relevance score s̄q1,...,qk (q′)
that can provide recommendation using the whole history
with the score s̄q1(q

′) that can only exploit the last query.
Table 4 shows the output for two hypothetical chains. In
the first one, the query q′ =“apple”’ is preceded by the
query q =“banana”’, or by the query q =“beatles”’ (“Ap-
ple Records” is a record label founded by The Beatles).

Table 4: Recommendations for the query q =“apple”,
considering that the previous query was “banana”
(top) or “beatles”’ (bottom).

banana → apple banana

banana banana
apple eating bugs
usb no banana holiday
banana cs opening a banana
giant chocolate bar banana shoe
where is the seed in anut fruit banana
banana shoe recipe 22 feb 08
fruit banana banana jules oliver
banana cloths banana cs
eating bugs banana cloths

beatles → apple beatles

beatles beatles
apple scarring
apple ipod paul mcartney
scarring yarns from ireland
srg peppers artwork statutory instrument A55
ill get you silver beatles tribute band
bashles beatles mp3
dundee folk songs GHOST’S
the beatles love album ill get you
place lyrics beatles fugees triger finger remix

Table 5: Recommendations for two actual query
chains.
music facebook → gabriella

→ music

music music
yahoo music gabriella
music videos yahoo music
music downloads music videos
free music music downloads
yahoo music videos free music
music yahoo gabriella sweet like me
free music videos lighting bug rotherham
yahoo music launch ccp npa ndf
free music downloads gabriela lighting

evening dress orion → orion dress
orion evening dress →
evening dress

evening dress evening dress
formal evening dress orion evening dress
red evening dress formal evening dress
myevening dress red evening dress
prom 008 dresses long dressess
long dressess myevening dress
evening dress uk fashion women dress
fashion women dress prom 008 dresses
dresses for the evening evening dress uk
1900evening dress 1900evening dress

The parameter β is set to 0.8 and the scoring uses s̄q. In
Table 5, two actual query sessions are processed by the al-
gorithm.

616

classical weighting schemes used for document retrieval, like
tf-idf, where the term frequency within a document needs to
be discounted by the absolute importance of the term (the
idf part of the formula).

Instead of using the pure random-walk score sq(q
′) of

the query q′ with respect to q, we can consider the ratio
ŝq(q

′) = sq(q
′)/r(q′) where r(q′) is the absolute random-

walk score of q′ (i.e., the one computed using a uniform pref-
erence vector). Experiments performed show that indeed in
most cases ŝq(q

′) produces rankings that are more reason-
able, but sometimes tend to boost too much scores having a
very low absolute score r(q′). To use a bigger denominator,
we also tried with

√
r(q′) as r(q′) < 1; this corresponds also

to the geometric mean between sq(q
′) and ŝq(q

′), that is

s̄q(q
′) =

√
sq(q′) · ŝq(q′) =

sq(q
′)√

r(q′)
.

Table 3 shows the output of the random-walk scoring and
the adjusted variants discussed above: note that, except for
the first few queries, the baseline soon “gets lost” in com-
pletely unrelated queries; sq works well, but as expected
popular queries (like“ebay”) pollute the results; on the other
hand ŝq tends to overpenalize common queries, and tends to
produce exotic recommendations (“apple belgium”), whereas
s̄q gives the most pertinent results.

6.3 Recommendation with history
A further step in the same direction is providing recom-

mendation that depends not only on the last query input
by the user, but on some of the last queries in the user’s
history. This approach may help to alleviate the data spar-
sity problem –the current query may be rare, but among the
previous queries there might be queries for which we have
enough information in the query flow graph. Basing the rec-
ommendation on the user’s query history may also help to
solve ambiguous queries, as we have more informative sug-
gestions based on what the user is doing during the current
session.

Using the same notation as before, suppose that q1, . . . , qk

is the current query chain (ordered starting from the most
recent); then, we consider the Markov process whose transi-
tion matrix is defined by

A = αP + (1 − α)1eT
q1,...,qk

where v = eq1,...,qk is a vector whose entries are such that
vq1 > vq2 > · · · > vqk > 0. Equivalently, the overall process
may be described using the random surfer metaphor, where
v is the distribution used to choose the teleportation node,
when teleportation is decided. Although other choices are
possible, we always fixed v to be such that vq = 0 for all
q ̸∈ {q1, . . . , qk}, and vqi ∝ βi for some β < 1.

Also in this case, we are not going to use the pure random-
walk score sq1,...,qk (q′) of the query q′ with respect to the
sequence q1, . . . , qk, but the adjusted score s̄q1,...,qk (q′) in-
stead.

It is interesting to compare the relevance score s̄q1,...,qk (q′)
that can provide recommendation using the whole history
with the score s̄q1(q

′) that can only exploit the last query.
Table 4 shows the output for two hypothetical chains. In
the first one, the query q′ =“apple”’ is preceded by the
query q =“banana”’, or by the query q =“beatles”’ (“Ap-
ple Records” is a record label founded by The Beatles).

Table 4: Recommendations for the query q =“apple”,
considering that the previous query was “banana”
(top) or “beatles”’ (bottom).

banana → apple banana

banana banana
apple eating bugs
usb no banana holiday
banana cs opening a banana
giant chocolate bar banana shoe
where is the seed in anut fruit banana
banana shoe recipe 22 feb 08
fruit banana banana jules oliver
banana cloths banana cs
eating bugs banana cloths

beatles → apple beatles

beatles beatles
apple scarring
apple ipod paul mcartney
scarring yarns from ireland
srg peppers artwork statutory instrument A55
ill get you silver beatles tribute band
bashles beatles mp3
dundee folk songs GHOST’S
the beatles love album ill get you
place lyrics beatles fugees triger finger remix

Table 5: Recommendations for two actual query
chains.
music facebook → gabriella

→ music

music music
yahoo music gabriella
music videos yahoo music
music downloads music videos
free music music downloads
yahoo music videos free music
music yahoo gabriella sweet like me
free music videos lighting bug rotherham
yahoo music launch ccp npa ndf
free music downloads gabriela lighting

evening dress orion → orion dress
orion evening dress →
evening dress

evening dress evening dress
formal evening dress orion evening dress
red evening dress formal evening dress
myevening dress red evening dress
prom 008 dresses long dressess
long dressess myevening dress
evening dress uk fashion women dress
fashion women dress prom 008 dresses
dresses for the evening evening dress uk
1900evening dress 1900evening dress

The parameter β is set to 0.8 and the scoring uses s̄q. In
Table 5, two actual query sessions are processed by the al-
gorithm.

616

IR&DM ’13/’14IR&DM ’13/’14

Summary of IV.6

• SimRank  
considers two objects similar if similar objects point to them  
is based on two lock-step backwards random walks  

• Click graph  
a bi-partite graph capturing users’ click behavior  
can be used to recommend similar queries or similar documents  

• Query-flow graph  
a directed graph derived from users’ query sessions  
can be used to recommend similar queries

!67

IR&DM ’13/’14IR&DM ’13/’14

Additional Literature for IV.6
• G. Jeh and J. Widom: SimRank: A Measure of Structural-Contextual Similarity,  

KDD 2002

• N. Craswell and M. Szummer: Random Walks on the Click Graph, 
SIGIR 2007

• P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna: The Query-flow
Graph: Model and Applications, CIKM 2008

!68

IR&DM ’13/’14IR&DM ’13/’14

IV.7 Spam Detection

• Discoverability of web pages has often a  
direct impact on the commercial success  
of the business behind them

• Search Engine Optimization (SEO) seeks to  
optimize web pages to make them easier to  
discover for potential customers

• “white hat” (optimizes for the user and respects to search engine policies)

• “black hat” (manipulates search results by web spamming techniques)

• Web spamming techniques and search engines evolved in parallel

• initially: only content spam, then: link spam, now: social media spam

• 2004 DarkBlue SEO challenge: “nigritude ultramarine”

• 2005 c’t SEO challenge: “Hommingberger Gepardenforelle”

!69

IR&DM ’13/’14

Content Spam vs. Link Spam vs. Content Hiding

• Content spam

• keyword stuffing – add unrelated but often-sought keywords to page

• invisible content – unrelated content invisible to users (like this)

• Link spam

• link farms – collection of pages aiming to manipulate PageRank

• honeypots – create valuable web pages with links to spam page

• link hijacking – leave comments on reputable web pages or blogs

• Content hiding

• cloaking – show different content to search engine’s crawler and users  

• More details: [Gyöngyi et al. ‘05]

!70

IR&DM ’13/’14

TrustRank & BadRank

• Idea: Pages linked to by trustworthy pages tend to be trustworthy

• TrustRank performs PageRank-style random walk with random
jumps only to an explicitly selected set of trusted pages T  

• Idea: Pages linking to spam pages tend to be spam themselves

• BadRank performs PageRank-style backwards random walk  
(i.e., following incoming links) with random jumps only to an  
explicitly selected set of blacklisted pages B 

• Problems:

• Sets of trusted and blacklisted pages are difficult to maintain

• TrustRank and BadRank scores are hard to interpret and combine 

• Full details: [Kamvar et al. ’03][Gyöngyi et al. ‘04]
!71

IR&DM ’13/’14

Spam, Damn Spam, and Statistics

• Idea: Look for statistical deviation  

• Content spam: Compare word frequency 
distribution to distribution in “good hosts”  

• Link spam: Identify outliers in out-degree and in-degree
distributions and inspect intersection  
 
 
 
 
 

• Full details: [Fetterly et al. ‘04]

!72

Figure 3: Distribution of “host-machine ratios”
among all links on a page, averaged over all pages
on a web site

longer, have more arcs, more digits, or the like. However,
when we examined our data set DS2 for such correlations,
we did not find any properties of the URL at large that are
correlated to web spam.

However, we did find that various properties of the host
component of a URL are indicative of spam. In particu-
lar, we found that host names with many characters, dots,
dashes, and digits are likely to be spam web sites. (Coinci-
dentally, 80 of the 100 longest host names we discovered refer
to adult web sites, while 11 refer to financial-credit-related
web sites.) Figure 1 shows the distribution of host name
length. The horizontal axis shows the host name length in
characters; the vertical axis shows how many host names
with that length are contained in DS2.

Obviously, the choice of threshold values for the number
of characters, dots, dashes and digits that cause a URL to
be flagged as a spam candidate determines both the number
of pages flagged as spam as well as the rate of false positives.
0.173% of all URLs in DS2 have host names that are at least
45 characters long, or contain at least 6 dots, 5 dashes, or 10
digits. The vast majority of these URLs appear to be spam.

4. HOST NAME RESOLUTIONS
One piece of folklore among the SEO community is that

search engines (and Google in particular), given a query
q, will rank a result URL u higher if u’s host component
contains q. SEOs try to exploit this by populating pages
with URLs whose host components contain popular queries
that are relevant to their business, and by setting up a DNS
server that resolves those host names. The latter is quite
easy, since DNS servers can be configured with wildcard
records that will resolve any host name within a domain
to the same IP address. For example, at the time of this
writing, any host within the domain highriskmortgage.com

resolves to the IP address 65.83.94.42.
Since SEOs typically synthesize a very large number of

host names so as to rank highly for a wide variety of queries,
it is possible to spot this form of web spam by determining
how many host names resolve to the same IP address (or
set of IP addresses). Figure 2 shows the distribution of host
names per IP address. The horizontal axis shows how many

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Out-degree

N
um

be
r o

f p
ag

es

Figure 4: Distribution of out-degrees

host names map to a single IP address; the vertical axis
indicates how many such IP addresses there are. A point
at position (x, y) indicates that there are y IP addresses
with the property that each IP address is mapped to by x
hosts. 1,864,807 IP addresses in DS2 are referred to by one
host name each (indicated by the topmost point); 599,632
IP addresses are referred to by two host names each; and 1
IP address is referred to by 8,967,154 host names (far-right
point). We found that 3.46% of the pages in DS2 are served
from IP addresses that are mapped to by more than 10,000
different symbolic host names. Casual inspection of these
URLs showed that they are predominantly spam sites. If
we drop the threshold to 1,000, the yield rises to 7.08%, but
the rate of false positives goes up significantly.

Applying the same technique to DS1 flagged 2.92% per-
cent of all pages in DS1 as spam candidates; manual in-
spection of a sample of 250 of these pages showed that 167
(66.8%) were spam, 64 (25.6%) were false positives (largely
attributable to community sites that assign unique host names
to each user), and 19 (7.6%) were “soft errors”, that is, pages
displaying a message indicating that the resource is not cur-
rently available at this URL, despite the fact that the HTTP
status code was 200 (“OK”).

It is worth noting that this metric flags about 20 times
more URLs as spam than the hostname-based metric did.

Another item of folklore in the SEO community is that
Google’s variant of PageRank assigns greater weight to off-
site hyperlinks (the rationale being that endorsing another
web site is more meaningful than a self-endorsement), and
even greater weight to pages that link to many different web
sites (these pages are considered to be “hubs”). Many SEOs
try to capitalize on this alleged behavior by populating pages
with hyperlinks that refer to pages on many different hosts,
but typically all of the hosts actually resolve to one or at
most a few different IP addresses.

We detect this scheme by computing the average “host-
machine-ratio” of a web site. Given a web page containing
a set of hyperlinks, we define the host-machine-ratio of that
page to be the size of the set of host names referred to by
the link set divided by the size of the set of distinct ma-
chines that the host names resolve to (two host names are
assumed to refer to distinct machines if they resolve to non-

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
In-degree

N
um

be
r o

f p
ag

es

Figure 5: Distribution of in-degrees

identical sets of IP addresses). The host-machine-ratio of
a machine is defined to be the average host-machine-ratio
of all pages served by that machine. If a machine has a
high host-machine-ratio, most pages served by this machine
appear to link to many different web sites (i.e. have non-
nepotistic, meaningful links), but actually all endorse the
same property. In other words, machines with high host-
machine-ratios are very likely to be spam sites.

Figure 3 shows the host-machine ratios of all the machines
in DS2. The horizontal axis denotes the host-machine-ratio;
the vertical axis denotes the number of pages on a given
machine. Each point represents one machine; a point at
position (x, y) indicates that DS2 contains y pages from this
machine, and that the average host-machine-ratio of these
pages is x. We found that host-machine ratios greater than
5 are typically indicative of spam. 1.69% of the pages in
DS2 fulfill this criterion.

5. LINKAGE PROPERTIES
Web pages and the hyperlinks between them induce a

graph structure. Using graph-theoretic terminology, the
out-degree of a web page is equal to the number of hyper-
links embedded in the page, while the in-degree of a page is
equal to the number of hyperlinks referring to that page.

Figure 4 shows the distribution of out-degrees. The x-
axis denotes the out-degree of a page; the y-axis denotes
the number of pages in DS2 with that out-degree. Both
axes are drawn on a logarithmic scale. (The 53.7 million
pages in DS2 that have out-degree 0 are not included in this
graph due to the limitations of the log-scale plot.) The graph
appears linear over a wide range, a shape characteristic of a
Zipfian distribution. The blue oval highlights a number of
outliers in the distribution. For example, there are 158,290
pages with out-degree 1301; while according to the overall
distribution of out-degrees we would expect only about 1,700
such pages. Overall, 0.05% of the pages in DS2 have an out-
degree that is at least three times more common than the
Zipfian distribution would suggest. We examined a cross-
section of these pages, and virtually all of them are spam.

Figure 5 shows the distribution of in-degrees. As in fig-
ure 4, the x-axis denotes the in-degree of a page, the y-axis

Figure 6: Variance of the word counts of all pages
served up by a single host

denotes the number of pages in DS2 with that in-degree,
and both axes are drawn on a logarithmic scale. The graph
appears linear over an even wider range than the previous
graph, exhibiting an even more pronounced Zipfian distri-
bution. However, there is also an even larger set of outliers,
and some of them are even more pronounced. For exam-
ple, there are 369,457 web pages with in in-degree 1001 in
DS2, while according to the overall in-degree distribution we
would expect only about 2,000 such pages. Overall, 0.19%
of the pages in DS2 have an in-degree that is at least three
times more common than the Zipfian distribution would sug-
gest. We examined a cross-section of these pages, and the
vast majority of them are spam.

6. CONTENT PROPERTIES
As we mentioned earlier on, SEOs often try to boost their

rankings by configuring web servers to generate pages on the
fly, in order to perform “link spam” or “keyword stuffing.”
Effectively, these web servers spin an infinite web — they
will return an HTML page for any requested URL. A smart
SEO will generate pages that exhibit a certain amount of
variance; however, many SEOs are näıve. Therefore, many
auto-generated pages look fairly templatic. In particular,
there are numerous spam web sites that dynamically gen-
erate pages which each contain exactly the same number
of words (although the individual words will typically differ
from page to page).

DS1 contains the number of non-markup words in each
downloaded HTML page. Figure 6 shows the variance in
word count of all pages drawn from a given symbolic host
name. We restrict ourselves to hosts with a nonzero mean
word count. The x-axis shows the variance of the word
count, the y-axis shows the number of pages in DS1 down-
loaded from that host. Both axes are shown on a log-scale;
we have offset data points with zero variance by 10−7, in
order to deal with the limitations of the log-scale. The blue
oval highlights web servers that have at least 10 pages and
no variance in word count. There are 944 such hosts serv-
ing 323,454 pages (0.21% of all pages). Drawing a random
sample of 200 of these pages and manually assessing them
showed that 55% were spam, 3.5% contained no text, and
41.5% were soft errors.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
In-degree

N
um

be
r o

f p
ag

es
Figure 5: Distribution of in-degrees

identical sets of IP addresses). The host-machine-ratio of
a machine is defined to be the average host-machine-ratio
of all pages served by that machine. If a machine has a
high host-machine-ratio, most pages served by this machine
appear to link to many different web sites (i.e. have non-
nepotistic, meaningful links), but actually all endorse the
same property. In other words, machines with high host-
machine-ratios are very likely to be spam sites.

Figure 3 shows the host-machine ratios of all the machines
in DS2. The horizontal axis denotes the host-machine-ratio;
the vertical axis denotes the number of pages on a given
machine. Each point represents one machine; a point at
position (x, y) indicates that DS2 contains y pages from this
machine, and that the average host-machine-ratio of these
pages is x. We found that host-machine ratios greater than
5 are typically indicative of spam. 1.69% of the pages in
DS2 fulfill this criterion.

5. LINKAGE PROPERTIES
Web pages and the hyperlinks between them induce a

graph structure. Using graph-theoretic terminology, the
out-degree of a web page is equal to the number of hyper-
links embedded in the page, while the in-degree of a page is
equal to the number of hyperlinks referring to that page.

Figure 4 shows the distribution of out-degrees. The x-
axis denotes the out-degree of a page; the y-axis denotes
the number of pages in DS2 with that out-degree. Both
axes are drawn on a logarithmic scale. (The 53.7 million
pages in DS2 that have out-degree 0 are not included in this
graph due to the limitations of the log-scale plot.) The graph
appears linear over a wide range, a shape characteristic of a
Zipfian distribution. The blue oval highlights a number of
outliers in the distribution. For example, there are 158,290
pages with out-degree 1301; while according to the overall
distribution of out-degrees we would expect only about 1,700
such pages. Overall, 0.05% of the pages in DS2 have an out-
degree that is at least three times more common than the
Zipfian distribution would suggest. We examined a cross-
section of these pages, and virtually all of them are spam.

Figure 5 shows the distribution of in-degrees. As in fig-
ure 4, the x-axis denotes the in-degree of a page, the y-axis

Figure 6: Variance of the word counts of all pages
served up by a single host

denotes the number of pages in DS2 with that in-degree,
and both axes are drawn on a logarithmic scale. The graph
appears linear over an even wider range than the previous
graph, exhibiting an even more pronounced Zipfian distri-
bution. However, there is also an even larger set of outliers,
and some of them are even more pronounced. For exam-
ple, there are 369,457 web pages with in in-degree 1001 in
DS2, while according to the overall in-degree distribution we
would expect only about 2,000 such pages. Overall, 0.19%
of the pages in DS2 have an in-degree that is at least three
times more common than the Zipfian distribution would sug-
gest. We examined a cross-section of these pages, and the
vast majority of them are spam.

6. CONTENT PROPERTIES
As we mentioned earlier on, SEOs often try to boost their

rankings by configuring web servers to generate pages on the
fly, in order to perform “link spam” or “keyword stuffing.”
Effectively, these web servers spin an infinite web — they
will return an HTML page for any requested URL. A smart
SEO will generate pages that exhibit a certain amount of
variance; however, many SEOs are näıve. Therefore, many
auto-generated pages look fairly templatic. In particular,
there are numerous spam web sites that dynamically gen-
erate pages which each contain exactly the same number
of words (although the individual words will typically differ
from page to page).

DS1 contains the number of non-markup words in each
downloaded HTML page. Figure 6 shows the variance in
word count of all pages drawn from a given symbolic host
name. We restrict ourselves to hosts with a nonzero mean
word count. The x-axis shows the variance of the word
count, the y-axis shows the number of pages in DS1 down-
loaded from that host. Both axes are shown on a log-scale;
we have offset data points with zero variance by 10−7, in
order to deal with the limitations of the log-scale. The blue
oval highlights web servers that have at least 10 pages and
no variance in word count. There are 944 such hosts serv-
ing 323,454 pages (0.21% of all pages). Drawing a random
sample of 200 of these pages and manually assessing them
showed that 55% were spam, 3.5% contained no text, and
41.5% were soft errors.

P [deg = k] / 1

ks
sin ⇡ 2.10

s
out

⇡ 2.72

Typical for the Web:

IR&DM ’13/’14

SpamMass

• Idea: Measure spam mass as the amount of PageRank score  
that a web page receives from web pages known to be spam

• Assume that web pages are partitioned into good pages V + and
bad pages V - and that a “good core” C ⊆ V + is known

• Absolute spam mass of page p is then estimated as  
 
 
with π(p) as its PageRank score and πC (p) as its PageRank score
with random jumps only to pages in the good core

• Relative spam mass of page p is  
 

• Full details: [Gyöngyi et al. ’05] [Gyöngyi et al. ’06]

!73

SM(p) = ⇡(p)� ⇡C(p)

rSM(p) = SM(p)/⇡(p)

IR&DM ’13/’14

Learning Spam Features

• Idea: Use classifier (e.g., Naïve Bayes or SVM) to classify pages
into Spam and NoSpam based on context- and content-features

• Discriminative context features [Drost and Scheffer ’05]:

• tf.idf weights in page p and in-neighbors in(p)

• average in-degree and out-degree of pages in in(p)

• average number of words in title of pages in out(p)

• number of pages in in(p) with same length as some other page in in(p)

• sum of in-degree and out-degree of pages in in(p)

• clustering coefficient of pages in in(p) (existing edges / possible edges)

• number of pages in in(p) with same IP address as p

• …

!74

IR&DM ’13/’14

Learning Spam Features (cont’d)

• Discriminative content features [Ntoulas et al. ’06]

• average word length in page

• percentage of page content that is anchor text

• percentage of page content that is visible

• percentage of page content in popular words (e.g., stopwords)

• compressibility of page content (e.g., using Zip compression)

• … 

• Problem: It’s an arms race! Spammers adjust to counter measures  

• Full details: [Drost and Scheffer ’05][Ntoulas et al. ‘06]

!75

IR&DM ’13/’14IR&DM ’13/’14

Summary of IV.7

• Link spam 
targets link analysis methods like PageRank  

• Statistical deviation  
spam sites have different degree and word-frequency distributions  

• TrustRank & BadRank 
perform PageRank-style from/to trusted/bad web pages  

• SpamMass  
determines how much of a page’s PageRank score is due to spam  

!76

IR&DM ’13/’14IR&DM ’13/’14

Additional Literature for IV.7
• A. Benczur, K. Csalongany, T. Sarlos, and M. Uher: SpamRank – Fully Automatic

Link Spam Detection, AIRWeb Workshop 2005

• L. Becchetti, C. Castillo, D. Donato, R. Baeza-Yates, and S. Leonardi: Link analysis
for Web spam detection, ACM TWEB 2(1):1:42, 2008

• C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri: Know your
neighbors: Web spam detection using the web topology, SIGIR 2007

• I. Drost and T. Scheffer: Thwarting the Nigritude Ultramarine: Learning to Identify
Link Spam,  
ECML 2005

• D. Fetterly, M. Manasse, and M. Najork: Spam, Damn Spam, and Statistics, 
WebDB‘05

• Z. Gyöngyi and H. Garcia-Molina: Spam: It‘s Not Just for Inboxes Anymore,  
IEEE Computer 2005

• Z. Gyöngyi, P. Berkhin, H. Garcia-Molina, and J. Pedersen: Link Spam Detection
based on Mass Estimation,  
VLDB 2006

!77

IR&DM ’13/’14

IV.8 Social Networks

• Social networks

• diverse relations (e.g., friendship, liking, check-in, following) between

• diverse types of objects (e.g., people, entities, posts, images, videos)  

• Folksonomies (~ folk + taxonomy)

• allow users to organize objects by tagging

• no centrally controlled vocabulary  

• Link analysis methods give insights  
into importance and similarity  
of objects (e.g., for ranking or  
recommendation)

!78

IR&DM ’13/’14

More Than Directed Graphs…

• Example: Facebook’s Social Graph [Bronson et al. ’13]

• typed objects (e.g., USER, LOCATION) with attributes (e.g., name)  
 
(id) => (otype, (key => value)*)

• typed directed relations (e.g., LIKES) with timestamps and attributes  
 
(id1, atype, id2) => (time, (key => value)*)  
 
 
 
 
 
 
 

• Full details: [Bronson et al. ’13]

!79

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 49

TAO: Facebook’s Distributed Data Store for the Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Abstract
We introduce a simple data model and API tailored for
serving the social graph, and TAO, an implementation
of this model. TAO is a geographically distributed data
store that provides efficient and timely access to the so-
cial graph for Facebook’s demanding workload using a
fixed set of queries. It is deployed at Facebook, replac-
ing memcache for many data types that fit its model. The
system runs on thousands of machines, is widely dis-
tributed, and provides access to many petabytes of data.
TAO can process a billion reads and millions of writes
each second.

1 Introduction

Facebook has more than a billion active users who record
their relationships, share their interests, upload text, im-
ages, and video, and curate semantic information about
their data [2]. The personalized experience of social ap-
plications comes from timely, efficient, and scalable ac-
cess to this flood of data, the social graph. In this paper
we introduce TAO, a read-optimized graph data store we
have built to handle a demanding Facebook workload.

Before TAO, Facebook’s web servers directly ac-
cessed MySQL to read or write the social graph, aggres-
sively using memcache [21] as a lookaside cache. TAO
implements a graph abstraction directly, allowing it to
avoid some of the fundamental shortcomings of a looka-
side cache architecture. TAO continues to use MySQL
for persistent storage, but mediates access to the database
and uses its own graph-aware cache.

TAO is deployed at Facebook as a single geograph-
ically distributed instance. It has a minimal API and
explicitly favors availability and per-machine efficiency
over strong consistency; its novelty is its scale: TAO can
sustain a billion reads per second on a changing data set
of many petabytes.

Overall, this paper makes three contributions. We mo-
tivate (§ 2) and characterize (§ 7) a challenging work-
load: efficient and available read-mostly access to a
changing graph. We describe objects and associations, a
data model and API that we use to access the graph (§ 3).
Lastly, we detail TAO, a geographically distributed sys-
tem that implements this API (§§ 4–6), and evaluate its
performance on our workload (§ 8).

!"#$% &'"(%)*&+,%*-.#(/% -'0

1+,23 4+5#(

6+7*+,*,2% 6#,2

8*9#72*6%*6%.%*,2%.%: ,2#7"#;%7

!"8*<=>?*#$%&'8*@ABC
()*'8*!"#$%

!@DEFCB4G-H
!@DEFCB4

!"8*>IJ?*#$%&'8*KF1!DLFM
()*'8*&'"(%)*&+,%*-.#(/%
+#,8*INOJPQ<<QQM?*<RRORSQJIQQ9

KF
1

1E
TL
M

)$
%&
'8
*1
F
U
U
BM

D
$!*

'8
*<
II

J>
<<
VN

=

!"

#"

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*RJJ?*#$%&'8*@ABC
()*'8*-'0 D!&&B4

D!&&B4G!D

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*INP?*#$%&'8*@ABC
()*'8*1+,23

!@DEFCB4G-H!@DEFCB4

!"8*VIR?*#$%&'8*1EB1TLM

WC
LB
M4

WC
LB
M4

!"8*JN<?*#$%&'8*@ABC
()*'8*4+5#(

KLTB4G-H
KLTBA

!"8*NN<?*#$%&'8*1FUUBMD
$'-$8*9#72*6%*6%.%*,2%.%:

Figure 1: A running example of how a user’s checkin
might be mapped to objects and associations.

2 Background

A single Facebook page may aggregate and filter hun-
dreds of items from the social graph. We present each
user with content tailored to them, and we filter every
item with privacy checks that take into account the cur-
rent viewer. This extreme customization makes it infeasi-
ble to perform most aggregation and filtering when con-
tent is created; instead we resolve data dependencies and
check privacy each time the content is viewed. As much
as possible we pull the social graph, rather than pushing
it. This implementation strategy places extreme read de-
mands on the graph data store; it must be efficient, highly
available, and scale to high query rates.

2.1 Serving the Graph from Memcache
Facebook was originally built by storing the social graph
in MySQL, querying it from PHP, and caching results
in memcache [21]. This lookaside cache architecture is
well suited to Facebook’s rapid iteration cycles, since all

IR&DM ’13/’14

SocialPageRank

• Considers pages P, tags T, and users U

• MPU capturing page-user associations (# tags assigned by u to p)

• MUT capturing user-tag associations (# pages tagged by u with t)

• MTP capturing tag-page associations (# users who put t on p)

• Iterative computation of importance vectors rP, rT, and rU as  
 
 
 
 
 
 
with renormalization after every iteration until convergence

• Full details: [Bao et al. ’07]

!80

rU = MT
PU rP

rT = MT
UT rU

rP = MT
TP rT

IR&DM ’13/’14

FolkRank

• Considers pages P, tags T, and users U

• MPU capturing page-user associations (# tags assigned by u to p)

• MUT capturing user-tag associations (# pages tagged by u with t)

• MTP capturing tag-page associations (# users who put t on p)

• Merges MPU, MUT, and MTP into a single graph G(V, E)

• Assumes that each user has a preference vector p

• Iterative computation of importance vector r as  
 
 
 
with A as right-stochastic adjacency matrix of G(V, E)

• Full details: [Hotho et al. ‘06]

!81

r = ↵ r+ �AT r+ � r

IR&DM ’13/’14

TunkRank

• Idea: Measure a Twitter user’s influence as the expected number
of people who will read a tweet (including re-tweets) by the user

• Considers Twitter’s follower graph G(V, E) consisting of users
as vertices V and directed edges E with edge (i, j) indicating that
user i follows user j

• Assumptions:

• if i follows j, i reads tweet by j with probability 1 / out(i)

• constant re-tweeting probability p 
 
 
 
 

• Full details: [Tunkelang ’09]
!82

r(j) =
X

(i,j)2E

(1 + p · r(i))
|out(i)|

IR&DM ’13/’14

TwitterRank

• Considers Twitter’s follower graph G(V, E) consisting of users
as vertices V and directed edges E with edge (i, j) indicating that
user i follows user j

• PageRank-style random walk with link-following probabilities  
 
 
 
 
with Ni as the number of tweets published by user i  
and sim(i, j) reflecting similarity between tweets by i and j

• Extension considers topics obtained by LDA and factors them
into random jump probabilities jt and similarity simt(i, j)  

• Full details: [Weng et al ’10]

!83

Tij =

(
|Nj |P

(i,k)2E |Nk| · sim(i, j) : (i, j) 2 E

0 : otherwise

IR&DM ’13/’14IR&DM ’13/’14

Summary of IV.8

• Social networks  
as complex graphs with diverse types of objects, diverse relations
in-between, timestamps, and associated attributes  

• Link analysis methods 
can be used to measure importance and similarity  
with applications in search and recommendation

!84

IR&DM ’13/’14IR&DM ’13/’14

Additional Literature for IV.8
• S. Bao, G.-R. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su: Optimizing web search using

social annotations, WWW 2007

• N. Bronson et al.: TAO: Facebook’s Distributed Data Store for the Social Graph, 
USENIX ATC 2013

• A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme: FolkRank: A Ranking Algorithm
for Folksonomies, LWA 2006

• A. Kashyap, R. Amini, and V. Hristidis: SonetRank: leveraging social networks to
personalize search, CIKM 2012

• D. Tunkelang: A Twitter Analog to PageRank, 2009 
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank/

• J. Weng, E.-P. Lim, J. Jiang, and Q. He: TwitterRank: finding topic-sensitive
influential twitterers, WSDM 2010

!85

